1
|
Cherian N, Bettis A, Deol A, Kumar A, Di Fabio JL, Chaudhari A, Yimer S, Fahim R, Endy T. Strategic considerations on developing a CHIKV vaccine and ensuring equitable access for countries in need. NPJ Vaccines 2023; 8:123. [PMID: 37596253 PMCID: PMC10439111 DOI: 10.1038/s41541-023-00722-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Chikungunya is an arboviral disease caused by the chikungunya virus (CHIKV) afflicting tropical and sub-tropical countries worldwide. It has been identified as a priority pathogen by the Coalition for Epidemics Preparedness Innovations (CEPI) and as an emerging infectious disease (EID) necessitating further action as soon as possible by the World Health Organization (WHO). Recent studies suggest that disability-adjusted life years (DALYs) due to CHIKV infection are as high as 106,089 DALYs lost globally. Significant progress has been made in the development of several vaccines, aimed at preventing CHIKV infections. This perspective article summarizes CEPI's efforts and strategic considerations for developing a CHIKV vaccine and ensuring equitable access for CHIKV endemic countries.
Collapse
Affiliation(s)
- Neil Cherian
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway.
| | - Alison Bettis
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Arminder Deol
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Arun Kumar
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | | | - Amol Chaudhari
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Solomon Yimer
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Raafat Fahim
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| | - Timothy Endy
- Coalition for Epidemics Preparedness Innovations, Oslo, Norway
| |
Collapse
|
2
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
3
|
Kiesslich S, Kamen AA. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv 2020; 44:107608. [PMID: 32768520 PMCID: PMC7405825 DOI: 10.1016/j.biotechadv.2020.107608] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The Vero cell line is considered the most used continuous cell line for the production of viral vectors and vaccines. Historically, it is the first cell line that was approved by the WHO for the production of human vaccines. Comprehensive experimental data on the production of many viruses using the Vero cell line can be found in the literature. However, the vast majority of these processes is relying on the microcarrier technology. While this system is established for the large-scale manufacturing of viral vaccine, it is still quite complex and labor intensive. Moreover, scale-up remains difficult and is limited by the surface area given by the carriers. To overcome these and other drawbacks and to establish more efficient manufacturing processes, it is a priority to further develop the Vero cell platform by applying novel bioprocess technologies. Especially in times like the current COVID-19 pandemic, advanced and scalable platform technologies could provide more efficient and cost-effective solutions to meet the global vaccine demand. Herein, we review the prevailing literature on Vero cell bioprocess development for the production of viral vectors and vaccines with the aim to assess the recent advances in bioprocess development. We critically underline the need for further research activities and describe bottlenecks to improve the Vero cell platform by taking advantage of recent developments in the cell culture engineering field.
Collapse
Affiliation(s)
- Sascha Kiesslich
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
4
|
He X, Wang W, Chen G, Jiao P, Ji Z, Yang L, Wei P. Serological study reveal different antigenic IBDV strains prevalent in southern China during the years 2000-2017 and also the antigenic differences between the field strains and the commonly used vaccine strains. Vet Microbiol 2019; 239:108458. [PMID: 31767074 DOI: 10.1016/j.vetmic.2019.108458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
The aim of this study was to determine the antigenic relatedness of Infectious Bursal Disease Viruses (IBDVs) in the field in southern China during the period 2000-2017, as well as the antigenic relationship between the field strains and the most commonly used vaccine strains by using a virus neutralization (VN) test in vitro. The antigenic relatedness (R) value and the difference in VN titers were analyzed, and the antigenic index based on the sequences of the hypervariable region of VP2 (vVP2) of the strains was further evaluated. As a result, the R value of representative field strains showed that there were three subtypes present in the field strains examined, with 7 strains belonging to subtype 1, while strains BH11 and JS7 belonged to subtype 2 and subtype 3, respectively. The commonly used vaccine strains B87 and FW2512 belonged to subtype 1. The analysis of the VN titer differences revealed that all the 136 field strains were classified into subtype 1, except BH11 and JS7. All the field strains in subtype 1 have been divided into at least 5 subgroups, suggesting the antigenic diversity among these strains. The antigenic index based on IBDV-VP2 sequences further confirmed the antigenic differences between the three subtype strains and also the antigenic diversity among the subtype 1. The results demonstrated the antigenic diversity of field IBDVs in southern China during the years 2000-2017 and the antigenic differences between the field strains and the commonly used vaccine strains. This would indicate that the commonly used vaccines are only partially effective. These results enhance our understanding of IBDV genetic evolution and should help to develop more effective vaccines for the control of this disease in the future.
