1
|
Sadeghi M, Keshavarz Shahbaz S, Dehnavi S, Koushki K, Sankian M. Current possibilities and future perspectives for improving efficacy of allergen-specific sublingual immunotherapy. Int Immunopharmacol 2021; 101:108350. [PMID: 34782275 DOI: 10.1016/j.intimp.2021.108350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Allergen-specific sublingual immunotherapy (SLIT), a safe and efficient route for treating type I hypersensitivity disorders, requires high doses of allergens. SLIT is generally performed without adjuvants and delivery systems. Therefore, allergen formulation with appropriate presentation platforms results in improved allergen availability, targeting the immune cells, inducing regulatory immune responses, and enhancing immunotherapy's efficacy while decreasing the dose of the allergen. In this review, we discuss the adjuvants and delivery systems that have been applied as allergen-presentation platforms for SLIT. These adjuvants include TLRs ligands, 1α, 25-dihydroxy vitamin D3, galectin-9, probiotic and bacterial components that provoke allergen-specific helper type-1 T lymphocytes (TH1), and regulatory T cells (Tregs). Another approach is encapsulation or adsorption of the allergens into a particulate vector system to facilitate allergen capture by tolerogenic dendritic cells. Also, we proposed strategies to increasing the efficacy of SLIT via new immunopotentiators and carrier systems in the future.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sajad Dehnavi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Airouche S, Beltrami V, Fleury S, Batard T, Bordas-Le Floch V, Stegmann T, Amacker M, Kettner A, Mascarell L. Bet v 1 contiguous overlapping peptides anchored to virosomes with TLR4 agonist enhance immunotherapy efficacy in mice. Clin Exp Allergy 2021; 51:339-349. [PMID: 33368719 DOI: 10.1111/cea.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Whereas sublingual allergen immunotherapy (AIT) is routinely performed without any adjuvant or delivery system, there is a strong scientific rationale to better target the allergen(s) to oral dendritic cells known to support regulatory immune responses by using appropriate presentation platforms. OBJECTIVE To identify a safe presentation platform able to enhance allergen-specific tolerance induction. METHODS Virosomes with membrane-integrated contiguous overlapping peptides (COPs) of Bet v 1 and TLR4 or TLR2/TLR7 agonists were assessed for induction of Bet v 1-specific IgG1, IgG2a and IgE antibodies, hypersensitivity reactions and body temperature drop following subcutaneous injection in naive CD-1 mice. The most promising candidate, Bet v 1 COPs anchored to virosomes with membrane-incorporated TLR4 agonist (Vir.A-Bet v 1 COPs), was further evaluated by the sublingual route in a therapeutic setting in BALB/c mice with birch pollen-induced allergic asthma. Airway hyperresponsiveness, pro-inflammatory cells in bronchoalveolar lavages and polarization of Th cells in the lungs and spleen were then assessed. RESULTS Both types of adjuvanted virosomes coupled to Bet v 1 COPs triggered a boosted Th1 immunity. Given a more favourable safety profile, Vir.A-Bet v 1 COPs were further evaluated and shown to able to fully reverse asthma symptoms and lung inflammation in a sublingual therapeutic model of birch pollen allergy. CONCLUSIONS AND CLINICAL RELEVANCE We report herein for the first time on the capacity of a novel and safe presentation platform, that is virosomes with membrane-integrated TLR4 agonist, to improve dramatically sublingual AIT efficacy in a murine model due to its intrinsic dual properties of targeting and stimulating to further promote anti-allergic immune responses. As such, our study paves the ground for further clinical development of this allergen presentation platform for patients suffering from respiratory allergies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mario Amacker
- Mymetics SA, Epalinges, Switzerland.,Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
3
|
Orsini Delgado ML, Rizzo GP, Fossati CA, Pasquevich KA, Cassataro J, Smaldini PL, Docena GH. Sublingual Omp16-driven redirection of the allergic intestinal response in a pre-clinical model of food allergy. Clin Exp Allergy 2020; 50:954-963. [PMID: 32501552 DOI: 10.1111/cea.13676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND IgE-mediated food allergy remains a significant and growing worldwide problem. Sublingual immunotherapy (SLIT) shows an excellent safety profile for food allergy, but the clinical efficacy needs to be improved. This study assessed the effects of the Toll-like receptor 4 agonist outer membrane protein (Omp) 16 from Brucella abortus combined with cow´s milk proteins (CMP) through the sublingual route to modulate cow's milk allergy in an experimental model. METHODS Mice sensitized with cholera toxin and CMP were orally challenged with the allergen to elicit hypersensitivity reactions. Then, mice were treated with a very low amount of CMP along with Omp16 as a mucosal adjuvant, and finally, animals were re-exposed to CMP. Systemic and mucosal immune parameters were assessed in vivo and in vitro. RESULTS We found that the sublingual administration of Omp16 + CMP induced a buccal Th1 immune response that modulated the intestinal allergic response with the suppression of symptoms, reduction of IgE and IL-5, and up-regulation of IgG2a and IFN-γ. The adoptive transfer of submandibular IFN-γ-producing α4β7+ CD4+ and CD8+ cells conferred protection against allergic sensitization. The use of Omp16 + CMP promoted enhanced protection compared to CMP alone. CONCLUSION In conclusion, Omp16 represents a promising mucosal adjuvant that can be used to improve the clinical and immune efficacy of SLIT for food allergy.
