1
|
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int J Mol Sci 2024; 25:1704. [PMID: 38338977 PMCID: PMC10855115 DOI: 10.3390/ijms25031704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Each time the virus starts a new round of expression/replication, even under effective antiretroviral therapy (ART), the transactivator of viral transcription Tat is one of the first HIV-1 protein to be produced, as it is strictly required for HIV replication and spreading. At this stage, most of the Tat protein exits infected cells, accumulates in the extracellular matrix and exerts profound effects on both the virus and neighbor cells, mostly of the innate and adaptive immune systems. Through these effects, extracellular Tat contributes to the acquisition of infection, spreading and progression to AIDS in untreated patients, or to non-AIDS co-morbidities in ART-treated individuals, who experience inflammation and immune activation despite virus suppression. Here, we review the role of extracellular Tat in both the virus life cycle and on cells of the innate and adaptive immune system, and we provide epidemiological and experimental evidence of the importance of targeting Tat to block residual HIV expression and replication. Finally, we briefly review vaccine studies showing that a therapeutic Tat vaccine intensifies ART, while its inclusion in a preventative vaccine may blunt escape from neutralizing antibodies and block early events in HIV acquisition.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| | | | | | | | | | | | | | | | | | | | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| |
Collapse
|
2
|
T-cell evasion and invasion during HIV-1 infection: The role of HIV-1 Tat protein. Cell Immunol 2022; 377:104554. [DOI: 10.1016/j.cellimm.2022.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
3
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
4
|
Cafaro A, Tripiciano A, Picconi O, Sgadari C, Moretti S, Buttò S, Monini P, Ensoli B. Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease. Vaccines (Basel) 2019; 7:vaccines7030099. [PMID: 31454973 PMCID: PMC6789840 DOI: 10.3390/vaccines7030099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 Tat is an essential protein in the virus life cycle, which is required for virus gene expression and replication. Most Tat that is produced during infection is released extracellularly and it plays a key role in HIV pathogenesis, including residual disease upon combination antiretroviral therapy (cART). Here, we review epidemiological and experimental evidence showing that antibodies against HIV-1 Tat, infrequently occurring in natural infection, play a protective role against disease progression, and that vaccine targeting Tat can intensify cART. In fact, Tat vaccination of subjects on suppressive cART in Italy and South Africa promoted immune restoration, including CD4+ T-cell increase in low immunological responders, and a reduction of proviral DNA even after six years of cART, when both CD4+ T-cell gain and DNA decay have reached a plateau. Of note, DNA decay was predicted by the neutralization of Tat-mediated entry of Env into dendritic cells by anti-Tat antibodies, which were cross-clade binding and neutralizing. Anti-Tat cellular immunity also contributed to the DNA decay. Based on these data, we propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and it may lead to a functional cure, providing new perspectives and opportunities also for prevention and virus eradication strategies.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
5
|
da Silva LT, da Silva WC, de Almeida A, da Silva Reis D, Santillo BT, Rigato PO, da Silva Duarte AJ, Oshiro TM. Characterization of monocyte-derived dendritic cells used in immunotherapy for HIV-1-infected individuals. Immunotherapy 2019; 10:871-885. [PMID: 30073900 DOI: 10.2217/imt-2017-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS A therapeutic vaccine based on monocyte-derived dendritic cells (MDDCs) has been shown to represent a promising strategy for the treatment of cancer and viral infections. Here, we characterized the MDDCs used as an immunogen in a clinical trial for an anti-HIV-1 therapeutic vaccine. PATIENTS & METHODS Monocytes obtained from 17 HIV-infected individuals were differentiated into MDDCs and, after loading with autologous HIV, the cells were characterized concerning surface molecule expression, migratory and phagocytosis capacity, cytokine production and the induction of an effective cell-mediated immune response. RESULTS The MDDCs were able to induce antigen-specific responses in autologous CD4+ and CD8+ T lymphocytes. CONCLUSIONS Despite a large interindividual variability, the results suggested that MDDCs present the potential to promote immune responses in vaccinated patients.
Collapse
Affiliation(s)
- Laís Teodoro da Silva
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Wanessa Cardoso da Silva
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Alexandre de Almeida
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Denise da Silva Reis
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Bruna Tereso Santillo
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | | | - Alberto José da Silva Duarte
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Telma Miyuki Oshiro
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| |
Collapse
|
6
|
The HIV-1 Tat protein affects human CD4+ T-cell programing and activation, and favors the differentiation of naïve CD4+ T cells. AIDS 2018; 32:575-581. [PMID: 29280760 DOI: 10.1097/qad.0000000000001734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE HIV infection is characterized by several immune dysfunctions, such as chronic activation of the immune system, premature aging and loss of CD4 T cells, in particular within the naïve compartment. The Tat protein of HIV is released extracellularly and enters neighboring cells affecting their functionality, for instance impacting on CD8 T-cell programs and activity. As the presence and/or induction of anti-Tat immune responses is associated with reduced T-cell dysfunction and CD4 T-cell loss, we investigated whether Tat impacts human resting or activated CD4 T cells. METHODS Purified CD4 T cells were activated by T cell receptor engagement in the presence or absence of Tat. Cytokine production, surface phenotype and expression of transcription factors important for T-cell programing were measured. Purified naïve CD4 T cells were cultured in nonpolarizing conditions in the presence or absence of Tat and their proliferation and differentiation was evaluated. RESULTS Tat favors the secretion of IL2, IFNγ and TNFα in CD4 T cells, as well as the upregulation of T-bet and Eomes expression. Naïve CD4 T cells cultured in the presence of Tat showed enhanced expansion and differentiation toward memory phenotype, showing in particular recruitment into the effector memory T-cell pool. CONCLUSION Tat affects the programing and functionality of CD4 T lymphocytes favoring the differentiation of naïve CD4 T cells.
Collapse
|
7
|
Nicoli F, Appay V. Immunological considerations regarding parental concerns on pediatric immunizations. Vaccine 2017; 35:3012-3019. [PMID: 28465096 DOI: 10.1016/j.vaccine.2017.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023]
Abstract
Despite the fundamental role of vaccines in the decline of infant mortality, parents may decide to decline vaccination for their own children. Many factors may influence this decision, such as the belief that the infant immune system is weakened by vaccines, and concerns have been raised about the number of vaccines and the early age at which they are administered. Studies focused on the infant immune system and its reaction to immunizations, summarized in this review, show that vaccines can overcome those suboptimal features of infant immune system that render them more at risk of infections and of their severe manifestations. In addition, many vaccines have been shown to improve heterologous innate and adaptive immunity resulting in lower mortality rates for fully vaccinated children. Thus, multiple vaccinations are necessary and not dangerous, as infants can respond to several antigens as well as when responding to single stimuli. Current immunization schedules have been developed and tested to avoid vaccine interference, improve benefits and reduce side effects compared to single administrations. The infant immune system is therefore capable, early after birth, of managing several antigenic challenges and exploits them to prompt its development.
Collapse
Affiliation(s)
- Francesco Nicoli
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013 Paris, France; INSERM, U1135, CIMI-Paris, F-75013 Paris, France.
| | - Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013 Paris, France; INSERM, U1135, CIMI-Paris, F-75013 Paris, France; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
8
|
Tomusange K, Wijesundara D, Gummow J, Wesselingh S, Suhrbier A, Gowans EJ, Grubor-Bauk B. Mucosal vaccination with a live recombinant rhinovirus followed by intradermal DNA administration elicits potent and protective HIV-specific immune responses. Sci Rep 2016; 6:36658. [PMID: 27853256 PMCID: PMC5113119 DOI: 10.1038/srep36658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023] Open
Abstract
Mucosal immunity is deemed crucial to control sexual transmission of human immunodeficiency virus (HIV). Herein we report the efficacy of a mucosal HIV vaccine strategy comprising intranasal (IN) vaccination with a cocktail of live recombinant human rhinoviruses (HRVs) encoding overlapping fragments of HIV Gag and full length Tat (rHRV-Gag/Tat) followed by intradermal (ID) vaccination with DNA vaccines encoding HIV Gag and Tat (pVAX-Gag-Tat). This heterologous prime-boost strategy will be referred to hereafter as rHRV-DNA. As a control, IN vaccination with wild type (wt)-HRV-A1 followed by a single ID dose of pVAX (wt-HRV-A1/pVAX vaccination) was included. rHRV-DNA vaccination elicited superior multi-functional CD8+T cell responses in lymphocytes harvested from mesenteric lymph nodes and spleens, and higher titres of Tat-specific antibodies in blood and vaginal lavages, and reduced the viral load more effectively after challenge with EcoHIV, a murine HIV challenge model, in peritoneal macrophages, splenocytes and blood compared compared with wt-HRV-A1/pVAX vaccination or administration of 3 ID doses of pVAX-Gag-Tat (3X pVAX-Gag-Tat vaccination). These data provide the first evidence that a rHRV-DNA vaccination regimen can induce HIV-specific immune responses in the gut, vaginal mucosa and systemically, and supports further testing of this regimen in the development of an effective mucosally-targeted HIV-1 vaccine.