Collapse
Affiliation(s)
- Xiumiao He
- School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities, Nanning, Guangxi 530006, China; Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, Guangxi 530006, China.
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Guo Chen
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Pengtao Jiao
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhonghua Ji
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Lin Yang
- School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities, Nanning, Guangxi 530006, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 2019; 7:microorganisms7050133. [PMID: 31091828 PMCID: PMC6560413 DOI: 10.3390/microorganisms7050133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arthritogenic alphaviruses are responsible for a dengue-like syndrome associated with severe debilitating polyarthralgia that can persist for months or years and impact life quality. Chikungunya virus is the most well-known member of this family since it was responsible for two worldwide epidemics with millions of cases in the last 15 years. However, other arthritogenic alphaviruses that are as of yet restrained to specific territories are the cause of neglected tropical diseases: O'nyong'nyong virus in Sub-Saharan Africa, Mayaro virus in Latin America, and Ross River virus in Australia and the Pacific island countries and territories. This review evaluates their emerging potential in light of the current knowledge for each of them and in comparison to chikungunya virus.
Collapse
Affiliation(s)
- Laura I Levi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
- Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Marco Vignuzzi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
| |
Collapse
|
6
|
Milligan GN, Schnierle BS, McAuley AJ, Beasley DWC. Defining a correlate of protection for chikungunya virus vaccines. Vaccine 2018; 37:7427-7436. [PMID: 30448337 DOI: 10.1016/j.vaccine.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Chikungunya virus infection causes a debilitating febrile illness that in many affected individuals is associated with long-term sequelae that can persist for months or years. Over the past decade a large number of candidate vaccines have been developed, several of which have now entered clinical trials. The rapid and sporadic nature of chikungunya outbreaks poses challenges for planning of large clinical efficacy trials suggesting that licensure of chikungunya vaccines may utilize non-traditional approval pathways based on identification of immunological endpoint(s) predictive of clinical benefit. This report reviews the current status of nonclinical and clinical testing and potential challenges for defining a suitable surrogate or correlate of protection.
Collapse
Affiliation(s)
- Gregg N Milligan
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Barbara S Schnierle
- WHO Collaborating Center for Standardization and Evaluation of Vaccines, Paul Ehrlich Institut, Langen, Germany; Section AIDS, New and Emerging Pathogens, Virology Division, Paul Ehrlich Institut, Langen, Germany
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David W C Beasley
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
|
8
|
Beasley DWC, Aaskov JG. Challenges for the utilization of vaccines against arthritogenic alphaviruses. Future Virol 2016. [DOI: 10.2217/fvl-2016-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- David WC Beasley
- Department of Microbiology & Immunology, Sealy Center for Vaccine Development, and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 7755, USA
| | - John G Aaskov
- WHO Collaborating Centre for Arbovirus Reference & Research, Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
9
|
Dhama K, Kapoor S, Pawaiya RVS, Chakraborty S, Tiwari R, Verma AK. Ross River Virus (RRV) infection in horses and humans: a review. Pak J Biol Sci 2015; 17:768-79. [PMID: 26035950 DOI: 10.3923/pjbs.2014.768.779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fascinating and important arbovirus is Ross River Virus (RRV) which is endemic and epizootic in nature in certain parts of the world. RRV is a member of the genus Alphavirus within the Semliki Forest complex of the family Togaviridae, which also includes the Getah virus. The virus is responsible for causing disease both in humans as well as horses. Mosquito species (Aedes camptorhynchus and Aedes vigilax; Culex annulirostris) are the most important vector for this virus. In places of low temperature as well as low rainfall or where there is lack of habitat of mosquito there is also limitation in the transmission of the virus. Such probability is higher especially in temperate regions bordering endemic regions having sub-tropical climate. There is involvement of articular as well as non-articular cells in the replication of RRV. Levels of pro-inflammatory factors viz., tumor necrosis factor-alpha (TNF-α); interferon-gamma (IFN-γ); and macrophage chemo-attractant protein-1 (MAC-1) during disease pathogenesis have been found to be reduced. Reverse transcription-polymerase chain reaction (RT-PCR) is the most advanced molecular diagnostic tool along with epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detecting RRV infection. Treatment for RRV infection is only supportive. Vaccination is not a fruitful approach. Precise data collection will help the researchers to understand the RRV disease dynamics and thereby designing effective prevention and control strategy. Advances in diagnosis, vaccine development and emerging/novel therapeutic regimens need to be explored to their full potential to tackle RRV infection and the disease it causes.