Collapse
Affiliation(s)
- Maria Lucía Orsini Delgado
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Gastón Pascual Rizzo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Carlos Alberto Fossati
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Karina Alejandra Pasquevich
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martin y Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martin y Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Argentina
| | - Paola Lorena Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The goal of this review is to provide the reader with an updated summary of published trial data regarding the use of oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT) for treatment of IgE-mediated food allergies. RECENT FINDINGS Data from phase 2 trials for treatment of peanut allergy with OIT and EPIT reveal an increase in the threshold of reactivity for peanut-allergic children. Compared to EPIT, OIT promotes a greater increase in the threshold of reactivity; however, adverse events are more common with OIT. OIT, EPIT, and SLIT appear to modulate the immune response for some food-allergic individuals. Data regarding utility for treatment of food allergies regardless of modality is limited to few foods, as is investigation into treatment of food-allergic infants, young children, and adults. Future trials are likely to focus on young children, food allergies other than peanut, and treatment of multifood-allergic individuals.
Collapse
|
5
|
Moingeon P, Lombardi V, Baron-Bodo V, Mascarell L. Enhancing Allergen-Presentation Platforms for Sublingual Immunotherapy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:23-31. [PMID: 28065340 DOI: 10.1016/j.jaip.2016.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 01/24/2023]
Abstract
Sublingual immunotherapy (SLIT) relies on high doses of allergens to treat patients with type I allergies. Although SLIT is commonly performed without any adjuvant or delivery system, allergen(s) could be further formulated with allergen-presentation platforms to better target oral dendritic cells eliciting regulatory immune responses. Improving the availability of allergens to the immune system should enhance SLIT efficacy, while allowing to decrease allergen dosing. Herein, we present an overview of adjuvants and vector systems that have been, or could be, considered as candidate allergen-presentation platforms for the sublingual route. Such platforms encompass adjuvants capable of stimulating allergen-specific TH1 and/or regulatory CD4+ T-cell responses, including 1,25-dihydroxy vitamin D3, glucocorticoids, Toll-like receptor ligands as well as selected bacterial probiotic strains. A limiting factor for SLIT efficacy is the number of dendritic cells capturing the allergens in the upper layers of oral tissues. Thus, adsorption or encapsulation of the allergen(s) within mucoadhesive particulate vector (or delivery) systems also has the potential to significantly enhance SLIT efficacy due to a facilitated allergen uptake by tolerogenic oral dendritic cells.
Collapse
Affiliation(s)
- P Moingeon
- Research and Development, Stallergenes Greer, Antony, France.
| | - V Lombardi
- Research and Development, Stallergenes Greer, Antony, France
| | - V Baron-Bodo
- Research and Development, Stallergenes Greer, Antony, France
| | - L Mascarell
- Research and Development, Stallergenes Greer, Antony, France
| |
Collapse
|
6
|
Moingeon P, Mascarell L. Differences and similarities between sublingual immunotherapy of allergy and oral tolerance. Semin Immunol 2017; 30:52-60. [PMID: 28760498 DOI: 10.1016/j.smim.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 12/27/2022]
Abstract
Allergen immunotherapy is the only treatment altering the natural course of IgE-mediated allergies. Whereas the subcutaneous route for immunotherapy (SCIT) has been historically considered as a reference, we discuss herein the relative advantages of the sublingual and oral routes as alternatives to SCIT in order to elicit allergen-specific tolerance. The buccal and gut immune systems are similarly organized to favor immune tolerance to antigens/allergens, due to the presence of tolerogenic dendritic cells and macrophages promoting the differentiation of CD4+ regulatory T cells. Sublingual immunotherapy (SLIT) is now established as a valid treatment option, with clinical efficacy demonstrated in allergic rhinoconjunctivitis (to either grass, tree, weed pollens or mite allergens) and encouraging results obtained in the management of mild/moderate allergic asthma. While still exploratory, oral immunotherapy (OIT) has shown promising results in the desensitization of patients with food allergies. We review at both biological and clinical levels the perspectives currently pursued for those two mucosal routes.
