1
|
Kosoltanapiwat N, Tongshoob J, Ampawong S, Reamtong O, Prasittichai L, Yindee M, Tongthainan D, Tulayakul P, Boonnak K. Simian adenoviruses: Molecular and serological survey in monkeys and humans in Thailand. One Health 2022; 15:100434. [PMID: 36277107 PMCID: PMC9582551 DOI: 10.1016/j.onehlt.2022.100434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
|
2
|
Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines (Basel) 2021; 9:vaccines9080848. [PMID: 34451973 PMCID: PMC8402319 DOI: 10.3390/vaccines9080848] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which has reached pandemic proportions. A number of effective vaccines have been produced, including mRNA vaccines and viral vector vaccines, which are now being implemented on a large scale in order to control the pandemic. The mRNA vaccines are composed of viral Spike S1 protein encoding mRNA incorporated in a lipid nanoparticle and stabilized by polyethylene glycol (PEG). The mRNA vaccines are novel in many respects, including cellular uptake and the intracellular routing, processing, and secretion of the viral protein. Viral vector vaccines have incorporated DNA sequences, encoding the SARS-CoV-2 Spike protein into (attenuated) adenoviruses. The antigen presentation routes in MHC class I and class II, in relation to the induction of virus-neutralizing antibodies and cytotoxic T-lymphocytes, will be reviewed. In rare cases, mRNA vaccines induce unwanted immune mediated side effects. The mRNA-based vaccines may lead to an anaphylactic reaction. This reaction may be triggered by PEG. The intracellular routing of PEG and potential presentation in the context of CD1 will be discussed. Adenovirus vector-based vaccines have been associated with thrombocytopenic thrombosis events. The anti-platelet factor 4 antibodies found in these patients could be generated due to conformational changes of relevant epitopes presented to the immune system.
Collapse
|
3
|
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells 2020; 9:E2671. [PMID: 33322641 PMCID: PMC7762980 DOI: 10.3390/cells9122671] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.
Collapse
Affiliation(s)
| | | | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.W.); (P.Z.)
| |
Collapse
|
4
|
Lundstrom K. Application of Viral Vectors for Vaccine Development with a Special Emphasis on COVID-19. Viruses 2020; 12:E1324. [PMID: 33218001 PMCID: PMC7698750 DOI: 10.3390/v12111324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Viral vectors can generate high levels of recombinant protein expression providing the basis for modern vaccine development. A large number of different viral vector expression systems have been utilized for targeting viral surface proteins and tumor-associated antigens. Immunization studies in preclinical animal models have evaluated the elicited humoral and cellular responses and the possible protection against challenges with lethal doses of infectious pathogens or tumor cells. Several vaccine candidates for both infectious diseases and various cancers have been subjected to a number of clinical trials. Human immunization trials have confirmed safe application of viral vectors, generation of neutralizing antibodies and protection against challenges with lethal doses. A special emphasis is placed on COVID-19 vaccines based on viral vectors. Likewise, the flexibility and advantages of applying viral particles, RNA replicons and DNA replicon vectors of self-replicating RNA viruses for vaccine development are presented.
Collapse
|
5
|
Ngu LN, Nji NN, Ambada G, Ngoh AA, Njambe Priso GD, Tchadji JC, Lissom A, Magagoum SH, Sake CN, Tchouangueu TF, Chukwuma GO, Okoli AS, Sagnia B, Chukwuanukwu R, Tebit DM, Esimone CO, Waffo AB, Park CG, Überla K, Nchinda GW. Dendritic cell targeted HIV-1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8 + T cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:163-175. [PMID: 29205929 PMCID: PMC5818444 DOI: 10.1002/iid3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
Introduction Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune‐modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV‐1 gag protein (DEC‐Gag) vaccine; for the induction of helper CD4+ T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV‐1 Gag P55 (rNDV‐L‐Gag) vaccine. Methods We do so through successive administration of anti‐DEC205‐gagP24 protein plus polyICLC (DEC‐Gag) vaccine and rNDV‐L‐Gag. First strong gag specific helper CD4+ T cells are induced in mice by selected targeting of anti‐DEC205‐gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV‐L‐Gag vaccine and improved both systemic and mucosal gag specific immunity. Results This sequential DEC‐Gag vaccine prime followed by an rNDV‐L‐gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8+ T cells to a pathogenic virus infection site. Conclusion Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8+T cells to a pathogenic virus infection site such as the murine airway.