Collapse
|
10
|
An inactivated Ross River virus vaccine is well tolerated and immunogenic in an adult population in a randomized phase 3 trial. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:267-73. [PMID: 25540268 DOI: 10.1128/cvi.00546-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ross River virus (RRV) is endemic in Australia and several South Pacific Islands. More than 90,000 cases of RRV disease, which is characterized by debilitating polyarthritis, were reported in Australia in the last 20 years. There is no vaccine available to prevent RRV disease. A phase 3 study was undertaken at 17 sites in Australia to investigate the safety and immunogenicity of an inactivated whole-virus Vero cell culture-derived RRV vaccine in 1,755 healthy younger adults aged 16 to 59 years and 209 healthy older adults aged ≥60 years. Participants received a 2.5-μg dose of Al(OH)(3)-adjuvanted RRV vaccine, with a second and third dose after 3 weeks and 6 months, respectively. Vaccine-induced RRV-specific neutralizing and total IgG antibody titers were measured after each immunization. Vaccine safety was monitored over the entire study period. The vaccine was safe and well-tolerated after each vaccination. No cases of arthritis resembling RRV disease were reported. The most frequently reported systemic reactions were headache, fatigue, and malaise; the most frequently reported injection site reactions were tenderness and pain. After the third immunization, 91.5% of the younger age group and 76.0% of the older age group achieved neutralizing antibody titers of ≥1:10; 89.1% of the younger age group and 70.9% of the older age group achieved enzyme-linked immunosorbent assay (ELISA) titers of ≥11 PanBio units. A whole-virus Vero cell culture-derived RRV vaccine is well tolerated in an adult population and induces antibody titers associated with protection from RRV disease in the majority of individuals. (This study is registered at www.clinicaltrials.gov under registration no. NCT01242670.).
Collapse
|
11
|
A flow-through chromatography process for influenza A and B virus purification. J Virol Methods 2014; 207:45-53. [DOI: 10.1016/j.jviromet.2014.06.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022]
|
12
|
Yu W, Mengersen K, Dale P, Mackenzie JS, Toloo G(S, Wang X, Tong S. Epidemiologic patterns of Ross River virus disease in Queensland, Australia, 2001-2011. Am J Trop Med Hyg 2014; 91:109-118. [PMID: 24799374 PMCID: PMC4080548 DOI: 10.4269/ajtmh.13-0455] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 01/08/2014] [Indexed: 11/07/2022] Open
Abstract
Ross River virus (RRV) infection is a debilitating disease that has a significant impact on population health, economic productivity, and tourism in Australia. This study examined epidemiologic patterns of RRV disease in Queensland, Australia, during January 2001-December 2011 at a statistical local area level. Spatio-temporal analyses were used to identify the patterns of the disease distribution over time stratified by age, sex, and space. The results show that the mean annual incidence was 54 per 100,000 persons, with a male:female ratio of 1:1.1. Two space-time clusters were identified: the areas adjacent to Townsville, on the eastern coast of Queensland, and the southeast areas. Thus, although public health intervention should be considered across all areas in which RRV occurs, it should specifically focus on high-risk regions, particularly during summer and autumn to reduce the social and economic impacts of RRV infection.