Collapse
Affiliation(s)
- Philippe Moingeon
- Research Department, Stallergenes Greer, 6 rue Alexis de Tocqueville, 92160 Antony, France.
| | - Laurent Mascarell
- Research Department, Stallergenes Greer, 6 rue Alexis de Tocqueville, 92160 Antony, France
| |
Collapse
|
7
|
Tang MLK, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, Licciardi P, Burks W, Donath S. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J Allergy Clin Immunol 2015; 135:737-44.e8. [PMID: 25592987 DOI: 10.1016/j.jaci.2014.11.034] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Coadministration of a bacterial adjuvant with oral immunotherapy (OIT) has been suggested as a potential treatment for food allergy. OBJECTIVE To evaluate a combined therapy comprising a probiotic together with peanut OIT. METHODS We performed a double-blind, placebo-controlled randomized trial of the probiotic Lactobacillus rhamnosus CGMCC 1.3724 and peanut OIT (probiotic and peanut oral immunotherapy [PPOIT]) in children (1-10 years) with peanut allergy. The primary outcome was induction of sustained unresponsiveness 2 to 5 weeks after discontinuation of treatment (referred to as possible sustained unresponsiveness). Secondary outcomes were desensitization, peanut skin prick test, and specific IgE and specific IgG4 measurements. RESULTS Sixty-two children were randomized and stratified by age (≤5 and >5 years) and peanut skin test wheal size (≤10 and >10 mm); 56 reached the trial's end. Baseline demographics were similar across groups. Possible sustained unresponsiveness was achieved in 82.1% receiving PPOIT and 3.6% receiving placebo (P < .001). Nine children need to be treated for 7 to achieve sustained unresponsiveness (number needed to treat, 1.27; 95% CI, 1.06-1.59). Of the subjects, 89.7% receiving PPOIT and 7.1% receiving placebo were desensitized (P < .001). PPOIT was associated with reduced peanut skin prick test responses and peanut-specific IgE levels and increased peanut-specific IgG4 levels (all P < .001). PPOIT-treated participants reported a greater number of adverse events, mostly with maintenance home dosing. CONCLUSION This is the first randomized placebo-controlled trial evaluating the novel coadministration of a probiotic and peanut OIT and assessing sustained unresponsiveness in children with peanut allergy. PPOIT was effective in inducing possible sustained unresponsiveness and immune changes that suggest modulation of the peanut-specific immune response. Further work is required to confirm sustained unresponsiveness after a longer period of secondary peanut elimination and to clarify the relative contributions of probiotics versus OIT.
Collapse
Affiliation(s)
- Mimi L K Tang
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, Australia.
| | - Anne-Louise Ponsonby
- Environmental and Genetic Epidemiology, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Francesca Orsini
- Clinical Epidemiology and Biostatistics Unit, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Dean Tey
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Marnie Robinson
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Ee Lyn Su
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Paul Licciardi
- Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Susan Donath
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Clinical Epidemiology and Biostatistics Unit, Murdoch Childrens Research Institute, Melbourne, Australia
| |
Collapse
|
8
|
Tang MLK, Martino DJ. Oral immunotherapy and tolerance induction in childhood. Pediatr Allergy Immunol 2013; 24:512-20. [PMID: 23905867 DOI: 10.1111/pai.12100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 12/23/2022]
Abstract
Prevalence rates of food allergy have increased rapidly in recent decades. Of concern, rates of increase are greatest among children under 5 yrs of age and for those food allergies that persist into adulthood such as peanut or tree nut allergy and shellfish allergy. Given these trends, the overall prevalence of food allergy will compound over time as the number of children affected by food allergy soars and a greater proportion of food-allergic children are left with persistent disease into adulthood. It is therefore vital to identify novel curative treatment approaches for food allergy. Acquisition of oral tolerance to the diverse array of ingested food antigens and intestinal microbiota is an active immunologic process that is successfully established in the majority of individuals. In subjects who develop food allergy, there is a failure or loss of oral tolerance acquisition to a limited number of food allergens. Oral immunotherapy (OIT) offers a promising approach to induce specific oral tolerance to selected food allergens and represents a potential strategy for long-term curative treatment of food allergy. This review will summarize the current understanding of oral tolerance and clinical trials of OIT for the treatment of food allergy.