Collapse
Affiliation(s)
- Loveline N Ngu
- Department of Biochemistry, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon.,Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon
| | - Nadesh N Nji
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon
| | - Georgia Ambada
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Apeh A Ngoh
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of biomedical sciences, University of Dschang, Dschang, Cameroon
| | - Ghislain D Njambe Priso
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Jules C Tchadji
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Suzanne H Magagoum
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Carol N Sake
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Microbiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Thibau F Tchouangueu
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of biochemistry, University of Dschang, Dschang, Cameroon
| | - George O Chukwuma
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Medical Laboratory Science College of Medicine, Nnewi Campus, Nnamdi Azikiwe University, Awka, Anambra
| | | | - Bertrand Sagnia
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon
| | - Rebecca Chukwuanukwu
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Medical Laboratory Science College of Medicine, Nnewi Campus, Nnamdi Azikiwe University, Awka, Anambra
| | - Denis M Tebit
- Myles Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, Jordan Hall 7088, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22903, USA
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Alain B Waffo
- Department of Biological Sciences # 223, Alabama State University, 1627, Hall Street, Montgomery, Alabama 36104, USA
| | - Chae G Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
6
|
Decreased Vector Gene Expression from E2b Gene-Deleted Adenovirus Serotype 5 Vaccines Intensifies Proinflammatory Immune Responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00061-17. [PMID: 28381403 DOI: 10.1128/cvi.00061-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
Abstract
Recombinant adenovirus serotype 5 (Ad5) vectors are promising vaccine candidates due to their intrinsic immunogenicity and potent transgene expression; however, widespread preexisting Ad5 immunity has been considered a developmental impediment to the use of traditional, or conventional, E1 and E3 gene-deleted Ad5 (Ad5[E1-]) vaccines. Even in the presence of anti-Ad5 immunity, recent murine and human studies have confirmed E2b gene-deleted Ad5 (Ad5[E1-,E2b-]) vaccines to be highly efficacious inducers of transgene-specific memory responses and significantly less toxic options than Ad5[E1-] vaccines. While these findings have been substantially confirmed, the molecular mechanisms underlying the different reactions to these vaccine platforms are unknown. Using cultures of human peripheral blood mononuclear cells (hPBMCs) derived from multiple human donors, we found that Ad5[E1-,E2b-] vaccines trigger higher levels of hPBMC proinflammatory cytokine secretion than Ad5[E1-] vaccines. Interestingly, these responses were generated regardless of the donors' preexisting anti-Ad5 humoral and cell-mediated immune response status. In vitro hPBMC infection with the Ad5[E1-,E2b-] vaccine also provoked greater Th1-dominant gene responses yet smaller amounts of Ad-derived gene expression than Ad5[E1-] vaccines. These results suggest that Ad5[E1-,E2b-] vaccines, in contrast to Ad5[E1-] vaccines, do not promote activities that suppress innate immune signaling, thereby allowing for improved vaccine efficacy and a superior safety profile independently of previous Ad5 immunity.
Collapse
|
7
|
Fonseca JA, McCaffery JN, Kashentseva E, Singh B, Dmitriev IP, Curiel DT, Moreno A. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice. Vaccine 2017; 35:3239-3248. [PMID: 28483199 PMCID: PMC5522619 DOI: 10.1016/j.vaccine.2017.04.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4+ T cell responses. Based on evidence that viral vectors increase CD8+ T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8+ T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8+ T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States
| | - Jessica N McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Elena Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Igor P Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States.
| |
Collapse
|
8
|
Protective immunity to liver-stage malaria. Clin Transl Immunology 2016; 5:e105. [PMID: 27867517 PMCID: PMC5099428 DOI: 10.1038/cti.2016.60] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Despite decades of research and recent clinical trials, an efficacious long-lasting preventative vaccine for malaria remains elusive. This parasite infects mammals via mosquito bites, progressing through several stages including the relatively short asymptomatic liver stage followed by the more persistent cyclic blood stage, the latter of which is responsible for all disease symptoms. As the liver acts as a bottleneck to blood-stage infection, it represents a potential site for parasite and disease control. In this review, we discuss immunity to liver-stage malaria. It is hoped that the knowledge gained from animal models of malaria immunity will translate into a more powerful and effective vaccine to reduce this global health problem.
Collapse
|
9
|
Zaric M, Ibarzo Yus B, Kalcheva PP, Klavinskis LS. Microneedle-mediated delivery of viral vectored vaccines. Expert Opin Drug Deliv 2016; 14:1177-1187. [PMID: 27591122 DOI: 10.1080/17425247.2017.1230096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.
Collapse
Affiliation(s)
- Marija Zaric
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | - Bárbara Ibarzo Yus
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | | | | |
Collapse
|
10
|
Cabrera-Mora M, Fonseca JA, Singh B, Zhao C, Makarova N, Dmitriev I, Curiel DT, Blackwell J, Moreno A. A Recombinant Chimeric Ad5/3 Vector Expressing a Multistage Plasmodium Antigen Induces Protective Immunity in Mice Using Heterologous Prime-Boost Immunization Regimens. THE JOURNAL OF IMMUNOLOGY 2016; 197:2748-61. [PMID: 27574299 DOI: 10.4049/jimmunol.1501926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
An ideal malaria vaccine should target several stages of the parasite life cycle and induce antiparasite and antidisease immunity. We have reported a Plasmodium yoelii chimeric multistage recombinant protein (P. yoelii linear peptide chimera/recombinant modular chimera), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein and the merozoite surface protein 1. This chimeric protein elicits protective immunity, mediated by CD4(+) T cells and neutralizing Abs. However, experimental evidence, from pre-erythrocytic vaccine candidates and irradiated sporozoites, has shown that CD8(+) T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8(+) T cell responses. The human adenovirus (Ad) serotype 5 has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing Abs in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity, we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing Abs. Furthermore, we implemented heterologous Ad/protein immunization regimens that include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrates that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development.