Collapse
Affiliation(s)
- Khamis Tomusange
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka Wijesundara
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason Gummow
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Steve Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Molecular and Genetic Characterization of HIV-1 Tat Exon-1 Gene from Cameroon Shows Conserved Tat HLA-Binding Epitopes: Functional Implications. Viruses 2016; 8:v8070196. [PMID: 27438849 PMCID: PMC4974531 DOI: 10.3390/v8070196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022] Open
Abstract
HIV-1 Tat plays a critical role in viral transactivation. Subtype-B Tat has potential use as a therapeutic vaccine. However, viral genetic diversity and population genetics would significantly impact the efficacy of such a vaccine. Over 70% of the 37-million HIV-infected individuals are in sub-Saharan Africa (SSA) and harbor non-subtype-B HIV-1. Using specimens from 100 HIV-infected Cameroonians, we analyzed the sequences of HIV-1 Tat exon-1, its functional domains, post-translational modifications (PTMs), and human leukocyte antigens (HLA)-binding epitopes. Molecular phylogeny revealed a high genetic diversity with nine subtypes, CRF22_01A1/CRF01_AE, and negative selection in all subtypes. Amino acid mutations in Tat functional domains included N24K (44%), N29K (58%), and N40K (30%) in CRF02_AG, and N24K in all G subtypes. Motifs and phosphorylation analyses showed conserved amidation, N-myristoylation, casein kinase-2 (CK2), serine and threonine phosphorylation sites. Analysis of HLA allelic frequencies showed that epitopes for HLAs A*0205, B*5301, Cw*0401, Cw*0602, and Cw*0702 were conserved in 58%-100% of samples, with B*5301 epitopes having binding affinity scores > 100 in all subtypes. This is the first report of N-myristoylation, amidation, and CK2 sites in Tat; these PTMs and mutations could affect Tat function. HLA epitopes identified could be useful for designing Tat-based vaccines for highly diverse HIV-1 populations, as in SSA.
Collapse
|
10
|
Nicoli F, Gallerani E, Skarlis C, Sicurella M, Cafaro A, Ensoli B, Caputo A, Marconi PC, Gavioli R. Systemic immunodominant CD8 responses with an effector-like phenotype are induced by intravaginal immunization with attenuated HSV vectors expressing HIV Tat and mediate protection against HSV infection. Vaccine 2016; 34:2216-24. [PMID: 27002499 DOI: 10.1016/j.vaccine.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
Mucosal HSV infection remains a public health issue in developing and developed world. However, an effective vaccine is still missing, partly because of the incomplete knowledge of correlates of protection. In this study we have investigated the kinetics and quality of immunity elicited by an attenuated HSV1 vector expressing the immunomodulatory Tat protein of HIV-1 (HSV1-Tat). Animals were immunized by intravaginal (IVag) or intradermal (ID) route with HSV1-Tat or with a control HSV1 vector expressing the LacZ gene (HSV1-LacZ) and immune responses were characterized in different anatomical districts. IVag immunization with HSV1-Tat enhanced both expansion and memory phases of HSV-specific immunodominant CD8 responses at systemic, but not local, level and induced short- and long-term protection against mucosal challenge. Conversely, ID immunization with HSV1-Tat favored HSV-subdominant CD8 responses, which protected mice only at early time points after immunization. IVag immunization, in particular with HSV1-Tat, compared to ID immunization, induced the differentiation of CD8(+) T lymphocytes into short-lived effector (SLEC) and effector memory (Tem) cells, generating more robust recall responses associated with increased control of virus replication. Notably, systemic SLEC and Tem contributed to generate protective local secondary responses, demonstrating their importance for mucosal control of HSV. Finally, IgG responses were observed mostly in IVag HSV1-Tat immunized animals, although seemed dispensable for protection, which occurred even in few IgG negative mice. Thus, HSV1 vectors expressing Tat induce protective anti-HSV1 immune responses.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Charalampos Skarlis
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Roma, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Roma, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Peggy C Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
11
|
Zhang W, Luo X, Zhang F, Zhu Y, Yang B, Hou M, Xu Z, Yu C, Chen Y, Chen L, Ji M. SjTat-TPI facilitates adaptive T-cell responses and reduces hepatic pathology during Schistosoma japonicum infection in BALB/c mice. Parasit Vectors 2015; 8:664. [PMID: 26714844 PMCID: PMC4696208 DOI: 10.1186/s13071-015-1275-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 12/18/2022] Open
Abstract
Background Schistosomiasis is a kind of parasitic zoonoses which causes serious damage to public health and social development. China is one of the countries most affected by Schistosoma japonicum and an effective vaccine is still needed. In this study, we adopted Tat-mediated protein transduction technology to investigate the impact of different antigen presented approaches on host’s immune response and the potential protection against Schistosoma japonicum infection. Results We successfully constructed the recombinant S. japonicum triosephosphate isomerase, Tat-TPI, as a vaccine candidate. Whether injected with Tat-TPI in foot pad or vaccinated with Tat-TPI in the back subcutaneously for three times, the draining popliteal lymph nodes and spleen both developed a stronger CD8+T response (Tc1) in mice. Not only that, but it also helped CD4+T cells to produce more IFN-γ than TPI immunisation. In addition, it could boost IgG production, especially IgG1 subclass. Most importantly, Tat-TPI immunisation led to the significant smaller area of a single egg granuloma in the livers as compared with TPI-vaccinated or control groups. However, the anti-infection efficiency induced by Tat-TPI was still restricted. Conclusion This study indicated that immunisation with Tat-fused TPI could contribute to enhance CD4+T-cell response and decrease hepatic egg granulomatous area after S. japonicum infection though it did not achieve our expected protection against Schistosoma japonicum infection. The optimal vaccine strategy warrants further research.
Collapse
Affiliation(s)
- Wenyue Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xiaofeng Luo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Fan Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Yuxiao Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Bingya Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 210029, China.
| | - Min Hou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Zhipeng Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 210029, China.
| | - Chuanxin Yu
- Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, 214064, China.
| | - Yingying Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Lin Chen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 210029, China.
| | - Minjun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
12
|
Cafaro A, Tripiciano A, Sgadari C, Bellino S, Picconi O, Longo O, Francavilla V, Buttò S, Titti F, Monini P, Ensoli F, Ensoli B. Development of a novel AIDS vaccine: the HIV-1 transactivator of transcription protein vaccine. Expert Opin Biol Ther 2015; 15 Suppl 1:S13-29. [PMID: 26096836 DOI: 10.1517/14712598.2015.1021328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Classical approaches aimed at targeting the HIV-1 envelope as well as other structural viral proteins have largely failed. The HIV-1 transactivator of transcription (Tat) is a key HIV virulence factor, which plays pivotal roles in virus gene expression, replication, transmission and disease progression. Notably, anti-Tat Abs are uncommon in natural infection and, when present, correlate with the asymptomatic state and lead to lower or no disease progression. Hence, targeting Tat represents a pathogenesis-driven intervention. AREAS COVERED Here, we review the rationale and the translational development of a therapeutic vaccine targeting the Tat protein. Preclinical and Phase I studies, Phase II trials with Tat in anti-Tat Ab-negative, virologically suppressed highly active antiretroviral therapy-treated subjects in Italy and South Africa were conducted. The results indicate that Tat-induced immune responses are necessary to restore immune homeostasis, to block the replenishment and to reduce the size of the viral reservoir. Additionally, they may help in establishing key parameters for highly active antiretroviral therapy intensification and a functional cure. EXPERT OPINION We propose the therapeutic setting as the most feasible to speed up the testing and comparison of preventative vaccine candidates, as the distinction lies in the use of the vaccine in uninfected versus infected subjects and not in the vaccine formulation.