Collapse
Affiliation(s)
- M L K Tang
- Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, Vic., Australia.
| | | |
Collapse
|
9
|
Moingeon P. Update on immune mechanisms associated with sublingual immunotherapy: practical implications for the clinician. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2013; 1:228-41. [PMID: 24565479 DOI: 10.1016/j.jaip.2013.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
Abstract
Sublingual immunotherapy (SLIT) is established as a safe and efficacious treatment for patients with type I respiratory allergies. The ability of SLIT to elicit antigen (allergen)-specific tolerance is linked to the peculiar biology of oral antigen-presenting cells. In the absence of danger signals, Langerhans cells, myeloid dendritic cells, and macrophages located in oral tissues, tonsils, and draining cervical lymph nodes are biased toward the induction of T(H)1 and IL-10-producing CD4(+) regulatory T cells, thus supporting tolerance as opposed to inflammation. Sublingual administration does not lead to any detectable systemic exposure of intact allergens nor to IgE neosensitization. Oral tissues contain limited numbers of mast cells located in submucosal areas, thereby explaining the well-established safety profile of SLIT, with mostly local but rare systemic reactions. The induction of CD4(+) regulatory T cells and blocking anti-inflammatory IgGs or IgAs are considered important for tolerance induction after SLIT. Specific molecular signatures associated with tolerogenic dendritic cells were recently reported during the onset of SLIT efficacy in the peripheral blood of patients exhibiting clinical benefit. Collectively, these observations confirm the induction of strong allergen-specific suppressive/tolerogenic immune responses during SLIT and pave the ground for the identification of biomarkers of efficacy. Practical implications of this emerging scientific knowledge are presented (1) to support the rational design of second-generation sublingual vaccines based on purified allergens, vector systems and/or adjuvants and (2) to help the clinician in decision making during his/her practice.
Collapse
|
10
|
Moingeon P. Adjuvants for allergy vaccines. Hum Vaccin Immunother 2012; 8:1492-8. [PMID: 23095872 PMCID: PMC3660771 DOI: 10.4161/hv.21688] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/11/2012] [Accepted: 08/01/2012] [Indexed: 12/19/2022] Open
Abstract
Allergen-specific immunotherapy is currently performed via either the subcutaneous or sublingual routes as a treatment for type I (IgE dependent) allergies. Aluminum hydroxide or calcium phosphate are broadly used as adjuvants for subcutaneous allergy vaccines, whereas commercial sublingual vaccines rely upon high doses of aqueous allergen extracts in the absence of any immunopotentiator. Adjuvants to be included in the future in products for allergen specific immunotherapy should ideally enhance Th1 and CD4+ regulatory T cell responses. Imunomodulators impacting dendritic or T cell functions to induce IL10, IL12 and IFNγ production are being investigated in preclinical allergy models. Such candidate adjuvants encompass synthetic or biological immunopotentiators such as glucocorticoids, 1,25-dihydroxy vitamin D3, selected probiotic strains (e.g., Lactobacillus and Bifidobacterium species) as well as TLR2 (Pam3CSK4), TLR4 (monophosphoryl lipid A, synthetic lipid A analogs) or TLR9 (CpGs) ligands. Furthermore, the use of vector systems such as mucoadhesive particules, virus-like particles or liposomes are being considered to enhance allergen uptake by tolerogenic antigen presenting cells present in mucosal tissues.