Collapse
Affiliation(s)
- Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Jairo Andres Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Chunxia Zhao
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Natalia Makarova
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Igor Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108
| | - Jerry Blackwell
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| |
Collapse
|
11
|
Ockenhouse CF, Regules J, Tosh D, Cowden J, Kathcart A, Cummings J, Paolino K, Moon J, Komisar J, Kamau E, Oliver T, Chhoeu A, Murphy J, Lyke K, Laurens M, Birkett A, Lee C, Weltzin R, Wille-Reece U, Sedegah M, Hendriks J, Versteege I, Pau MG, Sadoff J, Vanloubbeeck Y, Lievens M, Heerwegh D, Moris P, Guerra Mendoza Y, Jongert E, Cohen J, Voss G, Ballou WR, Vekemans J. Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-Naïve Adults. PLoS One 2015; 10:e0131571. [PMID: 26148007 PMCID: PMC4492580 DOI: 10.1371/journal.pone.0131571] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Methods In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. Results ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). Conclusions An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. Trial Registration ClinicalTrials.gov NCT01366534
Collapse
Affiliation(s)
- Christian F. Ockenhouse
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- * E-mail:
| | - Jason Regules
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Donna Tosh
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jessica Cowden
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - April Kathcart
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - James Cummings
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Kristopher Paolino
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - James Moon
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jack Komisar
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Edwin Kamau
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Thomas Oliver
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Austin Chhoeu
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jitta Murphy
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Kirsten Lyke
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Matthew Laurens
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | | - Cynthia Lee
- PATH-MVI, Washington, DC, United States of America
| | - Rich Weltzin
- PATH-MVI, Washington, DC, United States of America
| | | | - Martha Sedegah
- Naval Medical Research Center, Silver Spring, MD, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
13
|
Noe AR, Espinosa D, Li X, Coelho-dos-Reis JGA, Funakoshi R, Giardina S, Jin H, Retallack DM, Haverstock R, Allen JR, Vedvick TS, Fox CB, Reed SG, Ayala R, Roberts B, Winram SB, Sacci J, Tsuji M, Zavala F, Gutierrez GM. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate. PLoS One 2014; 9:e107764. [PMID: 25247295 PMCID: PMC4172688 DOI: 10.1371/journal.pone.0107764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.
Collapse
Affiliation(s)
- Amy R. Noe
- Leidos Inc., Frederick, Maryland, United States of America
| | - Diego Espinosa
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xiangming Li
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Jordana G. A. Coelho-dos-Reis
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Ryota Funakoshi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Steve Giardina
- Leidos Inc., Frederick, Maryland, United States of America
| | - Hongfan Jin
- Pfenex Inc., San Diego, California, United States of America
| | | | - Ryan Haverstock
- Pfenex Inc., San Diego, California, United States of America
| | | | - Thomas S. Vedvick
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Ramses Ayala
- Leidos Inc., Frederick, Maryland, United States of America
| | - Brian Roberts
- Leidos Inc., Frederick, Maryland, United States of America
| | | | - John Sacci
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
14
|
Abstract
Recombinant adenoviruses (AdV) are highly efficient at gene transfer for a broad spectrum of cell types and species. They became one of the vectors of choice for gene delivery and expression of foreign proteins in gene therapy and vaccination purposes. To meet the need of significant amounts of adenoviral vectors for preclinical and possibly clinical uses, scalable and reproducible production processes are required.In this chapter, we review processes used for scalable production of two types of first generation (E1-deleted) adenoviral vectors (Human and Canine) using stirred tank bioreactors. The production of adenovirus vectors using either suspension (HEK 293) or anchorage-dependent cells (MDCK-E1) are described to exemplify scalable production processes with different cell-culture types. The downstream processes will be covered in the next chapter.
Collapse
|
15
|
Zhang S, Huang W, Zhou X, Zhao Q, Wang Q, Jia B. Seroprevalence of neutralizing antibodies to human adenoviruses type-5 and type-26 and chimpanzee adenovirus type-68 in healthy Chinese adults. J Med Virol 2013; 85:1077-84. [PMID: 23588735 DOI: 10.1002/jmv.23546] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2013] [Indexed: 11/12/2022]
Abstract
Replication-defective adenoviruses have been utilized as candidate vaccine vectors. However, clinical application of the best-studied human adenovirus type-5 (AdHu5) is limited by the high prevalence of preexisting neutralizing antibodies resulting from natural infection. Therefore, rare adenovirus serotypes, such as human adenovirus type-26 (AdHu26) and chimpanzee adenovirus type-68 (AdC68), have been employed as substitutes for AdHu5. However, few studies have described the epidemiology of pre-existing immunity to these adenoviruses in China. Thus, 1,154 participants from six regions in China were examined to assess the presence of neutralizing antibodies against AdHu5, AdHu26, and AdC68. The seroprevalence rates of neutralizing antibodies were as follows: AdHu5, 73.1% (844/1,154) (95% confidence interval: 70.5-75.6%); AdHu26, 35.3% (407/1,154) (95% confidence interval: 32.6-38.1%); and AdC68, 12.7% (147/1,154) (95% confidence interval: 10.9-14.8%), respectively. The most frequently detected and highest titer antibodies were specific for AdHu5. The results indicate that AdHu26 and AdC68 serve as more suitable vaccine vectors than AdHu5.
Collapse
Affiliation(s)
- Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
16
|
Creech CB, Dekker CL, Ho D, Phillips S, Mackey S, Murray-Krezan C, Grazia Pau M, Hendriks J, Brown V, Dally LG, Versteege I, Edwards KM. Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults. Hum Vaccin Immunother 2013; 9:2548-57. [PMID: 23955431 DOI: 10.4161/hv.26038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malaria results in over 650,000 deaths each year; thus, there is an urgent need for an effective vaccine. Pre-clinical studies and recently reported human trials suggest that pre-erythrocytic stage vaccines can provide protection against infection. A Phase 1, randomized, placebo-controlled, dose-escalation study was conducted with a vaccine composed of a replication-deficient adenovirus-35 backbone with P. falciparum circumsporozoite (CS) surface antigen (Ad35.CS.01). Healthy adult subjects received three doses of 10 (8), 10 (9), 10 (10), or 10 (11) vp/mL Ad35.CS.01 vaccine or saline placebo intramuscularly at 0, 1, and 6-mo intervals. Adverse events were assessed and anti-CS antibody responses were determined by ELISA. Seventy-two individuals were enrolled, with age, gender, and ethnicity similar across each study arm. While the vaccine was generally well tolerated, adverse events were more frequent in the highest dose groups (10 (10) and 10 (11) vp/mL). More robust humoral responses were also noted at the highest doses, with 73% developing a positive ELISA response after the three dose series of 10 (11) vp/mL. The Ad35.CS.01 vaccine was most immunogenic at the highest dosages (10 (10) and 10 (11) vp/mL). Reactogenicity findings were more common after the 10 (11) vp/mL dose, although most were mild or moderate in nature and resolved without therapy.