Collapse
Affiliation(s)
- Weiwei Yu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation; Disciplines of Mathematical Sciences, Faculty of Science and Technology Queensland University of Technology, Brisbane, Australia; Environmental Futures Centre, Griffith School of Environment, Griffith University, Nathan, Queensland, Australia; Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia; Burnet Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Xie Z, Luo S, Fan Q, Xie L, Liu J, Xie Z, Pang Y, Deng X, Wang X. Detection of antibodies specific to the non-structural proteins of fowl adenoviruses in infected chickens but not in vaccinated chickens. Avian Pathol 2013; 42:491-6. [PMID: 24024561 DOI: 10.1080/03079457.2013.829553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Antibodies specific to the non-structural proteins of viruses are detected in virus-infected animals and show promise as a reliable diagnostic marker for virus infections. We examined the potential use of two non-structural proteins of fowl adenovirus (FAdV)-based, 100K and 33K, enzyme-linked immunosorbent assays (ELISAs) in the diagnosis of FAdVs. We cloned and expressed the 100K and 33K non-structural protein genes of the FAdVs in the pGEX-4T-1 plasmid vector. Purified 100K and 33K proteins alone or in combination were used as antigens in ELISAs. Antibodies specific to the 100K and 33K non-structural proteins were detected in chickens experimentally infected with FAdVs, but not in chickens vaccinated with inactivated FAdVs. In contrast, the agar gel precipitation (AGP) test detected FAdV-specific antibodies in 70.3% of the vaccinated chickens, suggesting that the non-structural protein-based ELISA could be used in the differential diagnosis of infected and vaccinated chickens. To further validate the 100K and 33K-based ELISA (100K-33K-ELISA) method, we compared its sensitivity and specificity with that of a whole virus-based ELISA and an AGP test in detecting FAdV-specific antibodies in 350 field samples. The results showed that the 100K-33K-ELISA exhibited a higher sensitivity than the AGP test and a comparable sensitivity and specificity to the whole virus ELISA. Overall, the 100K-33K-ELISA method is sensitive, specific and can be used to distinguish an acute FAdV infection from an inactivated virus-based vaccination response.
Collapse
Affiliation(s)
- Zhixun Xie
- a Department of Biotechnology , Guangxi Veterinary Research Institute , Nanning , Guangxi , China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kading R, Crabtree M, Miller B. Inactivation of infectious virus and serological detection of virus antigen in Rift Valley fever virus-exposed mosquitoes fixed with paraformaldehyde. J Virol Methods 2013; 189:184-8. [PMID: 23391826 DOI: 10.1016/j.jviromet.2013.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/11/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Formaldehyde is routinely used to fix tissues in preparation for pathology studies, however concerns remain that treatment of tissues with cellular fixatives may not entirely inactivate infectious virus particles. This concern is of particular regulatory importance for research involving viruses that are classified as select agents such as Rift Valley fever virus (RVFV). Therefore, the specific aims of this study were to (1) assay RVFV-exposed Aedes aegypti mosquitoes fixed in 4% paraformaldehyde for the presence of infectious RVFV particles at various time points following infection and (2) demonstrate the utility of immunofluorescence assay (IFA) for the detection of RVFV antigen in various tissues of paraformaldehyde-fixed mosquitoes. Mosquitoes were administered an infectious blood meal containing one of two strains of RVFV, harvested at various time points following infection, intrathoracically inoculated with 4% paraformaldehyde, and fixed overnight at 4°C. The infection status of a subset of mosquitoes was verified by IFA on leg tissues prior to fixation, and infectivity of RVFV in fixed mosquito carcasses was determined by Vero cell plaque assay. Paraformaldehyde-fixed mosquitoes harvested 14 days post infection were also paraffin-embedded and sectioned for detection of RVFV antigen to particular tissues by IFA. None of the RVFV-exposed mosquitoes tested by Vero cell plaque assay contained infectious RVFV after fixation. Furthermore, incubation of mosquito sections with trypsin prior to antibody staining is recommended for optimal visualization of RVFV antigen in infected mosquito tissues by IFA.