Collapse
Affiliation(s)
- Aurelio Cafaro
- Istituto Superiore di Sanità, National AIDS Center , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ensoli F, Cafaro A, Casabianca A, Tripiciano A, Bellino S, Longo O, Francavilla V, Picconi O, Sgadari C, Moretti S, Cossut MRP, Arancio A, Orlandi C, Sernicola L, Maggiorella MT, Paniccia G, Mussini C, Lazzarin A, Sighinolfi L, Palamara G, Gori A, Angarano G, Di Pietro M, Galli M, Mercurio VS, Castelli F, Di Perri G, Monini P, Magnani M, Garaci E, Ensoli B. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirology 2015; 12:33. [PMID: 25924841 PMCID: PMC4414440 DOI: 10.1186/s12977-015-0151-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The phase II multicenter, randomized, open label, therapeutic trial (ISS T-002, Clinicaltrials.gov NCT00751595) was aimed at evaluating the immunogenicity and the safety of the biologically active HIV-1 Tat protein administered at 7.5 or 30 μg, given 3 or 5 times monthly, and at exploring immunological and virological disease biomarkers. The study duration was 48 weeks, however, vaccinees were followed until the last enrolled subject reached the 48 weeks. Reported are final data up to 144 weeks of follow-up. The ISS T-002 trial was conducted in 11 clinical centers in Italy on 168 HIV positive subjects under Highly Active Antiretroviral Therapy (HAART), anti-Tat Antibody (Ab) negative at baseline, with plasma viremia <50 copies/mL in the last 6 months prior to enrollment, and CD4(+) T-cell number ≥200 cells/μL. Subjects from a parallel observational study (ISS OBS T-002, Clinicaltrials.gov NCT0102455) enrolled at the same clinical sites with the same criteria constituted an external reference group to explore biomarkers of disease. RESULTS The vaccine was safe and well tolerated and induced anti-Tat Abs in most patients (79%), with the highest frequency and durability in the Tat 30 μg groups (89%) particularly when given 3 times (92%). Vaccination promoted a durable and significant restoration of T, B, natural killer (NK) cells, and CD4(+) and CD8(+) central memory subsets. Moreover, a significant reduction of blood proviral DNA was seen after week 72, particularly under PI-based regimens and with Tat 30 μg given 3 times (30 μg, 3x), reaching a predicted 70% decay after 3 years from vaccination with a half-life of 88 weeks. This decay was significantly associated with anti-Tat IgM and IgG Abs and neutralization of Tat-mediated entry of oligomeric Env in dendritic cells, which predicted HIV-1 DNA decay. Finally, the 30 μg, 3x group was the only one showing significant increases of NK cells and CD38(+)HLA-DR(+)/CD8(+) T cells, a phenotype associated with increased killing activity in elite controllers. CONCLUSIONS Anti-Tat immune responses are needed to restore immune homeostasis and effective anti-viral responses capable of attacking the virus reservoir. Thus, Tat immunization represents a promising pathogenesis-driven intervention to intensify HAART efficacy.
Collapse
Affiliation(s)
- Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy.
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Anna Casabianca
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Antonella Tripiciano
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Stefania Bellino
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Olimpia Longo
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Vittorio Francavilla
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Orietta Picconi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Cecilia Sgadari
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Sonia Moretti
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Maria R Pavone Cossut
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Angela Arancio
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Chiara Orlandi
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Leonardo Sernicola
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Maria T Maggiorella
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Giovanni Paniccia
- Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy. .,National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Cristina Mussini
- Division of Infectious Diseases, University Policlinic of Modena, Modena, Italy.
| | - Adriano Lazzarin
- Division of Infectious Diseases, S. Raffaele Hospital, Milan, Italy.
| | - Laura Sighinolfi
- Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy.
| | - Guido Palamara
- Department of Infectious Dermatology, San Gallicano Hospital, Rome, Italy.
| | - Andrea Gori
- Division of Infectious Diseases, San Gerardo Hospital, Monza, Italy.
| | - Gioacchino Angarano
- Division of Infectious Diseases, University of Bari, Policlinic Hospital, Bari, Italy.
| | - Massimo Di Pietro
- Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy.
| | - Massimo Galli
- Institute of Tropical and Infectious Diseases, L. Sacco Hospital, University of Milan, Milan, Italy.
| | - Vito S Mercurio
- Department of Infectious Diseases, S. Maria Goretti Hospital, Latina, Italy.
| | - Francesco Castelli
- Division of Tropical and Infectious Diseases, Spedali Civili, Brescia, Italy.
| | - Giovanni Di Perri
- Clinic of Infectious Diseases, Amedeo di Savoia Hospital, Turin, Italy.
| | - Paolo Monini
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy.
| | - Enrico Garaci
- Istituto Superiore di Sanità, Rome, Italy, present address University of Tor Vergata, Rome, 00173, Italy.
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy.
| |
Collapse
|
14
|
Different expression of Blimp-1 in HIV infection may be used to monitor disease progression and provide a clue to reduce immune activation and viral reservoirs. AIDS 2015; 29:133-4. [PMID: 25562499 DOI: 10.1097/qad.0000000000000514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
The grafting of universal T-helper epitopes enhances immunogenicity of HIV-1 Tat concurrently improving its safety profile. PLoS One 2014; 9:e114155. [PMID: 25531437 PMCID: PMC4273983 DOI: 10.1371/journal.pone.0114155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022] Open
Abstract
Extracellular Tat (eTat) plays an important role in HIV-1 pathogenesis. The presence of anti-Tat antibodies is negatively correlated with disease progression, hence making Tat a potential vaccine candidate. The cytotoxicity and moderate immunogenicity of Tat however remain impediments for developing Tat-based vaccines. Here, we report a novel strategy to concurrently enhance the immunogenicity and safety profile of Tat. The grafting of universal helper T-lymphocyte (HTL) epitopes, Pan DR Epitope (PADRE) and Pol711 into the cysteine rich domain (CRD) and the basic domain (BD) abolished the transactivation potential of the Tat protein. The HTL-Tat proteins elicited a significantly higher titer of antibodies as compared to the wild-type Tat in BALB/c mice. While the N-terminal epitope remained immunodominant in HTL-Tat immunizations, an additional epitope in exon-2 was recognized with comparable magnitude suggesting a broader immune recognition. Additionally, the HTL-Tat proteins induced cross-reactive antibodies of high avidity that efficiently neutralized exogenous Tat, thus blocking the activation of a Tat-defective provirus. With advantages such as presentation of multiple B-cell epitopes, enhanced antibody response and importantly, transactivation-deficient Tat protein, this approach has potential application for the generation of Tat-based HIV/AIDS vaccines.
Collapse
|
16
|
Wang R, Freywald A, Chen Y, Xu J, Tan X, Xiang J. Transgenic 4-1BBL-engineered vaccine stimulates potent Gag-specific therapeutic and long-term immunity via increased priming of CD44(+)CD62L(high) IL-7R(+) CTLs with up- and downregulation of anti- and pro-apoptosis genes. Cell Mol Immunol 2014; 12:456-65. [PMID: 25195511 DOI: 10.1038/cmi.2014.72] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 02/04/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-specific dendritic cell (DC) vaccines have been used in clinical trials. However, they have been found to only induce some degree of immune responses in these studies. We previously demonstrated that the HIV-1 Gag-specific Gag-Texo vaccine stimulated Gag-specific effector CD8(+) cytotoxic T lymphocyte (CTL) responses, leading to completely protective, but very limited, therapeutic immunity. In this study, we constructed a recombinant adenoviral vector, adenovirus (AdV)4-1BBL, which expressed mouse 4-1BB ligand (4-1BBL), and generated transgenic 4-1BBL-engineered OVA-Texo/4-1BBL and Gag-Texo/4-1BBL vaccines by transfecting ovalbumin (OVA)-Texo and Gag-Texo cells with AdV4-1BBL, respectively. We demonstrate that the OVA-specific OVA-Texo/4-1BBL vaccine stimulates more efficient OVA-specific CTL responses (3.26%) compared to OVA-Texo-activated responses (1.98%) in wild-type C57BL/6 mice and the control OVA-Texo/Null vaccine without transgenic 4-1BBL expression, leading to enhanced therapeutic immunity against 6-day established OVA-expressing B16 melanoma BL6-10OVA cells. OVA-Texo/4-1BBL-stimulated CTLs, which have a CD44(+)CD62L(high) IL-7R(+) phenotype, are likely memory CTL precursors, demonstrating prolonged survival and enhanced differentiation into memory CTLs with functional recall responses and long-term immunity against BL6-10OVA melanoma. In addition, we demonstrate that OVA-Texo/4-1BBL-stimulated CTLs up- and downregulate the expression of anti-apoptosis (Bcl2l10, Naip1, Nol3, Pak7 and Tnfrsf11b) and pro-apoptosis (Casp12, Trp63 and Trp73) genes, respectively, by RT(2) Profiler PCR array analysis. Importantly, the Gag-specific Gag-Texo/4-1BBL vaccine also stimulates more efficient Gag-specific therapeutic and long-term immunity against HLA-A2/Gag-expressing B16 melanoma BL6-10Gag/A2 cells than the control Gag-Texo/Null vaccine in transgenic HLA-A2 mice. Taken together, our novel Gag-Texo/4-1BBL vaccine, which is capable of stimulating potent Gag-specific therapeutic and long-term immunity, may represent a new immunotherapeutic vaccine for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Rong Wang
- 1] Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada [2] Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yue Chen
- Department of Epidemiology and Community Health, University of Ottawa, Canada
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xin Tan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jim Xiang
- 1] Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada [2] Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
HIV-1 Tat affects the programming and functionality of human CD8⁺ T cells by modulating the expression of T-box transcription factors. AIDS 2014; 28:1729-38. [PMID: 24841128 DOI: 10.1097/qad.0000000000000315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV infection is characterized by several immune dysfunctions of both CD8⁺ and CD4⁺ T cells as hyperactivation, impairment of functionality and expansion of memory T cells. CD8⁺ T-cell dysfunctions have been associated with increased expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-regulation of CD127. The HIV-1 trans-activator of transcription (Tat) protein, which is released by infected cells and detected in tissues of HIV-positive individuals, is known to contribute to the dysregulation of CD4⁺ T cells; however, its effects on CD8⁺ T cells have not been investigated. Thus, in this study, we sought to address whether Tat may affect CD8⁺ T-cell functionality and programming. METHODS CD8⁺ T cells were activated by T-cell receptor engagement in the presence or absence of Tat. Cytokine production, killing capacity, surface phenotype and expression of transcription factors important for T-cell programming were evaluated. RESULTS Tat favors the secretion of interleukin-2, interferon-γ and granzyme B in CD8⁺ T cells. Behind this functional modulation we observed that Tat increases the expression of T-bet, Eomesdermin, Blimp-1, Bcl-6 and Bcl-2 in activated but not in unstimulated CD8⁺ T lymphocytes. This effect is associated with the down-regulation of CD127 and the up-regulation of CD27. CONCLUSION Tat deeply alters the programming and functionality of CD8⁺ T lymphocytes.