Collapse
Affiliation(s)
- C Buddy Creech
- Vanderbilt Vaccine Research Program; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Cornelia L Dekker
- Stanford-LPCH Vaccine Program, Department of Pediatrics-Infectious Diseases; Stanford University School of Medicine; Stanford, CA USA
| | - Dora Ho
- Stanford-LPCH Vaccine Program, Department of Pediatrics-Infectious Diseases; Stanford University School of Medicine; Stanford, CA USA
| | - Shanda Phillips
- Vanderbilt Vaccine Research Program; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Sally Mackey
- Stanford-LPCH Vaccine Program, Department of Pediatrics-Infectious Diseases; Stanford University School of Medicine; Stanford, CA USA
| | - Cristina Murray-Krezan
- Division of Epidemiology, Biostatistics and Preventive Medicine; Department of Internal Medicine; University of New Mexico Health Sciences Center; Albuquerque, NM USA
| | | | | | | | | | | | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville, TN USA
| |
Collapse
|
17
|
Inducing humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using exogenous plasmid DNA. Infect Immun 2013; 81:3709-20. [PMID: 23897618 DOI: 10.1128/iai.00180-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A vaccine candidate that elicits humoral and cellular responses to multiple sporozoite and liver-stage antigens may be able to confer protection against Plasmodium falciparum malaria; however, a technology for formulating and delivering such a vaccine has remained elusive. Here, we report the preclinical assessment of an optimized DNA vaccine approach that targets four P. falciparum antigens: circumsporozoite protein (CSP), liver stage antigen 1 (LSA1), thrombospondin-related anonymous protein (TRAP), and cell-traversal protein for ookinetes and sporozoites (CelTOS). Synthetic DNA sequences were designed for each antigen with modifications to improve expression and were delivered using in vivo electroporation (EP). Immunogenicity was evaluated in mice and nonhuman primates (NHPs) and assessed by enzyme-linked immunosorbent assay (ELISA), gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay, and flow cytometry. In mice, DNA with EP delivery induced antigen-specific IFN-γ production, as measured by ELISpot assay and IgG seroconversion against all antigens. Sustained production of IFN-γ, interleukin-2, and tumor necrosis factor alpha was elicited in both the CD4(+) and CD8(+) T cell compartments. Furthermore, hepatic CD8(+) lymphocytes produced LSA1-specific IFN-γ. The immune responses conferred to mice by this approach translated to the NHP model, which showed cellular responses by ELISpot assay and intracellular cytokine staining. Notably, antigen-specific CD8(+) granzyme B(+) T cells were observed in NHPs. Collectively, the data demonstrate that delivery of gene sequences by DNA/EP encoding malaria parasite antigens is immunogenic in animal models and can harness both the humoral and cellular arms of the immune system.
Collapse
|
18
|
Choi Y, Chang J. Viral vectors for vaccine applications. Clin Exp Vaccine Res 2013; 2:97-105. [PMID: 23858400 PMCID: PMC3710930 DOI: 10.7774/cevr.2013.2.2.97] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/26/2013] [Accepted: 05/09/2013] [Indexed: 12/16/2022] Open
Abstract
Traditional approach of inactivated or live-attenuated vaccine immunization has resulted in impressive success in the reduction and control of infectious disease outbreaks. However, many pathogens remain less amenable to deal with the traditional vaccine strategies, and more appropriate vaccine strategy is in need. Recent discoveries that led to increased understanding of viral molecular biology and genetics has rendered the used of viruses as vaccine platforms and as potential anti-cancer agents. Due to their ability to effectively induce both humoral and cell-mediated immune responses, viral vectors are deemed as an attractive alternative to the traditional platforms to deliver vaccine antigens as well as to specifically target and kill tumor cells. With potential targets ranging from cancers to a vast number of infectious diseases, the benefits resulting from successful application of viral vectors to prevent and treat human diseases can be immense.
Collapse
Affiliation(s)
- Youngjoo Choi
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
19
|
Malaria vaccine adjuvants: latest update and challenges in preclinical and clinical research. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282913. [PMID: 23710439 PMCID: PMC3655447 DOI: 10.1155/2013/282913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
There is no malaria vaccine currently available, and the most advanced candidate has recently reported a modest 30% efficacy against clinical malaria. Although many efforts have been dedicated to achieve this goal, the research was mainly directed to identify antigenic targets. Nevertheless, the latest progresses on understanding how immune system works and the data recovered from vaccination studies have conferred to the vaccine formulation its deserved relevance. Additionally to the antigen nature, the manner in which it is presented (delivery adjuvants) as well as the immunostimulatory effect of the formulation components (immunostimulants) modulates the immune response elicited. Protective immunity against malaria requires the induction of humoral, antibody-dependent cellular inhibition (ADCI) and effector and memory cell responses. This review summarizes the status of adjuvants that have been or are being employed in the malaria vaccine development, focusing on the pharmaceutical and immunological aspects, as well as on their immunization outcomings at clinical and preclinical stages.