Collapse
Affiliation(s)
- Rebekah Kading
- Centers for Disease Control and Prevention, Division of Vector-borne Diseases, Arbovirus Diseases Branch, 3156 Rampart Road, Mail Stop P02, Fort Collins, CO 80521, USA.
| | | | | |
Collapse
|
15
|
|
16
|
Delrue I, Verzele D, Madder A, Nauwynck HJ. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines 2012; 11:695-719. [PMID: 22873127 DOI: 10.1586/erv.12.38] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this review is to make researchers aware of the benefits of an efficient quality control system for prediction of a developed vaccine's efficacy. Two major goals should be addressed when inactivating a virus for vaccine purposes: first, the infectious virus should be inactivated completely in order to be safe, and second, the viral epitopes important for the induction of protective immunity should be conserved after inactivation in order to have an antigen of high quality. Therefore, some problems associated with the virus inactivation process, such as virus aggregate formation, protein crosslinking, protein denaturation and degradation should be addressed before testing an inactivated vaccine in vivo.
Collapse
Affiliation(s)
- Iris Delrue
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | | | | | | |
Collapse
|
17
|
Aaskov J, Fokine A, Liu W. Ross River virus evolution: implications for vaccine development. Future Virol 2012. [DOI: 10.2217/fvl.11.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ross River virus is a mosquito-borne alphavirus that causes approximately 5000 cases of epidemic polyarthritis in Australia each year and has direct medical-associated costs of approximately US$15 million annually. While mosquito control programs are able, at best, to contain rather than prevent this disease, natural infection with Ross River virus confers lifelong protection against subsequent clinical infection. A killed-virus vaccine has been developed, which is in Phase III clinical trials. Analyses of intra-host genetic diversity and of long-term evolutionary changes in Ross River virus populations suggest that antigenic variation is unlikely to pose a threat to the efficacy of this vaccine.
Collapse
Affiliation(s)
- John Aaskov
- Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane 4059, Australia
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Wenjun Liu
- Australian Army Malaria Institute, Brisbane, Australia
| |
Collapse
|
18
|
Metz SW, Pijlman GP. Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. J Invertebr Pathol 2011; 107 Suppl:S16-30. [PMID: 21784227 DOI: 10.1016/j.jip.2011.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 02/06/2023]
Abstract
The baculovirus-insect cell expression system is a well-established technology for the production of heterologous viral (glyco)proteins in cultured cells, applicable for basic scientific research as well as for the development and production of vaccines and diagnostics. Arboviruses form an emerging group of medically important viral pathogens that are transmitted to humans and animals via arthropod vectors, mostly mosquitoes, ticks or midges. Few arboviral vaccines are currently available, but there is a growing need for safe and effective vaccines against some highly pathogenic arboviruses such as Chikungunya, dengue, West Nile, Rift Valley fever and Bluetongue viruses. This comprehensive review discusses the biology and current state of the art in vaccine development for arboviruses belonging to the families Togaviridae, Flaviviridae, Bunyaviridae and Reoviridae and the potential of the baculovirus-insect cell expression system for vaccine antigen production The members of three of these four arbovirus families have enveloped virions and display immunodominant glycoproteins with a complex structure at their surface. Baculovirus expression of viral antigens often leads to correctly folded and processed (glyco)proteins able to induce protective immunity in animal models and humans. As arboviruses occupy a unique position in the virosphere in that they also actively replicate in arthropod cells, the baculovirus-insect cell expression system is well suited to produce arboviral proteins with correct folding and post-translational processing. The opportunities for recombinant baculoviruses to aid in the development of safe and effective subunit and virus-like particle vaccines against arboviral diseases are discussed.