Collapse
|
18
|
Sicurella M, Nicoli F, Gallerani E, Volpi I, Berto E, Finessi V, Destro F, Manservigi R, Cafaro A, Ensoli B, Caputo A, Gavioli R, Marconi PC. An attenuated herpes simplex virus type 1 (HSV1) encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge. PLoS One 2014; 9:e100844. [PMID: 25033084 PMCID: PMC4102458 DOI: 10.1371/journal.pone.0100844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/30/2014] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesco Nicoli
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Ilaria Volpi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Elena Berto
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Valentina Finessi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Federica Destro
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Roberto Manservigi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Peggy C. Marconi
- Department of Life Sciences and Biotechnology, Section of Applied Microbiology and Pathology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
19
|
Nicoli F, Finessi V, Sicurella M, Rizzotto L, Gallerani E, Destro F, Cafaro A, Marconi P, Caputo A, Ensoli B, Gavioli R. The HIV-1 Tat protein induces the activation of CD8+ T cells and affects in vivo the magnitude and kinetics of antiviral responses. PLoS One 2013; 8:e77746. [PMID: 24223723 PMCID: PMC3817196 DOI: 10.1371/journal.pone.0077746] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
T cells are functionally compromised during HIV infection despite their increased activation and proliferation. Although T cell hyperactivation is one of the best predictive markers for disease progression, its causes are poorly understood. Anti-tat natural immunity as well as anti-tat antibodies induced by Tat immunization protect from progression to AIDS and reverse signs of immune activation in HIV-infected patients suggesting a role of Tat in T cell dysfunctionality. The Tat protein of HIV-1 is known to induce, in vitro, the activation of CD4(+) T lymphocytes, but its role on CD8(+) T cells and how these effects modulate, in vivo, the immune response to pathogens are not known. To characterize the role of Tat in T cell hyperactivation and dysfunction, we examined the effect of Tat on CD8(+) T cell responses and antiviral immunity in different ex vivo and in vivo models of antigenic stimulation, including HSV infection. We demonstrate for the first time that the presence of Tat during priming of CD8(+) T cells favors the activation of antigen-specific CTLs. Effector CD8(+) T cells generated in the presence of Tat undergo an enhanced and prolonged expansion that turns to a partial dysfunctionality at the peak of the response, and worsens HSV acute infection. Moreover, Tat favors the development of effector memory CD8(+) T cells and a transient loss of B cells, two hallmarks of the chronic immune activation observed in HIV-infected patients. Our data provide evidence that Tat affects CD8(+) T cell responses to co-pathogens and suggest that Tat may contribute to the CD8(+) T cell hyperactivation observed in HIV-infected individuals.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Valentina Finessi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Lara Rizzotto
- Department of Biomedical Sciences, Azienda Ospedaliero Universitaria Sant'Anna, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Federica Destro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Peggy Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
20
|
Liu Y, Li F, Qi Z, Hao Y, Hong K, Liu Y, Cong Y, Shao Y. The effects of HIV Tat DNA on regulating the immune response of HIV DNA vaccine in mice. Virol J 2013; 10:297. [PMID: 24073803 PMCID: PMC3851266 DOI: 10.1186/1743-422x-10-297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV trans-activator protein (Tat) is the crucial factor to control HIV transcription, and is usually considered as an important immunogen for the design of HIV vaccine. Recent studies reported some special bio-activities of Tat protein on immunoregulation. However, to date, few studies have focused on exploring the effects of Tat expression plasmid (pTat) on regulating the immune responses induced by HIV DNA vaccines. In this study, our main objective is to investigate the immunoregulation mediated by pTat in mice. METHODS Four gene-coding plasmids (pTat, pGag, pEnv and pPol) were constructed, and the gene expression was detected by western blot method. The effects of pTat on regulating the immune responses to antigens Gag, Env, Pol were assessed by enzyme-linked immunospot and enzyme-linked immunosorbent assay. The data was analysed by one-way analysis of variance. RESULTS After two immunizations, mice vaccinated with antigen expressing plasmid (pGag, pEnv or pPol) plus pTat exhibited significantly stronger IFN-gamma response than that vaccinated with the corresponding antigen alone. Moreover, mice receiving two injections of antigen plus pTat exhibited the same strong IFN-gamma response as those receiving three injections of antigen alone did. Furthermore, addition of pTat not only induced a more balanced Th1 and Th2 response, but also broadened IgG subclass responses to antigens Gag and Pol. CONCLUSION pTat exhibited the appreciable effects on modulating immune responses to HIV antigens Gag, Env and Pol, providing us interesting clues on how to optimize HIV DNA vaccine.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Female
- Interferon-gamma/metabolism
- Mice
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/immunology
- tat Gene Products, Human Immunodeficiency Virus/genetics
Collapse
Affiliation(s)
- Ye Liu
- Department of Clinical Laboratory, Chinese P. L. A. General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Fusheng Li
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Zhi Qi
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| | - Yanling Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| | - Yong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| | - Yulong Cong
- Department of Clinical Laboratory, Chinese P. L. A. General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road Changping District, Beijing 102206, China
| |
Collapse
|
21
|
Eugene HS, Pierce-Paul BR, Cragio JK, Ross TM. Rhesus macaques vaccinated with consensus envelopes elicit partially protective immune responses against SHIV SF162p4 challenge. Virol J 2013; 10:102. [PMID: 23548077 PMCID: PMC3637437 DOI: 10.1186/1743-422x-10-102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
The development of a preventative HIV/AIDS vaccine is challenging due to the diversity of viral genome sequences, especially in the viral envelope (Env₁₆₀). Since it is not possible to directly match the vaccine strain to the vast number of circulating HIV-1 strains, it is necessary to develop an HIV-1 vaccine that can protect against a heterologous viral challenge. Previous studies from our group demonstrated that a mixture of wild type clade B Env(gp160s) were able to protect against a heterologous clade B challenge more effectively than a consensus clade B Envg(p160) vaccine. In order to broaden the immune response to other clades of HIV, in this study rhesus macaques were vaccinated with a polyvalent mixture of purified HIV-1 trimerized consensus Envg(p140) proteins representing clades A, B, C, and E. The elicited immune responses were compared to a single consensus Env(gp140) representing all isolates in group M (Con M). Both vaccines elicited anti- Env(gp140) IgG antibodies that bound an equal number of HIV-1 Env(gp160) proteins representing clades A, B and C. In addition, both vaccines elicited antibodies that neutralized the HIV-1(SF162) isolate. However, the vaccinated monkeys were not protected against SHIV(SF162p4) challenge. These results indicate that consensus Env(gp160) vaccines, administered as purified Env(gp140) trimers, elicit antibodies that bind to Env(gp160s) from strains representing multiple clades of HIV-1, but these vaccines did not protect against heterologous SHIV challenge.