Collapse
|
11
|
Moingeon P, Mascarell L. Novel routes for allergen immunotherapy: safety, efficacy and mode of action. Immunotherapy 2012; 4:201-12. [PMID: 22339462 DOI: 10.2217/imt.11.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Allergen immunotherapy is the only curative treatment of IgE-mediated type I respiratory allergies. Subcutaneous immunotherapy (SCIT) is used as a reference therapy and has transformed allergic treatments; it improves symptoms (asthma and rhinitis) as well as the quality of life of patients. SCIT requires repetitive administration and carries the risk of severe systemic adverse effects, including anaphylaxis. Sublingual immunotherapy is now a valid noninvasive alternative to SCIT, as a safe and efficacious treatment for respiratory allergies. In this article, we compare various routes of allergen immunotherapy, including SCIT and sublingual immunotherapy, as well as more exploratory routes currently under investigation (i.e., intralymphatic, epicutaneous, intranasal and oral). We discuss their respective advantages, as well as their foreseen modes of action.
Collapse
Affiliation(s)
- Philippe Moingeon
- Stallergenes SA, Département Scientifique, 6 rue Alexis de Tocqueville, 92160 Antony, France
| | | |
Collapse
|
12
|
Ruiter B, Shreffler WG. The role of dendritic cells in food allergy. J Allergy Clin Immunol 2012; 129:921-8. [DOI: 10.1016/j.jaci.2012.01.080] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 12/31/2022]
|
13
|
Dunn-Siegrist I, Tissières P, Drifte G, Bauer J, Moutel S, Pugin J. Toll-like receptor activation of human cells by synthetic triacylated lipid A-like molecules. J Biol Chem 2012; 287:16121-31. [PMID: 22433865 DOI: 10.1074/jbc.m112.348383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recognition of microbial molecules by mammalian host receptors is essential to mount an immune response. Hexaacylated LPS is the prototypic example of a bacterial molecule recognized by the receptor complex TLR4/MD-2 with its lipid A moiety, whereas bacterial lipopeptides are recognized by TLR2. Here we show that a series of synthetic triacylated lipid A-like molecules are weak Toll-like receptor (TLR) agonists (mainly TLR2 agonists) but very potent TLR4/MD-2 antagonists (submicromolar range). Not only do they block human cell responses to LPS but also to whole gram-negative bacteria, and they inhibit the phagocytosis of gram-negative bacteria. These compounds may represent promising immunomodulatory agents.
Collapse
Affiliation(s)
- Irène Dunn-Siegrist
- Intensive Care Laboratory and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Bahceciler NN, Cobanoglu N. Subcutaneous versus sublingual immunotherapy for allergic rhinitis and/or asthma. Immunotherapy 2012; 3:747-56. [PMID: 21668312 DOI: 10.2217/imt.11.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Subcutaneous allergen-specific immunotherapy has long been used in allergic rhinitis and/or asthma and has been recognized to be efficacious. However, owing to the inconvenience of injection and the risk of serious side effects, alternative concepts inspiring the search for effective noninjective routes, namely sublingual administration of allergens, have emerged. Sublingual immunotherapy (SLIT) appears to be associated with a lower incidence of systemic reactions. The clinical efficacy of subcutaneous immunotherapy (SCIT) is well established for both rhinitis and asthma. Meta-analyses relating to its efficacy on asthma and rhinitis are available. SLIT has also been validated in this respect. Comparative clinical studies of SLIT versus SCIT are scarce demonstrating both routes to be clinically efficient. Knowledge of the exact mechanism of action of SLIT has been increasing in the last decade. In addition, recent studies have proved similarities of the immunological changes with the treatment of both routes. Further comparative clinical and immunological studies of SLIT versus SCIT are needed to confirm the long-term efficacy and to complete the knowledge of immunological mechanisms of both routes. Moreover, better understanding of the interaction of allergen and oral mucosal dendritic cells during SLIT may allow improved targeting of SLIT vaccines.