Collapse
Affiliation(s)
- Stefan W Metz
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
19
|
Aichinger G, Ehrlich HJ, Aaskov JG, Fritsch S, Thomasser C, Draxler W, Wolzt M, Müller M, Pinl F, Van Damme P, Hens A, Levy J, Portsmouth D, Holzer G, Kistner O, Kreil TR, Barrett PN. Safety and immunogenicity of an inactivated whole virus Vero cell-derived Ross River virus vaccine: a randomized trial. Vaccine 2011; 29:9376-84. [PMID: 22001875 DOI: 10.1016/j.vaccine.2011.09.125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Ross River virus (RRV) is endemic in Australia and several South Pacific Islands. Approximately 5000 cases of RRV disease, which is characterized by debilitating polyarthritis, are recorded each year in Australia. This study describes the first clinical trial of a candidate RRV vaccine. METHODS An inactivated whole-virus Vero cell-derived RRV vaccine was tested in 382 healthy, RRV-naïve adults in a phase 1/2 dose-escalation study at ten sites in Austria, Belgium and The Netherlands. Subjects were equally randomized to receive 1.25 μg, 2.5 μg, 5 μg, or 10 μg aluminum hydroxide-adjuvanted or non-adjuvanted RRV vaccine, with a second dose after three weeks and a booster at six months. Vaccine immunogenicity was determined by measurements of serum IgG and neutralizing antibody titers. Vaccine tolerability and safety were monitored over the entire study period. RESULTS The optimal vaccine formulation was the adjuvanted 2.5 μg dose, as calculated using a repeated mixed model analysis of covariance comparing log-transformed RRV-specific IgG titers between different dose groups. Geometric means of RRV-specific serum antibodies measured 21 days after the third vaccination with the 2.5 μg adjuvanted formulation were 520.9 (90% CI 377.2-719.4) as determined by IgG ELISA and 119.9 (82.6-173.9) as determined by virus neutralization assay, resulting in seropositivity rates of 92.9% (82.6-98.0) and 92.7% (82.2-98.0), respectively. All vaccine formulations and doses were well tolerated after the first, second and third vaccination. CONCLUSIONS The adjuvanted, inactivated whole-virus Vero cell-derived Ross River virus vaccine is highly immunogenic in RRV-naïve adults and well tolerated at all dose levels.
Collapse
Affiliation(s)
- Gerald Aichinger
- Global R&D, Baxter BioScience, IZD Tower, Wagramerstraße 17-19, A-1220 Vienna, Austria. gerald
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Holzer GW, Coulibaly S, Aichinger G, Savidis-Dacho H, Mayrhofer J, Brunner S, Schmid K, Kistner O, Aaskov JG, Falkner FG, Ehrlich H, Barrett PN, Kreil TR. Evaluation of an inactivated Ross River virus vaccine in active and passive mouse immunization models and establishment of a correlate of protection. Vaccine 2011; 29:4132-41. [PMID: 21477673 DOI: 10.1016/j.vaccine.2011.03.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/06/2023]
Abstract
Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease.
Collapse
Affiliation(s)
- Georg W Holzer
- Baxter Bioscience, Biomedical Research Center, A-2304 Orth/Donau, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Chikungunya virus is a mosquito-borne arthrogenic alphavirus that has recently reemerged to produce the largest epidemic ever documented for this virus. Here we describe a new adult wild-type mouse model of chikungunya virus arthritis, which recapitulates the self-limiting arthritis, tenosynovitis, and myositis seen in humans. Rheumatic disease was associated with a prolific infiltrate of monocytes, macrophages, and NK cells and the production of monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma). Infection with a virus isolate from the recent Reunion Island epidemic induced significantly more mononuclear infiltrates, proinflammatory mediators, and foot swelling than did an Asian isolate from the 1960s. Primary mouse macrophages were shown to be productively infected with chikungunya virus; however, the depletion of macrophages ameliorated rheumatic disease and prolonged the viremia. Only 1 microg of an unadjuvanted, inactivated, whole-virus vaccine derived from the Asian isolate completely protected against viremia and arthritis induced by the Reunion Island isolate, illustrating that protection is not strain specific and that low levels of immunity are sufficient to mediate protection. IFN-alpha treatment was able to prevent arthritis only if given before infection, suggesting that IFN-alpha is not a viable therapy. Prior infection with Ross River virus, a related arthrogenic alphavirus, and anti-Ross River virus antibodies protected mice against chikungunya virus disease, suggesting that individuals previously exposed to Ross River virus should be protected from chikungunya virus disease. This new mouse model of chikungunya virus disease thus provides insights into pathogenesis and a simple and convenient system to test potential new interventions.