Collapse
|
20
|
Jia LJ, Zhang SF, Qian NC, Xuan XN, Yu LZ, Zhang XM, Liu MM. Generation and immunity testing of a recombinant adenovirus expressing NcSRS2-NcGRA7 fusion protein of bovine Neospora caninum. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:247-53. [PMID: 23710096 PMCID: PMC3662072 DOI: 10.3347/kjp.2013.51.2.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/19/2012] [Accepted: 02/17/2013] [Indexed: 11/23/2022]
Abstract
Neospora caninum is the etiologic agent of bovine neosporosis, which affects the reproductive performance of cattle worldwide. The transmembrane protein, NcSRS2, and dense-granule protein, NcGRA7, were identified as protective antigens based on their ability to induce significant protective immune responses in murine neosporosis models. In the current study, NcSRS2 and NcGRA7 genes were spliced by overlap-extension PCR in a recombinant adenovirus termed Ad5-NcSRS2-NcGRA 7, expressing the NcSRS2-NcGRA7 gene, and the efficacy was evaluated in mice. The results showed that the titer of the recombinant adenovirus was 10(9)TCID50/ml. Three weeks post-boost immunization (w.p.b.i.), the IgG antibody titer in sera was as high as 1:4,096. IFN-γ and IL-4 levels were significantly different from the control group (P<0.01). This research established a solid foundation for the development of a recombinant adenovirus vaccine against bovine N. caninum.
Collapse
Affiliation(s)
- Li-Jun Jia
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, Yanbian University, Yanji, Jilin Province, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Eradication of malaria through genetic engineering: the current situation. ASIAN PAC J TROP MED 2013; 6:85-94. [DOI: 10.1016/s1995-7645(13)60001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 01/03/2023] Open
|
22
|
Zahn R, Gillisen G, Roos A, Koning M, van der Helm E, Spek D, Weijtens M, Grazia Pau M, Radošević K, Weverling GJ, Custers J, Vellinga J, Schuitemaker H, Goudsmit J, Rodríguez A. Ad35 and ad26 vaccine vectors induce potent and cross-reactive antibody and T-cell responses to multiple filovirus species. PLoS One 2012; 7:e44115. [PMID: 23236343 PMCID: PMC3516506 DOI: 10.1371/journal.pone.0044115] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 07/31/2012] [Indexed: 02/05/2023] Open
Abstract
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years.
Collapse
|
23
|
Abstract
Viral vectors have been developed as vaccine platforms for a number of pathogens and tumors. In particular, adenovirus (Ad)-based vectors expressing genes coding for pathogen or tumor antigens have proven efficacious to induce protective immunity. Major challenges in the use of Ad vectors are the high prevalence of anti-Ad immunity and the recent observation during an Ad-based HIV vaccine trial that led to increased HIV-1 acquisition in the presence of circulating anti-Ad5 neutralizing antibodies. In this review we summarize strategies to address these challenges and focus on modifications of the Ad capsid to enhance the adjuvant effect of anti-Ad immunogenicity and to circumvent pre-existing immunity. In addition, we summarize the current status and potential of other viral vector vaccines based on adeno-associated viruses, lentiviruses and poxviruses.
Collapse
|
24
|
Schuldt NJ, Aldhamen YA, Godbehere-Roosa S, Seregin SS, Kousa YA, Amalfitano A. Immunogenicity when utilizing adenovirus serotype 4 and 5 vaccines expressing circumsporozoite protein in naïve and adenovirus (Ad5) immune mice. Malar J 2012; 11:209. [PMID: 22720732 PMCID: PMC3472263 DOI: 10.1186/1475-2875-11-209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/16/2012] [Indexed: 12/13/2022] Open
Abstract
Background Induction of potent long lasting effector T cell responses against liver stage malaria antigens strongly correlates with protection from malaria. While Adenovirus serotype 5 (Ad5) based malaria vaccine platforms have the ability to induce potent effector T cell responses against transgenes, high rates of pre-existing Ad5 immunity in malaria endemic regions has prompted study of alternative Ad serotype based malaria vaccines as replacements for Ad5 based malaria vaccines. The research described in this article examines the utility of alternative serotype adenovirus serotype 4 (Ad4) expressing a sporozoite surface protein (circumsporozoite protein (CSP)) (Ad4-CSP) to induce immune responses against CSP. The immunogenicity of Ad4-CSP was also tested in homologous and heterologous prime boost vaccinations in both Ad5 naïve and Ad5 immune backgrounds as compared to use of Ad5-CSP. Results In Ad5 naïve animals, use of Ad4-CSP priming vaccinations followed by boosting with Ad5-CSP (Ad4-CSP/Ad5-CSP) maximally increased the numbers of CSP specific cytokine secreting cytotoxic T cells relative to repeated use of Ad5-CSP. The Ad4-CSP/Ad5-CSP regimen also induced equivalent levels of CSP specific cell killing as did homologous prime-boost vaccinations with Ad5-CSP, despite stimulating lower numbers of CSP specific cytotoxic T cells. Priming with Ad4-CSP followed by a homologous boost resulted in significantly less CSP specific humoral responses than any other vaccination regimen tested in Ad naïve animals. In Ad5 immune animals, addition of Ad4-CSP in homologous or heterologous prime boost resulted in inductions of higher CSP specific responses than animals repeatedly vaccinated with Ad5-CSP alone. However, the observed responses were well below those observed in similarly treated Ad naïve mice. Conclusions While the Ad4-CSP/Ad5-CSP and Ad5-CSP/Ad5-CSP vaccination regimens resulted in equivalent CSP specific killing in Ad naïve animals, Ad4-CSP/Ad5-CSP achieved this result with a lower percentage of CSP specific CD8+ T cells and a higher number of IFNγ secreting cells, suggesting that the Ad4-CSP/Ad5-CSP vaccination regimen elicits more efficient cytotoxic T cells. In Ad5 immune animals use of Ad4-CSP improved CSP specific immune responses as compared to repeated use of Ad5-CSP, but could not achieve the levels of immunogenicity observed when the same vaccine regimens were used in Ad naïve animals. These data indicate the existence of some level of immunological cross-reactivity between these two adenovirus subgroups. Based on these results, it is suggested that future studies should undertake similarly stringent analyses of alternative Ad serotypes to establish their effectiveness as replacements for Ad5.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Genetics Program, Michigan State University, 2240 E Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