Collapse
|
15
|
Moussu H, Van Overtvelt L, Horiot S, Tourdot S, Airouche S, Zuercher A, Holvoet S, Prioult G, Nutten S, Mercenier A, Mascarell L, Moingeon P. Bifidobacterium bifidum NCC 453 Promotes Tolerance Induction in Murine Models of Sublingual Immunotherapy. Int Arch Allergy Immunol 2012; 158:35-42. [DOI: 10.1159/000330101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/15/2011] [Indexed: 01/04/2023] Open
|
16
|
Moingeon P, Mascarell L. Induction of tolerance via the sublingual route: mechanisms and applications. Clin Dev Immunol 2011; 2012:623474. [PMID: 22110534 PMCID: PMC3216342 DOI: 10.1155/2012/623474] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/23/2011] [Indexed: 12/16/2022]
Abstract
The clinical efficacy of sublingual immunotherapy (SLIT) with natural allergen extracts has been established in IgE-dependent respiratory allergies to grass or tree pollens, as well as house dust mites. Sublingual vaccines have an excellent safety record, documented with approximately 2 billion doses administered, as of today, in humans. The oral immune system comprises various antigen-presenting cells, including Langerhans cells, as well as myeloid and plasmacytoid dendritic cells (DCs) with a distinct localisation in the mucosa, along the lamina propria and in subepithelial tissues, respectively. In the absence of danger signals, all these DC subsets are tolerogenic in that they support the differentiation of Th1- and IL10-producing regulatory CD4(+) T cells. Oral tissues contain limited numbers of mast cells and eosinophils, mostly located in submucosal areas, thereby explaining the good safety profile of SLIT. Resident oral Th1, Th2, and Th17 CD4(+) T cells are located along the lamina propria, likely representing a defence mechanism against infectious pathogens. Second-generation sublingual vaccines are being developed, based upon recombinant allergens expressed in a native conformation, possibly formulated with Th1/T reg adjuvants and/or mucoadhesive particulate vector systems specifically designed to target oral dendritic cells.
Collapse
Affiliation(s)
- Philippe Moingeon
- Département Scientifique, Stallergènes SA, 6 rue Alexis de Tocqueville, 92160 Antony, France.
| | | |
Collapse
|
17
|
Mascarell L, Saint-Lu N, Moussu H, Zimmer A, Louise A, Lone Y, Ladant D, Leclerc C, Tourdot S, Van Overtvelt L, Moingeon P. Oral macrophage-like cells play a key role in tolerance induction following sublingual immunotherapy of asthmatic mice. Mucosal Immunol 2011; 4:638-47. [PMID: 21775981 DOI: 10.1038/mi.2011.28] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sublingual allergen-specific immunotherapy (SLIT) is a safe and efficacious treatment for type 1 respiratory allergies. Herein, we investigated the key subset(s) of antigen-presenting cells (APCs) involved in antigen/allergen capture and tolerance induction during SLIT. Following sublingual administration, fluorochrome-labeled ovalbumin (OVA) is predominantly captured by oral CD11b⁺CD11c⁻ cells that migrate to cervical lymph nodes (CLNs) and present the antigen to naive CD4⁺ T cells. Conditional depletion with diphtheria toxin of CD11b⁺, but not CD11c⁺ cells, in oral tissues impairs CD4⁺ T-cell priming in CLNs. In mice with established asthma to OVA, specific targeting of the antigen to oral CD11b⁺ cells using the adenylate cyclase vector system reduces airway hyperresponsiveness (AHR), eosinophil recruitment in bronchoalveolar lavages (BALs), and specific Th2 responses in CLNs and lungs. Oral CD11b⁺CD11c⁻ cells resemble tolerogenic macrophages found in the lamina propria (LP) of the small intestine in that they express the mannose receptor CD206, as well as class-2 retinaldehyde dehydrogenase (RALDH2), and they support the differentiation of interferon-γ/interleukin-10 (IFNγ/IL-10)-producing Foxp3⁺ CD4⁺ regulatory T cells. Thus, among the various APC subsets present in oral tissues of mice, macrophage-like cells play a key role in tolerance induction following SLIT.