Collapse
|
22
|
Evaluation of Mycoplasma inactivation during production of biologics: egg-based viral vaccines as a model. Appl Environ Microbiol 2010; 76:2718-28. [PMID: 20228111 DOI: 10.1128/aem.02776-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although mycoplasmas are generally considered to be harmless commensals, some mycoplasma species are able to cause infections in pediatric, geriatric, or immunocompromised patients. Thus, accidental contamination of biologics with mycoplasmas represents a potential risk for the health of individuals who receive cell-derived biological and pharmaceutical products. To assess the efficiency of inactivation of mycoplasmas by the agents used in the manufacture of egg-derived influenza vaccines, we carried out a series of experiments aimed at monitoring the viability of mycoplasmas spiked into both chicken allantoic fluid and protein-rich microbiological media and then treated with beta-propiolactone, formalin, cetyltrimethylammonium bromide, Triton X-100, and sodium deoxycholate, which are agents that are commonly used for virus inactivation and disruption of viral particles during influenza vaccine production. Twenty-two mycoplasma species (with one to four strains of each species) were exposed to these inactivating agents at different concentrations. The most efficient inactivation of the mycoplasmas evaluated was observed with either 0.5% Triton X-100 or 0.5% sodium deoxycholate. Cetyltrimethylammonium bromide at concentrations of >or=0.08% was also able to rapidly inactivate (in less than 30 min) all mycoplasmas tested. In contrast, negligible reductions in mycoplasma titers were observed with 0.0125 to 0.025% formaldehyde. However, increasing the concentration of formaldehyde to 0.1 to 0.2% improved the mycoplasmacidal effect. Incubation of mycoplasmas with 0.1% beta-propiolactone for 1 to 24 h had a marked mycoplasmacidal effect. A comparison of the mycoplasma inactivation profiles showed that strains of selected species (Mycoplasma synoviae, Mycoplasma gallisepticum, Mycoplasma orale, Mycoplasma pneumoniae, and Acholeplasma laidlawii) represent a set of strains that can be utilized to validate the effectiveness of mycoplasma clearance obtained by inactivation and viral purification processes used for the manufacture of an inactivated egg-based vaccine.
Collapse
|
23
|
Tappe D, Schmidt-Chanasit J, Ries A, Ziegler U, Müller A, Stich A. Ross River virus infection in a traveller returning from northern Australia. Med Microbiol Immunol 2009; 198:271-3. [DOI: 10.1007/s00430-009-0122-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Indexed: 11/28/2022]
|
24
|
Barrett PN, Mundt W, Kistner O, Howard MK. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Rev Vaccines 2009; 8:607-18. [PMID: 19397417 DOI: 10.1586/erv.09.19] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of cell culture systems for virus propagation has led to major advances in virus vaccine development. Primary and diploid cell culture systems are now being replaced by the use of continuous cell lines (CCLs). These substrates are gaining increasing acceptance from regulatory authorities as improved screening technologies remove fears regarding their potential oncogenic properties. The Vero cell line is the most widely accepted CCL by regulatory authorities and has been used for over 30 years for the production of polio and rabies virus vaccines. The recent licensure of a Vero cell-derived live virus vaccine (ACAM2000, smallpox vaccine) has coincided with an explosion in the development of a range of new viral vaccines, ranging from live-attenuated pediatric vaccines against rotavirus infections to inactivated whole-virus vaccines against H5N1 pandemic influenza. These developments have illustrated the value of this cell culture platform in the rapid development of vaccines against a range of virus diseases.
Collapse
Affiliation(s)
- P Noel Barrett
- Baxter BioScience, Biomedical Research Centre, Orth/Donau, Austria.
| | | | | | | |
Collapse
|
25
|
Abstract
Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.
Collapse
|