Collapse
Affiliation(s)
- Hermancia S Eugene
- Center for Vaccine Research, University of Pittsburgh, 9047 BST3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
22
|
Strategies to Block HIV Transcription: Focus on Small Molecule Tat Inhibitors. BIOLOGY 2012; 1:668-97. [PMID: 24832514 PMCID: PMC4009808 DOI: 10.3390/biology1030668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023]
Abstract
After entry into the target cell, the human immunodeficiency virus type I (HIV) integrates into the host genome and becomes a proviral eukaryotic transcriptional unit. Transcriptional regulation of provirus gene expression is critical for HIV replication. Basal transcription from the integrated HIV promoter is very low in the absence of the HIV transactivator of transcription (Tat) protein and is solely dependent on cellular transcription factors. The 5' terminal region (+1 to +59) of all HIV mRNAs forms an identical stem-bulge-loop structure called the Transactivation Responsive (TAR) element. Once Tat is made, it binds to TAR and drastically activates transcription from the HIV LTR promoter. Mutations in either the Tat protein or TAR sequence usually affect HIV replication, indicating a strong requirement for their conservation. The necessity of the Tat-mediated transactivation cascade for robust HIV replication renders Tat one of the most desirable targets for transcriptional therapy against HIV replication. Screening based on inhibition of the Tat-TAR interaction has identified a number of potential compounds, but none of them are currently used as therapeutics, partly because these agents are not easily delivered for an efficient therapy, emphasizing the need for small molecule compounds. Here we will give an overview of the different strategies used to inhibit HIV transcription and review the current repertoire of small molecular weight compounds that target HIV transcription.
Collapse
|
23
|
Monini P, Cafaro A, Srivastava IK, Moretti S, Sharma VA, Andreini C, Chiozzini C, Ferrantelli F, Cossut MRP, Tripiciano A, Nappi F, Longo O, Bellino S, Picconi O, Fanales-Belasio E, Borsetti A, Toschi E, Schiavoni I, Bacigalupo I, Kan E, Sernicola L, Maggiorella MT, Montin K, Porcu M, Leone P, Leone P, Collacchi B, Palladino C, Ridolfi B, Falchi M, Macchia I, Ulmer JB, Buttò S, Sgadari C, Magnani M, Federico MPM, Titti F, Banci L, Dallocchio F, Rappuoli R, Ensoli F, Barnett SW, Garaci E, Ensoli B. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies. PLoS One 2012; 7:e48781. [PMID: 23152803 PMCID: PMC3496724 DOI: 10.1371/journal.pone.0048781] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022] Open
Abstract
Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs) via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs). Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Binding Sites
- Dendritic Cells/immunology
- Dendritic Cells/virology
- HIV Antibodies/immunology
- HIV Antibodies/metabolism
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp120/metabolism
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/transmission
- HIV Infections/virology
- HIV-1/immunology
- HIV-1/metabolism
- Humans
- Integrins/immunology
- Integrins/metabolism
- Macaca fascicularis
- Male
- Molecular Docking Simulation
- Neutralization Tests
- Oligopeptides/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs/immunology
- Receptors, CCR5/metabolism
- Receptors, CXCR4/metabolism
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/immunology
- Virus Internalization
- Virus Replication
- env Gene Products, Human Immunodeficiency Virus/chemistry
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/metabolism
- tat Gene Products, Human Immunodeficiency Virus/chemistry
- tat Gene Products, Human Immunodeficiency Virus/immunology
- tat Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Paolo Monini
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Indresh K. Srivastava
- Novartis Vaccines & Diagnostics, Inc., Cambridge, Massachusetts, United States of America
| | - Sonia Moretti
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Victoria A. Sharma
- Novartis Vaccines & Diagnostics, Inc., Cambridge, Massachusetts, United States of America
| | | | | | | | | | - Antonella Tripiciano
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
- San Gallicano Hospital, Rome, Italy
| | - Filomena Nappi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Olimpia Longo
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Orietta Picconi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Elena Toschi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Elaine Kan
- Novartis Vaccines & Diagnostics, Inc., Cambridge, Massachusetts, United States of America
| | | | | | - Katy Montin
- Department of Biochemistry, University of Ferrara, Ferrara, Italy
| | - Marco Porcu
- CERM, University of Florence, Florence, Italy
| | - Patrizia Leone
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | - Barbara Ridolfi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Iole Macchia
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Jeffrey B. Ulmer
- Novartis Vaccines & Diagnostics, Inc., Cambridge, Massachusetts, United States of America
| | - Stefano Buttò
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Sgadari
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | | | - Fausto Titti
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Banci
- CERM, University of Florence, Florence, Italy
| | | | | | | | - Susan W. Barnett
- Novartis Vaccines & Diagnostics, Inc., Cambridge, Massachusetts, United States of America
| | - Enrico Garaci
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
24
|
Steers NJ, Ratto-Kim S, de Souza MS, Currier JR, Kim JH, Michael NL, Alving CR, Rao M. HIV-1 envelope resistance to proteasomal cleavage: implications for vaccine induced immune responses. PLoS One 2012; 7:e42579. [PMID: 22880042 PMCID: PMC3412807 DOI: 10.1371/journal.pone.0042579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Antigen processing involves many proteolytic enzymes such as proteasomes and cathepsins. The processed antigen is then presented on the cell surface bound to either MHC class I or class II molecules and induces/interacts with antigen-specific CD8+ and CD4+ T-cells, respectively. Preliminary immunological data from the RV144 phase III trial indicated that the immune responses were biased towards the Env antigen with a dominant CD4+ T-cell response. METHODS In this study, we examined the susceptibility of HIV-1 Env-A244 gp120 protein, one of the protein boost subunits of the RV144 Phase III vaccine trial, to proteasomes and cathepsins and identified the generated peptide epitope repertoire by mass spectrometry. The peptide fragments were tested for cytokine production in CD4(+) T-cell lines derived from RV144 volunteers. RESULTS Env-A244 was resistant to proteasomes, thus diminishing the possibility of the generation of class I epitopes by the classical MHC class I pathway. However, Env-A244 was efficiently cleaved by cathepsins generating peptide arrays identified by mass spectrometry that contained both MHC class I and class II epitopes as reported in the Los Alamos database. Each of the cathepsins generated distinct degradation patterns containing regions of light and dense epitope clusters. The sequence DKKQKVHALF that is part of the V2 loop of gp120 produced by cathepsins induced a polyfunctional cytokine response including the generation of IFN-γ from CD4(+) T-cell lines-derived from RV144 vaccinees. This sequence is significant since antibodies to the V1/V2-loop region correlated inversely with HIV-1 infection in the RV144 trial. CONCLUSIONS Based on our results, the susceptibility of Env-A244 to cathepsins and not to proteasomes suggests a possible mechanism for the generation of Env-specific CD4(+)T cell and antibody responses in the RV144 vaccinees.
Collapse
Affiliation(s)
- Nicholas J. Steers
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Silvia Ratto-Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Mark S. de Souza
- Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Jeffrey R. Currier
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Jerome H. Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Carl R. Alving
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
25
|
Zhang Y, Sun C, Feng L, Xiao L, Chen L. Enhancement of Gag-specific but reduction of Env- and Pol-specific CD8+ T cell responses by simian immunodeficiency virus nonstructural proteins in mice. AIDS Res Hum Retroviruses 2012; 28:374-83. [PMID: 21736424 DOI: 10.1089/aid.2011.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accessory and regulatory proteins (nonstructural proteins) have received increasing attention as components in novel HIV/SIV vaccine design. However, the complicated interactions between nonstructural proteins and structural proteins remain poorly understood, especially their effects on immunogenicity. In this study, the immunogenicity of structural proteins in the presence and absence of nonstructural proteins was compared. First, a series of recombinant plasmids and adenoviral vectors carrying various SIVmac239 nonstructural and structural genes was constructed. Then mice were primed with DNA plasmids and boosted with corresponding Ad5 vectors of different combinations, and the resulting immune responses were measured. Our results demonstrated that when the individual Gag, Pol, or Env gene products were coimmunized with the whole repertoire of nonstructural proteins, the Gag-specific CD8(+) T response was greatly enhanced, while the Env- and Pol-specific CD8(+) T responses were significantly reduced. The same pattern was not observed in CD4(+) T cell responses. Antibody responses against both the Gag and Env proteins were elicited more effectively when these structural antigens were immunized together with nonstructural antigens. These findings may provide helpful insights into the development of novel HIV/SIV vaccines.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Caijun Sun
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, Guangzhou Medical College, Guangzhou, China
| | - Liqiang Feng
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, Guangzhou Medical College, Guangzhou, China
| | - Lijun Xiao
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Ling Chen
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, Guangzhou Medical College, Guangzhou, China
| |
Collapse
|
26
|
A designed Tat immunogen generates enhanced anti-Tat C-terminal antibodies. Vaccine 2012; 30:2453-61. [PMID: 22330127 DOI: 10.1016/j.vaccine.2012.01.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 12/11/2022]
Abstract
HIV-1 Tat has been identified as an attractive target for vaccine development and is currently under investigation in clinical trials as both a therapeutic and preventative vaccine for HIV-1. The Tat C-terminal region is of significant importance for its extracellular activity. In this study, we designed two recombinant Tat immunogens, Tat(B41-100N) and Tat(B41-100C), with two extended Tat C-terminal regions (41-100 aa) and compared their humoral immune response with native Tat. Interestingly, our results showed that Tat(B41-100C) elicited a higher antibody titer than Tat and Tat(B41-100N) in both mice and rabbits. The recombinant fusion protein-based epitope analysis showed that Tat(B41-100C) induced a remarkably enhanced humoral immune response against extended Tat C-terminal regions containing residues 38-100, 49-100 and 60-100. Our study demonstrates that the designed Tat(B41-100C) presents a designed immunogenicity that elicits enhanced Tat-specific antibodies especially against extended Tat C-terminal regions.