Collapse
Affiliation(s)
- L Mascarell
- Research and Development, Stallergènes SA, Antony, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tourdot S, Airouche S, Berjont N, Da Silveira A, Mascarell L, Jacquet A, Caplier L, Langelot M, Baron-Bodo V, Moingeon P. Evaluation of therapeutic sublingual vaccines in a murine model of chronic house dust mite allergic airway inflammation. Clin Exp Allergy 2011; 41:1784-92. [PMID: 22092967 DOI: 10.1111/j.1365-2222.2011.03865.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/01/2011] [Accepted: 08/05/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND Second generation therapeutic vaccines based upon recombinant allergens or natural extracts, potentially formulated in vector systems or adjuvants, are being developed. To this aim, preclinical studies in relevant animal models are needed to select proper allergens, formulations and administration schemes. OBJECTIVE To develop a chronic house dust mite (HDM) allergy model to evaluate sublingual therapeutic vaccine candidates. METHODS The BABL/c mice that were used were sensitized with Dermatophagoides pteronyssinus (Dpte) and Dermatophagoides farinae (Dfar) mite extracts by intraperitoneal injections followed by aerosol exposures. Animals subsequently underwent sublingual immunotherapy (SLIT) with either Dpte, Dfar or Dpte/Dfar extracts, twice a week for 8 weeks. SLIT efficacy was assessed by whole body plethysmography, lung histology and broncho-alveolar lavages cell counts. Specific T cell and antibody responses to major and minor HDM allergens were monitored in tissues and serum/saliva, respectively. RESULTS Mice sensitized to Dpte and Dfar allergens exhibited strong airway hyperresponsiveness (AHR) and lung inflammatory infiltrates including eosinophils. Sensitized animals mounted Th2-biased cellular and humoral responses specific for group 1 and 2 major allergens, as well as group 5, 7 and 10 minor allergens. This phenotype was sustained for at least 2 months, allowing the evaluation of immunotherapeutic protocols with HDM extracts-based vaccines. In this model, SLIT decreased AHR and Th2 responses and induced HDM-specific IgAs in saliva. The Dpte/Dfar mix proved the most efficacious when compared to Dpte or Dfar extracts alone. CONCLUSIONS AND CLINICAL RELEVANCE The efficacy of a sublingual vaccine based on a Dpte/Dfar allergen extract mix was demonstrated in a well standardized murine model of chronic allergic airway inflammation based on clinically relevant mite allergens. The latter will be used as a benchmark for evaluation of future vaccines, including recombinant allergens. This HDM allergic airway inflammation animal model is a useful tool to design and select candidate vaccines to be tested in humans.
Collapse
Affiliation(s)
- S Tourdot
- Research and Development, Stallergenes SA, Antony, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Moingeon P, Lombardi V, Saint-Lu N, Tourdot S, Bodo V, Mascarell L. Adjuvants and Vector Systems for Allergy Vaccines. Immunol Allergy Clin North Am 2011; 31:407-19, xii. [DOI: 10.1016/j.iac.2011.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control. Mucosal Immunol 2011; 4:43-52. [PMID: 20668438 DOI: 10.1038/mi.2010.43] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR.
Collapse
|
21
|
Induction of Allergen-Specific Tolerance via Mucosal Routes. Curr Top Microbiol Immunol 2011; 352:85-105. [DOI: 10.1007/82_2011_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Abstract
PURPOSE OF REVIEW A recent meta-analysis confirmed that sublingual immunotherapy represents a safe and efficient alternative to traditional subcutaneous immunotherapy in the treatment of allergic rhinitis. However, the immunological mechanisms have not been elucidated in detail yet. The current concept postulates a Th2/Th1 shift along with tolerance induction. Without doubt, oral mucosal antigen-presenting cells such as dendritic cells play a central role as they process antigens to initialize and modulate T-cell activation. RECENT FINDINGS Oral mucosal dendritic cells (oDCs) are capable of processing antigen applied on mucosal surfaces. The natural pro-tolerogenic character of oDCs has been demonstrated by the induction of tolerogenic T cells in response to oDCs activated by either externally applied antigens such as ovalbumin or antigens originating from commensal bacteria like Toll-like receptor ligands, which have been shown to be promising candidates for adjuvants. Nevertheless, the finding of relatively low numbers of oDCs within the sublingual region opens the search for different allergen application sites within the oral cavity such as the vestibular region where higher numbers of oDCs are detectable. SUMMARY oDCs display a natural pro-tolerogenic character, which is suspected to be essential for successful sublingual immunotherapy. Further knowledge about oDCs behaviour might give rise to new sublingual immunotherapy strategies such as adjuvant supplementation.
Collapse
|
23
|
Van Overtvelt L, Moussu H, Horiot S, Samson S, Lombardi V, Mascarell L, van de Moer A, Bourdet-Sicard R, Moingeon P. Lactic acid bacteria as adjuvants for sublingual allergy vaccines. Vaccine 2010; 28:2986-92. [PMID: 20175969 DOI: 10.1016/j.vaccine.2010.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 01/21/2010] [Accepted: 02/08/2010] [Indexed: 12/21/2022]
Abstract
We compared immunomodulatory properties of 11 strains of lactic acid bacteria as well as their capacity to enhance sublingual immunotherapy efficacy in a murine asthma model. Two types of bacterial strains were identified, including: (i) potent inducers of IL-12p70 and IL-10 in dendritic cells, supporting IFN-gamma and IL-10 production in CD4+ T cells such as Lactobacillus helveticus; (ii) pure Th1 inducers such as L. casei. Sublingual administration in ovalbumin-sensitized mice of L. helveticus, but not L. casei, reduced airways hyperresponsiveness, bronchial inflammation and proliferation of specific T cells in cervical lymph nodes. Thus, probiotics acting as a Th1/possibly Treg, but not Th1 adjuvant, potentiate tolerance induction via the sublingual route.