25
|
Malaria vaccines: focus on adenovirus based vectors. Vaccine 2012; 30:5191-8. [PMID: 22683663 DOI: 10.1016/j.vaccine.2012.05.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/09/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022]
Abstract
Protection against malaria through vaccination is known to be achievable, as first demonstrated over 30 years ago. Vaccination via repeated bites with Plasmodium falciparum infected and irradiated mosquitoes provided short lived protection from malaria infection to these vaccinees. Though this method still remains the most protective malaria vaccine to date, it is likely impractical for widespread use. However, recent developments in sub-unit malaria vaccine platforms are bridging the gap between high levels of protection and feasibility. The current leading sub-unit vaccine, RTS,S (which consists of a fusion of a portion of the P. falciparum derived circumsporozoite protein to the Hepatitis B surface antigen), has demonstrated the ability to induce protection from malaria infection in up 56% of RTS,S vaccinees. Though encouraging, these results may fall short of protection levels generally considered to be required to achieve eradication of malaria. Therefore, the use of viral vectored vaccine platforms has recently been pursued to further improve the efficacy of malaria targeted vaccines. Adenovirus based vaccine platforms have demonstrated potent anti-malaria immune responses when used alone, as well when utilized in heterologous prime boost regimens. This review will provide an update as to the current advancements in malaria vaccine development, with a focus on the use of adenovirus vectored malaria vaccines.
Collapse
|
26
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
27
|
Seregin SS, Aldhamen YA, Rastall DPW, Godbehere S, Amalfitano A. Adenovirus-based vaccination against Clostridium difficile toxin A allows for rapid humoral immunity and complete protection from toxin A lethal challenge in mice. Vaccine 2011; 30:1492-501. [PMID: 22200503 DOI: 10.1016/j.vaccine.2011.12.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
Clostridium difficile associated diarrhea (CDAD) is a critical public health problem worldwide with over 300,000 cases every year in the United States alone. Clearly, a potent vaccine preventing the morbidity and mortality caused by this detrimental pathogen is urgently required. However, vaccine efforts to combat C. difficile infections have been limited both in scope as well as to efficacy, as such there is not a vaccine approved for use against C. difficile to date. In this study, we have used a highly potent Adenovirus (Ad) based platform to create a vaccine against C. difficile. The Ad-based vaccine was able to generate rapid and robust humoral as well as cellular (T-cell) immune responses in mice that correlated with provision of 100% protection from lethal challenge with C. difficile toxin A. Most relevant to the clinical utility of this vaccine formulation was our result that toxin A specific IgGs were readily detected in plasma of Ad immunized mice as early as 3 days post vaccination. In addition, we found that several major immuno-dominant T cell epitopes were identified in toxin A, suggesting that the role of the cellular arm in protection from C. difficile infections may be more significant than previously appreciated. Therefore, our studies confirm that an Adenovirus based-C. difficile vaccine could be a promising candidate for prophylactic vaccination both for use in high risk patients and in high-risk environments.
Collapse
Affiliation(s)
- Sergey S Seregin
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, United States
| | | | | | | | | |
Collapse
|
28
|
Sedegah M, Tamminga C, McGrath S, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Manohar N, Richie NO, Wood C, Long CA, Regis D, Williams FT, Shi M, Chuang I, Spring M, Epstein JE, Mendoza-Silveiras J, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Soisson L, Diggs C, Carucci D, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus 5-vectored P. falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults. PLoS One 2011; 6:e24586. [PMID: 22003383 PMCID: PMC3189181 DOI: 10.1371/journal.pone.0024586] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 08/15/2011] [Indexed: 11/24/2022] Open
Abstract
Background Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers. Methodology/Principal Findings The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). Group 1 (n = 6) healthy volunteers received one intramuscular injection of 2×10∧10 particle units (1×10∧10 each construct) and Group 2 (n = 6) a five-fold higher dose. Transient, mild to moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1 month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million) than in the high dose (CSP = 154, p = 0.049, AMA1 = 423, p = 0.045) group and were still positive at 12 months in a number of volunteers. ELISpot depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-γ responses (CSP p = 0.0001, AMA1 p = 0.003), but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-γ, TNF-α or IL-2. Median fluorescence intensities were 7–10 fold higher in triple than single secreting cells. Antibody responses were low but trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites. Significance As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1×10∧11 particle units. This is the first demonstration in humans of a malaria vaccine eliciting strong CD8+ T cell IFN-γ responses. Trial Registration ClinicalTrials.govNCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Almeida APMM, Bruna-Romero O. Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:193-201. [PMID: 21881774 DOI: 10.1590/s0074-02762011000900024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/15/2011] [Indexed: 12/19/2022] Open
Abstract
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.