Collapse
|
27
|
Modulation of Th1/Th2 immune responses to HIV-1 Tat by new pro-GSH molecules. Vaccine 2011; 29:6823-9. [PMID: 21816192 DOI: 10.1016/j.vaccine.2011.07.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 06/15/2011] [Accepted: 07/21/2011] [Indexed: 11/23/2022]
Abstract
We have previously demonstrated that in Ova-immunized mice the increase in intra-macrophage thiol pool induced by pro-GSH molecules modulates the Th1/Th2 balance in favour of a Th1-type immune response. We show now that the same molecules can support a Th1-type over Th2-type immunity against Tat, which is an early HIV-1 regulatory protein and a Th1 polarizing immunomodulator that is increasingly considered in new anti-HIV vaccination strategies. Our results indicate that Tat-immunized mice pre-treated with the C4 (n-butanoyl) derivative of reduced glutathione (GSH-C4) or a pro-drug of N-acetylcysteine (NAC) and beta-mercaptoethylamine (MEA) (I-152), have decreased levels of anti-Tat IgG1 as well as increased levels of anti-Tat IgG2a and IgG2b isotypes suggesting a Th1-type response. Moreover, Th1-(IFN-γ and IL-2) Ag-specific cellular responses were detected by ELISPOT assay in splenocytes of the same animals as well as an increase of IL-12 levels in the plasma. These findings suggest that the Th1 immune response to HIV-1 Tat could be further polarized by these molecules. These results together with those previously reported suggest that pro-GSH molecules could be used to modulate the immune response towards different antigens and may be further exploited for inducing specific Th1 immune responses against other HIV antigens as well as other intracellular pathogens in new Tat-based vaccination protocols.
Collapse
|
28
|
Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges. Vaccine 2011; 29:5611-22. [PMID: 21693155 DOI: 10.1016/j.vaccine.2011.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022]
Abstract
We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection.
Collapse
|
29
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
30
|
Ferrantelli F, Maggiorella MT, Schiavoni I, Sernicola L, Olivieri E, Farcomeni S, Pavone-Cossut MR, Moretti S, Belli R, Collacchi B, Srivastava IK, Titti F, Cafaro A, Barnett SW, Ensoli B. A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study. Vaccine 2011; 29:2918-32. [PMID: 21338681 DOI: 10.1016/j.vaccine.2011.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 01/31/2011] [Accepted: 02/05/2011] [Indexed: 02/02/2023]
Abstract
HIV native Tat and V2 loop-deleted Env (EnvΔV2) proteins already proved safe and immunogenic in phase I clinical testing as single vaccine components. Further, a phase II vaccine trial with Tat showed intensification of the therapeutic effects of HAART in successfully treated HIV-infected individuals. Here a pilot study assessed the immunogenicity and protective efficacy of an HIV/AIDS vaccine based on the combination of Tat and EnvΔV2 proteins in cynomolgus macaques against homologous intrarectal challenge with 35 MID(50) (monkey infectious dose 50) of an R5 simian-human immunodeficiency virus (SHIV(SF162P4cy)). Upon challenge, three of four macaques immunized with Tat and EnvΔV2, and two of three monkeys immunized with EnvΔV2 alone were protected from infection. In contrast, all three control animals, which had been either administered with the adjuvants only or left untreated, and an additional monkey immunized with Tat alone became systemically infected. Protection of the macaques vaccinated with EnvΔV2 or Tat/EnvΔV2 correlated with higher peak titers of pre-challenge neutralizing antibodies obtained during the immunization period (between 70 and 3 weeks before challenge) and with anti-Env V3 loop binding antibodies assessed 3 weeks before challenge. Compared to EnvΔV2 alone, the Tat and EnvΔV2 combined vaccine elicited faster antibody responses (IgM) with a trend, early in the vaccination schedule, after the second immunization including EnvΔV2, towards broader anti-Env IgG epitope specificity and a higher ratio of neutralizing to Env-binding antibody titers. As the number of immunizations increased, vaccination with EnvΔV2 approached the immune response assessed after two inocula with the Tat/EnvΔV2 combined vaccine, even though some differences remained between groups, as indicated by anti-Env IgG epitope mapping. In fact, three weeks before challenge, plasma IgG of animals in the EnvΔV2 group showed a trend towards stronger specificity for the V1 loop and V5 loop-C5 regions of Env, whereas the Tat/EnvΔV2 group displayed an overall higher reactivity for epitopes within the Env V3 loop throughout the immunization period. Although differences in terms of protection rate were not found between the EnvΔV2 or Tat/EnvΔV2 vaccination groups in this pilot study, vaccination with Tat/EnvΔV2 appeared to accelerate the induction of potentially protective antibody responses to Env. In particular, antibodies to the Env V3 loop, whose levels at pre-challenge correlated with protection, were already higher early in the vaccination schedule in monkeys immunized with Tat/EnvΔV2 as compared to EnvΔV2 alone. Further studies including larger vaccination groups and fewer immunizations with these two vaccine candidates are needed to confirm these findings and to assess whether the Tat/EnvΔV2 vaccine may afford superior protection against infection.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Johri MK, Mishra R, Chhatbar C, Unni SK, Singh SK. Tits and bits of HIV Tat protein. Expert Opin Biol Ther 2011; 11:269-83. [PMID: 21204735 DOI: 10.1517/14712598.2011.546339] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION HIV-Tat protein displays an array of functions that are essential for HIV replication. The structural flexibility of Tat protein has been regarded as one of the unique features responsible for sustaining diverse functions, from facilitated membrane-crossing ability to strong affinity for RNA binding. AREAS COVERED RNA binding ability and presence of multiple interacting domains in the same protein are very important properties of HIV-Tat protein. Tat protein has shown great ability to influence cellular and viral gene expression. We discuss the functions of HIV Tat protein, describing its structural significance, secretion and uptake of HIV Tat protein by immune cells, post-translational modifications and role of HIV Tat protein in HIV pathogenesis. EXPERT OPINION Perturbation in expression of many cytokines and chemokines by HIV-Tat protein exhibits downstream immune suppressive function as well as activation of several apoptotic genes. This explains the massive death of immune cells due to bystander effect of HIV Tat protein among HIV-infected patients.
Collapse
Affiliation(s)
- Manish K Johri
- Laboratory of Neurovirology & Inflammation Biology, Section of Infectious Diseases, Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad-500007, (A.P), India
| | | | | | | | | |
Collapse
|
32
|
Cell type-specific proteasomal processing of HIV-1 Gag-p24 results in an altered epitope repertoire. J Virol 2010; 85:1541-53. [PMID: 21106750 DOI: 10.1128/jvi.01790-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Proteasomes are critical for the processing of antigens for presentation through the major histocompatibility complex (MHC) class I pathway. HIV-1 Gag protein is a component of several experimental HIV-1 vaccines. Therefore, understanding the processing of HIV-1 Gag protein and the resulting epitope repertoire is essential. Purified proteasomes from mature dendritic cells (DC) and activated CD4(+) T cells from the same volunteer were used to cleave full-length Gag-p24 protein, and the resulting peptide fragments were identified by mass spectrometry. Distinct proteasomal degradation patterns and peptide fragments were unique to either mature DC or activated CD4(+) T cells. Almost half of the peptides generated were cell type specific. Two additional differences were observed in the peptides identified from the two cell types. These were in the HLA-B35-Px epitope and the HLA-B27-KK10 epitope. These epitopes have been linked to HIV-1 disease progression. Our results suggest that the source of generation of precursor MHC class I epitopes may be a critical factor for the induction of relevant epitope-specific cytotoxic T cells.