Collapse
Affiliation(s)
- Laurence Van Overtvelt
- Stallergènes SA, Research and Development, 6 rue Alexis de Tocqueville, 92183 Antony, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mascarell L, Lombardi V, Zimmer A, Louise A, Tourdot S, Van Overtvelt L, Moingeon P. Mapping of the lingual immune system reveals the presence of both regulatory and effector CD4+T cells. Clin Exp Allergy 2009; 39:1910-9. [DOI: 10.1111/j.1365-2222.2009.03337.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Saint-Lu N, Tourdot S, Razafindratsita A, Mascarell L, Berjont N, Chabre H, Louise A, Van Overtvelt L, Moingeon P. Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction. Allergy 2009; 64:1003-13. [PMID: 19220212 DOI: 10.1111/j.1398-9995.2009.01945.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Sublingual immunotherapy (SLIT) efficacy could be improved by formulations facilitating allergen contact with the oral mucosa and uptake by antigen-presenting cells (APCs). METHODS Two types of chitosan microparticles, differing in size and surface charge, were tested in vitro for their capacity to improve antigen uptake and presentation by murine bone marrow-derived dendritic cells (BMDCs) or purified oral APCs. T-cell priming in cervical lymph nodes (LNs) was assessed by intravenous transfer of carboxyfluorescein diacetate succinimidyl ester-labelled ovalbumin (OVA)-specific CD4+ T cells and flow cytometry analysis. Ovalbumin-sensitized BALB/c mice were treated sublingually with soluble or chitosan-formulated OVA twice a week for 2 months. Airway hyperresponsiveness (AHR), lung inflammation and T-cell responses in cervical and mediastinal LNs were assessed by whole-body plethysmography, lung histology and Cytometric Bead Array technology, respectively. RESULTS Only a mucoadhesive (i.e. highly positively charged) and microparticulate form of chitosan enhances OVA uptake, processing and presentation by murine BMDCs and oral APCs. Targeting OVA to dendritic cells with this formulation increases specific T-cell proliferation and IFN-gamma/IL-10 secretion in vitro, as well as T-cell priming in cervical LNs in vivo. Sublingual administration of such chitosan-formulated OVA particles enhances tolerance induction in mice with established asthma, with a dramatic reduction of both AHR, lung inflammation, eosinophil numbers in bronchoalveolar lavages, as well as antigen-specific Th2 responses in mediastinal LNs. CONCLUSIONS Mucoadhesive chitosan microparticles represent a valid formulation for sublingual allergy vaccines.
Collapse
Affiliation(s)
- N Saint-Lu
- Research and Development, Stallergènes SA, Antony, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Skripak JM, Sampson HA. Towards a cure for food allergy. Curr Opin Immunol 2008; 20:690-6. [PMID: 18848884 DOI: 10.1016/j.coi.2008.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 11/18/2022]
Abstract
Over the past two decades, food allergies have become both more prevalent and long lasting. This burgeoning problem has not been met with any therapeutic options to date, and patients must attempt to avoid known allergenic foods and treat any allergic reactions with 'as-needed' medications. There are a number of promising emerging therapeutic modalities for food allergy, including allergen-specific and allergen non-specific immunotherapeutic approaches. Although the allergen-specific approaches have some distinct differences, they all attempt to induce tolerance by exposing the patient to an allergen via the mucosal route (oral tolerance induction). Allergen non-specific approaches include biologics to suppress free total IgE levels (e.g. anti-IgE antibody) or to induce more general immune suppression (Chinese herbal medication).
Collapse
|
27
|
Mascarell L, Lombardi V, Louise A, Saint-Lu N, Chabre H, Moussu H, Betbeder D, Balazuc AM, Van Overtvelt L, Moingeon P. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells. J Allergy Clin Immunol 2008; 122:603-9.e5. [PMID: 18774396 DOI: 10.1016/j.jaci.2008.06.034] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/25/2008] [Accepted: 06/30/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. OBJECTIVE To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. METHODS In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. RESULTS Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. CONCLUSION The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.
Collapse
|
28
|
|