Collapse
|
30
|
Schuldt NJ, Aldhamen YA, Appledorn DM, Seregin SS, Kousa Y, Godbehere S, Amalfitano A. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses. PLoS One 2011; 6:e24147. [PMID: 21912619 PMCID: PMC3166157 DOI: 10.1371/journal.pone.0024147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 08/05/2011] [Indexed: 11/20/2022] Open
Abstract
Background Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd) based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI) responses. Methods and Findings BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA) or SLAM receptors adaptor protein (EAT-2). Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo. Conclusion Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly improve the induction of malaria antigen specific adaptive immune responses in vivo.
Collapse
Affiliation(s)
- Nathaniel J. Schuldt
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Daniel M. Appledorn
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Youssef Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrea Amalfitano
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pediatrics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
31
|
A peptide-based Plasmodium falciparum circumsporozoite assay to test for serum antibody responses to pre-erythrocyte malaria vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:776-82. [PMID: 21411600 DOI: 10.1128/cvi.00547-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Various pre-erythrocyte malaria vaccines are currently in clinical development, and among these is the adenovirus serotype 35-based circumsporozoite (CS) vaccine produced on PER.C6 cells. Although the immunological correlate of protection against malaria remains to be established, the CS antibody titer is a good marker for evaluation of candidate vaccines. Here we describe the validation of an anti-Plasmodium falciparum circumsporozoite antibody enzyme-linked immunosorbent assay (ELISA) based on the binding of antibodies to a peptide antigen mimicking the CS repeat region. The interassay variability was determined to be below a coefficient of variation (CV) of 15%, and sensitivity was sufficient to detect low antibody titers in subjects from endemic regions. Antibody titers were in agreement with total antibody responses to the whole CS protein. Due to its simplicity and high performance, the ELISA is an easy and rapid method for assessment of pre-erythrocyte malaria vaccines based on CS.
Collapse
|
32
|
Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol 2011; 85:4222-33. [PMID: 21325402 DOI: 10.1128/jvi.02407-10] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The use of adenoviruses (Ad) as vaccine vectors against a variety of pathogens has demonstrated their capacity to elicit strong antibody and cell-mediated immune responses. Adenovirus serotype C vectors, such as Ad serotype 5 (Ad5), expressing Ebolavirus (EBOV) glycoprotein (GP), protect completely after a single inoculation at a dose of 10(10) viral particles. However, the clinical application of a vaccine based on Ad5 vectors may be hampered, since impairment of Ad5 vaccine efficacy has been demonstrated for humans and nonhuman primates with high levels of preexisting immunity to the vector. Ad26 and Ad35 segregate genetically from Ad5 and exhibit lower seroprevalence in humans, making them attractive vaccine vector alternatives. In the series of studies presented, we show that Ad26 and Ad35 vectors generate robust antigen-specific cell-mediated and humoral immune responses against EBOV GP and that Ad5 immune status does not affect the generation of GP-specific immune responses by these vaccines. We demonstrate partial protection against EBOV by a single-shot Ad26 vaccine and complete protection when this vaccine is boosted by Ad35 1 month later. Increases in efficacy are paralleled by substantial increases in T- and B-cell responses to EBOV GP. These results suggest that Ad26 and Ad35 vectors warrant further development as candidate vaccines for EBOV.
Collapse
|
33
|
Sakurai F, Nakashima K, Yamaguchi T, Ichinose T, Kawabata K, Hayakawa T, Mizuguchi H. Adenovirus serotype 35 vector-induced innate immune responses in dendritic cells derived from wild-type and human CD46-transgenic mice: Comparison with a fiber-substituted Ad vector containing fiber proteins of Ad serotype 35. J Control Release 2010; 148:212-8. [PMID: 20800630 DOI: 10.1016/j.jconrel.2010.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/22/2010] [Accepted: 08/19/2010] [Indexed: 12/16/2022]
Abstract
Recently, much attention has focused on replication-incompetent adenovirus (Ad) vectors containing fiber proteins derived from species B Ad serotype 35 (Ad35) (Ad5F35) and Ad vectors fully constructed from Ad35 as vaccine vectors expressing antigens. However, differences in the transduction properties, including the induction of innate immunity, of Ad5F35 and Ad35 vectors have not been properly and fully examined, partly because the transduction properties of these Ad vectors should be evaluated using nonhuman primates or human CD46-transgenic (CD46TG) mice, which ubiquitously express the primary receptor of Ad35, human CD46, in a pattern similar to that of humans. In the present study, we evaluated innate immune responses of mouse dendritic cells (mDCs) derived from bone marrow cells of wild-type (WT) and CD46TG mice following transduction with Ad serotype 5 (Ad5), fiber-substituted Ad5F35, or Ad35 vectors. Ad5F35 and Ad35 vectors mediated more efficient transduction in mDCs derived from CD46TG mice (CD46TG-mDCs) than did Ad5 vectors. Upregulation of costimulatory molecules and inflammatory cytokine induction by Ad5F35 and Ad35 vectors were significantly higher than those by Ad5 vectors in CD46TG-mDCs. However, the induction properties of the innate immune responses were different between Ad5F35 and Ad35 vectors. Ad35 vectors induced higher levels of costimulatory molecule expression and inflammatory cytokine production than did Ad5F35 vectors in CD46TG-mDCs. Furthermore, intravenous administration of Ad35 vectors in WT and CD46TG mice resulted in higher levels of serum interleukin (IL)-6 and IL-12 compared with administration of Ad5F35 vectors, which exhibited almost mock-transduced levels of these inflammatory cytokines. This study indicates that innate immune responses by Ad35 and Ad5F35 vectors are distinct even although both Ad vectors recognize human CD46 as a receptor.