Collapse
|
33
|
Ensoli B, Bellino S, Tripiciano A, Longo O, Francavilla V, Marcotullio S, Cafaro A, Picconi O, Paniccia G, Scoglio A, Arancio A, Ariola C, Ruiz Alvarez MJ, Campagna M, Scaramuzzi D, Iori C, Esposito R, Mussini C, Ghinelli F, Sighinolfi L, Palamara G, Latini A, Angarano G, Ladisa N, Soscia F, Mercurio VS, Lazzarin A, Tambussi G, Visintini R, Mazzotta F, Di Pietro M, Galli M, Rusconi S, Carosi G, Torti C, Di Perri G, Bonora S, Ensoli F, Garaci E. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One 2010; 5:e13540. [PMID: 21085635 PMCID: PMC2978690 DOI: 10.1371/journal.pone.0013540] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022] Open
Abstract
Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4+ and CD8+ cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4+ T cells and B cells with reduction of CD8+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4+ and CD8+ T cells were accompanied by increases of CD4+ and CD8+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fraternale A, Paoletti MF, Dominici S, Caputo A, Castaldello A, Millo E, Brocca-Cofano E, Smietana M, Clayette P, Oiry J, Benatti U, Magnani M. The increase in intra-macrophage thiols induced by new pro-GSH molecules directs the Th1 skewing in ovalbumin immunized mice. Vaccine 2010; 28:7676-82. [DOI: 10.1016/j.vaccine.2010.09.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 09/08/2010] [Accepted: 09/12/2010] [Indexed: 10/19/2022]
|
35
|
Castaldello A, Sgarbanti M, Marsili G, Brocca-Cofano E, Remoli AL, Caputo A, Battistini A. Interferon regulatory factor-1 acts as a powerful adjuvant in tat DNA based vaccination. J Cell Physiol 2010; 224:702-9. [PMID: 20432465 DOI: 10.1002/jcp.22169] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genetic vaccines are safe cost-effective approaches to immunization but DNA immunization is an inefficient process. There is, therefore, a pressing need for adjuvants capable of enhancing the immunogenicity and effectiveness of these vaccines. This is particularly important for diseases for which successful vaccines are still lacking, such as cancer and infectious diseases including HIV-1/AIDS. Here we report an approach to enhance the immunogenicity of DNA vaccines involving the use of transcription factors of the Interferon regulatory factor (IRF) family, specifically IRF-1, IRF-3, and IRF-7 using the tat gene as model antigen. Balb/c mice were immunized by three intramuscular inoculations, using a DNA prime-protein boost protocol, with a DNA encoding tat of HIV-1 and the indicated IRFs and immune responses were compared to those induced by vaccination with tat DNA alone. In vivo administration of plasmid DNA encoding IRF-1, or a mutated version of IRF-1 deleted of the DNA-binding domain, enhanced Tat-specific immune responses and shifted them towards a predominant T helper 1-type immune response with increased IFN-gamma production and cytotoxic T lymphocytes responses. Conversely, the use of IRF-3 or IRF-7 did not affect the tat-induced responses. These findings define IRF-1 and its mutated form as efficacious T helper 1-inducing adjuvants in the context of tat-based vaccination and also providing a new promising candidate for genetic vaccine development.
Collapse
Affiliation(s)
- Arianna Castaldello
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
37
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-based vaccines: an overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol 2009; 28:285-334. [PMID: 19811313 DOI: 10.1080/08830180903013026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The HIV epidemic continues to represent one of the major problems worldwide, particularly in the Asia and Sub-Saharan regions of the world, with social and economical devastating effects. Although antiretroviral drugs have had a dramatically beneficial impact on HIV-infected individuals that have access to treatment, it has had a negligible impact on the global epidemic. Hence, the inexorable spreading of the HIV pandemic and the increasing deaths from AIDS, especially in developing countries, underscore the urgency for an effective vaccine against HIV/AIDS. However, the generation of such a vaccine has turned out to be extremely challenging. Here we provide an overview on the rationale for the use of non-structural HIV proteins, such as the Tat protein, alone or in combination with other HIV early and late structural HIV antigens, as novel, promising preventative and therapeutic HIV/AIDS vaccine strategies.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ensoli B, Fiorelli V, Ensoli F, Lazzarin A, Visintini R, Narciso P, Di Carlo A, Tripiciano A, Longo O, Bellino S, Francavilla V, Paniccia G, Arancio A, Scoglio A, Collacchi B, Ruiz Alvarez MJ, Tambussi G, Tassan Din C, Palamara G, Latini A, Antinori A, D’Offizi G, Giuliani M, Giulianelli M, Carta M, Monini P, Magnani M, Garaci E. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine 2009; 28:371-8. [DOI: 10.1016/j.vaccine.2009.10.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/01/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
39
|
HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proc Natl Acad Sci U S A 2009; 106:20382-7. [PMID: 19918062 DOI: 10.1073/pnas.0911742106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lentivectors (LVs) have attracted considerable interest for their potential as a vaccine delivery vehicle. In this study, we evaluate in mice a dendritic cell (DC)-directed LV system encoding the Gag protein of human immunodeficiency virus (HIV) (LV-Gag) as a potential vaccine for inducing an anti-HIV immune response. The DC-directed specificity is achieved through pseudotyping the vector with an engineered Sindbis virus glycoprotein capable of selectively binding to the DC-SIGN protein. A single immunization by this vector induces a durable HIV Gag-specific immune response. We investigated the antigen-specific immunity and T-cell memory generated by a prime/boost vaccine regimen delivered by either successive LV-Gag injections or a DNA prime/LV-Gag boost protocol. We found that both prime/boost regimens significantly enhance cellular and humoral immune responses. Importantly, a heterologous DNA prime/LV-Gag boost regimen results in superior Gag-specific T-cell responses as compared with a DNA prime/adenovector boost immunization. It induces not only a higher magnitude response, as measured by Gag-specific tetramer analysis and intracellular IFN-gamma staining, but also a better quality of response evidenced by a wider mix of cytokines produced by the Gag-specific CD8(+) and CD4(+) T cells. A boosting immunization with LV-Gag also generates T cells reactive to a broader range of Gag-derived epitopes. These results demonstrate that this DC-directed LV immunization is a potent modality for eliciting anti-HIV immune responses.
Collapse
|
40
|
Kashi VP, Jacob RA, Paul S, Nayak K, Satish B, Swaminathan S, Satish KS, Ranga U. HIV-1 Tat-specific IgG antibodies in high-responders target a B-cell epitope in the cysteine-rich domain and block extracellular Tat efficiently. Vaccine 2009; 27:6739-47. [PMID: 19744585 DOI: 10.1016/j.vaccine.2009.08.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 08/19/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
Tat, an important regulatory protein of HIV-1, has been implicated in HIV-related pathogenesis. Immune responses to Tat, although underrepresented, confer protection against disease progression, in natural infection and experimental immunization, making Tat an attractive vaccine candidate. Information on immune responses to Tat from India which has the second largest HIV incidence has been lacking. Here we report a cross-sectional study evaluating the humoral response to Tat from a large number of samples from two southern states of India. 14% of the seropositive (63/447) and 4.6% of seronegative samples (7/150) harbored Tat-reactive antibodies. A significant number of the seropositive samples contained high levels of anti-Tat antibodies (31/447) which demonstrated class-switch to IgG1 and bound to Tat with high avidity. Cross-reactivity analysis showed that these antibodies interacted with Tat from different clades with variable degree with the highest interaction with subtype-AE and the least with subtype-B Tat. Importantly, a B-cell epitope in the cysteine-rich domain was found to be the most immunodominant one and antibodies interacting with this epitope blocked extracellular Tat efficiently. To the best of our knowledge this is the first report on immune responses to Tat from Indian populations and the data presented here could significantly contribute to HIV Tat vaccine design.
Collapse
|
41
|
Voltan R, Castaldello A, Brocca-Cofano E, De Michele R, Triulzi C, Altavilla G, Tondelli L, Laus M, Sparnacci K, Reali E, Gavioli R, Ensoli B, Caputo A. Priming with a very low dose of DNA complexed with cationic block copolymers followed by protein boost elicits broad and long-lasting antigen-specific humoral and cellular responses in mice. Vaccine 2009; 27:4498-507. [PMID: 19450649 DOI: 10.1016/j.vaccine.2009.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 05/08/2009] [Accepted: 05/10/2009] [Indexed: 11/18/2022]
Abstract
Cationic block copolymers spontaneously assemble via electrostatic interactions with DNA molecules in aqueous solution giving rise to micellar structures that protect the DNA from enzymatic degradation both in vitro and in vivo. In addition, we have previously shown that they are safe, not immunogenic and greatly increased antigen-specific CTL responses following six intramuscular inoculations of a very low dose (1microg) of the vaccine DNA as compared to naked DNA. Nevertheless, they failed to elicit detectable humoral responses against the antigen. To gain further insight in the potential application of this technology, here we show that a shorter immunization protocol based on two DNA intramuscular inoculations of 1microg of DNA delivered by these copolymers and a protein boost elicits in mice broad (both humoral and cellular) and long-lasting responses and increases the antigen-specific Th1-type T cell responses and CTLs as compared to priming with naked DNA. These results indicate that cationic block copolymers represent a promising adjuvant and delivery technology for DNA vaccination strategies aimed at combating intracellular pathogens.
Collapse
Affiliation(s)
- Rebecca Voltan
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Florese RH, Demberg T, Xiao P, Kuller L, Larsen K, Summers LE, Venzon D, Cafaro A, Ensoli B, Robert-Guroff M. Contribution of nonneutralizing vaccine-elicited antibody activities to improved protective efficacy in rhesus macaques immunized with Tat/Env compared with multigenic vaccines. THE JOURNAL OF IMMUNOLOGY 2009; 182:3718-27. [PMID: 19265150 DOI: 10.4049/jimmunol.0803115] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, chronic-phase protection against SHIV(89.6P) challenge was significantly greater in macaques primed with replicating adenovirus type 5 host range mutant (Ad5hr) recombinants encoding HIVtat and env and boosted with Tat and Env protein compared with macaques primed with multigenic adenovirus recombinants (HIVtat, HIVenv, SIVgag, SIVnef) and boosted with Tat, Env, and Nef proteins. The greater protection was correlated with Tat- and Env-binding Abs. Because the macaques lacked SHIV(89.6P)-neutralizing activity prechallenge, we investigated whether Ab-dependent cellular cytotoxicity (ADCC) and Ab-dependent cell-mediated viral inhibition (ADCVI) might exert a protective effect. We clearly show that Tat can serve as an ADCC target, although the Tat-specific activity elicited did not correlate with better protection. However, Env-specific ADCC activity was consistently higher in the Tat/Env group, with sustained cell killing postchallenge exhibited at higher levels (p < 0.00001) for a longer duration (p = 0.0002) compared with the multigenic group. ADCVI was similarly higher in the Tat/Env group and significantly correlated with reduced acute-phase viremia at wk 2 and 4 postchallenge (p = 0.046 and 0.011, respectively). Viral-specific IgG and IgA Abs in mucosal secretions were elicited but did not influence the outcome of the i.v. SHIV(89.6P) challenge. The higher ADCC and ADCVI activities seen in the Tat/Env group provide a plausible mechanism responsible for the greater chronic-phase protection. Because Tat is known to enhance cell-mediated immunity to coadministered Ags, further studies should explore its impact on Ab induction so that it may be optimally incorporated into HIV vaccine regimens.
Collapse
|
43
|
Caputo A, Castaldello A, Brocca-Cofano E, Voltan R, Bortolazzi F, Altavilla G, Sparnacci K, Laus M, Tondelli L, Gavioli R, Ensoli B. Induction of humoral and enhanced cellular immune responses by novel core-shell nanosphere- and microsphere-based vaccine formulations following systemic and mucosal administration. Vaccine 2009; 27:3605-15. [PMID: 19464541 DOI: 10.1016/j.vaccine.2009.03.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 03/12/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
Anionic surfactant-free polymeric core-shell nanospheres and microspheres were previously described with an inner core constituted by poly(methylmethacrylate) (PMMA) and a highly hydrophilic outer shell composed of a hydrosoluble co-polymer (Eudragit L100-55). The outer shell is tightly linked to the core and bears carboxylic groups capable of adsorbing high amounts (antigen loading ability of up to 20%, w/w) of native basic proteins, mainly by electrostatic interactions, while preserving their activity. In the present study we have evaluated in mice the safety and immunogenicity of new vaccine formulations composed of these nano- and microspheres and the HIV-1 Tat protein. Vaccines were administered by different routes, including intramuscular, subcutaneous or intranasal and the results were compared to immunization with Tat alone or with Tat delivered with the alum adjuvant. The data demonstrate that the nano- and microspheres/Tat formulations are safe and induce robust and long-lasting cellular and humoral responses in mice after systemic and/or mucosal immunization. These delivery systems may have great potential for novel Tat protein-based vaccines against HIV-1 and hold promise for other protein-based vaccines.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, University of Padova, Via A. Gabelli 63, 35122 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fanales-Belasio E, Moretti S, Fiorelli V, Tripiciano A, Pavone Cossut MR, Scoglio A, Collacchi B, Nappi F, Macchia I, Bellino S, Francavilla V, Caputo A, Barillari G, Magnani M, Laguardia ME, Cafaro A, Titti F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat Addresses Dendritic Cells to Induce a Predominant Th1-Type Adaptive Immune Response That Appears Prevalent in the Asymptomatic Stage of Infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:2888-97. [DOI: 10.4049/jimmunol.0711406] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. Int Rev Immunol 2009. [DOI: 10.1080/08830180903013026 10.1080/08830180903013026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
46
|
Abstract
Dendritic cells (DC) have profound abilities to induce and coordinate T-cell immunity. This makes them ideal biological agents for use in immunotherapeutic strategies to augment T-cell immunity to HIV infection. Current clinical trials are administering DC-HIV antigen preparations carried out ex vivo as proof of principle that DC immunotherapy is safe and efficacious in HIV-infected patients. These trials are largely dependent on preclinical studies that will provide knowledge and guidance about the types of DC, form of HIV antigen, method of DC maturation, route of DC administration, measures of anti-HIV immune function and ultimately control of HIV replication. Additionally, promising immunotherapy approaches are being developed based on targeting of DC with HIV antigens in vivo. The objective is to define a safe and effective strategy for enhancing control of HIV infection in patients undergoing antiretroviral therapy.
Collapse
Affiliation(s)
- C R Rinaldo
- Department of Infectious Diseases, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
47
|
Cellini S, Fortini C, Gallerani E, Destro F, Cofano EB, Caputo A, Gavioli R. Identification of new HIV-1 Gag-specific cytotoxic T lymphocyte responses in BALB/c mice. Virol J 2008; 5:81. [PMID: 18625037 PMCID: PMC2481256 DOI: 10.1186/1743-422x-5-81] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/14/2008] [Indexed: 12/02/2022] Open
Abstract
Background As HIV-specific cytotoxic T cells play a key role during acute and chronic HIV-1 infection in humans, the ability of potential anti-HIV vaccines to elicit strong, broad T cell responses is likely to be crucial. The HIV-1 Gag antigen is widely considered a relevant antigen for the development of an anti-HIV vaccine since it is one of the most conserved viral proteins and is also known to induce T cell responses. In the majority of studies reporting Gag-specific cellular immune responses induced by Gag-based vaccines, only a small number of Gag T cell epitopes were tested in preclinical mouse models, thus giving an incomplete picture of the numerous possible cellular immune responses against this antigen. As is, this partial knowledge of epitope-specific T cell responses directed to Gag will unavoidably result in a limited preclinical evaluation of Gag-based vaccines. Results In this study we identified new Gag CD8+ T cell epitopes in BALB/c mice vaccinated with the HIV-1 Gag antigen alone or in combination with the HIV-1 Tat protein, which was recently shown to broaden T cell responses directed to Gag. Specifically, we found that CTL responses to Gag may be directed to nine different CTL epitopes, and four of these were mapped as minimal CTL epitopes. Conclusion These newly identified CTL epitopes should be considered in the preclinical evaluation of T cell responses induced by Gag-based vaccines in mice.
Collapse
Affiliation(s)
- Silvia Cellini
- Department of Biochemistry and Molecular Biology, Via L, Borsari 46, University of Ferrara, 44100, Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Caputo A, Brocca-Cofano E, Castaldello A, Voltan R, Gavioli R, Srivastava IK, Barnett SW, Cafaro A, Ensoli B. Characterization of immune responses elicited in mice by intranasal co-immunization with HIV-1 Tat, gp140 DeltaV2Env and/or SIV Gag proteins and the nontoxicogenic heat-labile Escherichia coli enterotoxin. Vaccine 2008; 26:1214-27. [PMID: 18243435 DOI: 10.1016/j.vaccine.2007.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
The development of a vaccine against HIV/AIDS capable of inducing broad humoral and cellular responses at both systemic and mucosal sites, able to stop or reduce viral infection at the portal of entry, represents the only realistic way to control the infection caused by HIV world-wide. The promising results obtained with the HIV-1 Tat-based vaccines in preclinical and clinical settings, the evidence that a broad immunity against HIV correlates with reduced viral load or virus control, as well as the availability of novel gp140 V2-loop deleted HIV-1 Env (DeltaV2Env) immunogens capable of inducing cross-reactive neutralizing antibodies, have led to the design of new vaccine strategies based on the combination of non-structural and structural proteins. In this study, we demonstrate that immunization with a biologically active HIV-1 Tat protein in combination with the oligomeric HIV-1 gp140 DeltaV2Env and/or SIV Gag proteins, delivered intranasally with the detoxified LTK63 mucosal adjuvant, whose safety has been recently shown in humans, elicits long-lasting local and systemic antibody and cellular immune responses against the co-administered antigens in a fashion similar to immune responses induced by vaccination with Tat, DeltaV2Env and Gag proteins alone. The results indicate lack of antigen interference implying that HIV-1 Tat is an optimal co-antigen for combined vaccine strategies employing DeltaV2Env and/or Gag proteins.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Via A. Gabelli 63, 35122 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|