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Ibaraki-City, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Neutralizing antibodies to human and simian adenoviruses in humans and New-World monkeys. Virology 2010; 407:1-6. [PMID: 20797754 DOI: 10.1016/j.virol.2010.07.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/13/2010] [Accepted: 07/28/2010] [Indexed: 11/24/2022]
Abstract
Vaccines based on adenovirus (Ad) vectors are currently in development against several pathogens. However, neutralizing antibodies (NAb) to human adenovirus type 5 (AdHu5), the best-studied vector, are highly prevalent in humans worldwide. Less-prevalent adenoviruses, including human and simian serotypes, provide alternative vaccine platforms. In this study, sera from 200 Brazilian human subjects and New-World monkeys were tested for NAb titers to human serotypes AdHu5 and AdHu26 and chimpanzee-origin Ad viruses of serotype 6 (AdC6) and serotype 68 (AdC68). Seroprevalence rates of NAb in humans were 69.5% for AdHu5, 44% for AdHu26, 21% for AdC6 and 23.5% for AdC68. In addition, NAb titers to human Ad were consistently higher than those found to simian serotypes. Surprisingly, sera from some New-World monkey species were able to neutralize AdC6 and/or AdC68. A possible explanation for these findings and the implications for the development of Ad-vector vaccines are discussed in detail.
Collapse
|
35
|
Casares S, Brumeanu TD, Richie TL. The RTS,S malaria vaccine. Vaccine 2010; 28:4880-94. [PMID: 20553771 DOI: 10.1016/j.vaccine.2010.05.033] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/29/2010] [Accepted: 05/12/2010] [Indexed: 12/23/2022]
Abstract
RTS,S is the most advanced candidate vaccine against human malaria. During its remarkable journey from conception and design in the early 1980s to the multicenter Phase 3 trial currently underway across sub-Saharan Africa, RTS,S has overcome tremendous challenges and disproved established vaccine paradigms. In the last several years, Phase 2 studies conducted in infants and children in endemic areas have established the efficacy of RTS,S for reducing morbidity due to clinical malaria. If the results are realized in the Phase 3 trial, the chances for licensure in the near future appear high. Such progress is all the more remarkable given our lack of clear understanding regarding how the vaccine activates the human immune system, the immune correlates of protection or the mechanism whereby a vaccine targeting sporozoites and liver stage parasites can reduce the clinical disease associated with parasitemia. These unanswered questions pose important challenges to be addressed in the quest to understand the protection afforded by RTS,S and to build a more efficacious second generation vaccine against malaria. This review will focus on current knowledge about the protective efficacy of RTS,S and what we have learned regarding its impact on the human immune system.
Collapse
Affiliation(s)
- Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | |
Collapse
|
36
|
Abel B, Tameris M, Mansoor N, Gelderbloem S, Hughes J, Abrahams D, Makhethe L, Erasmus M, de Kock M, van der Merwe L, Hawkridge A, Veldsman A, Hatherill M, Schirru G, Pau MG, Hendriks J, Weverling GJ, Goudsmit J, Sizemore D, McClain JB, Goetz M, Gearhart J, Mahomed H, Hussey GD, Sadoff JC, Hanekom WA. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am J Respir Crit Care Med 2010; 181:1407-17. [PMID: 20167847 DOI: 10.1164/rccm.200910-1484oc] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE AERAS-402 is a novel tuberculosis vaccine designed to boost immunity primed by bacillus Calmette-Guérin (BCG), the only licensed vaccine. OBJECTIVES We investigated the safety and immunogenicity of AERAS-402 in healthy Mycobacterium tuberculosis-uninfected BCG-vaccinated adults from a tuberculosis-endemic region of South Africa. METHODS Escalating doses of AERAS-402 vaccine were administered intramuscularly to each of three groups of healthy South African BCG-vaccinated adults, and a fourth group received two injections of the maximal dose. Participants were monitored for 6 months, with all adverse effects documented. Vaccine-induced CD4(+) and CD8(+) T-cell immunity was characterized by an intracellular cytokine staining assay of whole blood and peripheral blood mononuclear cells. MEASUREMENTS AND MAIN RESULTS AERAS-402 was well tolerated, and no vaccine-related serious adverse events were recorded. The vaccine induced a robust CD4(+) T-cell response dominated by cells coexpressing IFN-gamma, tumor necrosis factor-alpha, and IL-2 ("polyfunctional" cells). AERAS-402 also induced a potent CD8(+) T-cell response, characterized by cells expressing IFN-gamma and/or tumor necrosis factor-alpha, which persisted for the duration of the study. CONCLUSIONS Vaccination with AERAS-402 is safe and immunogenic in healthy adults. The immunity induced by the vaccine appears promising: polyfunctional T cells are thought to be important for protection against intracellular pathogens such as Mycobacterium tuberculosis, and evidence is accumulating that CD8(+) T cells are also important. AERAS-402 induced a robust and durable CD8(+) T-cell response, which appears extremely promising. Clinical trial registered with www.sanctr.gov.za (NHREC no. 1381).
Collapse
Affiliation(s)
- Brian Abel
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health,University of Cape Town, UCT Health Sciences, Anzio Road, Observatory 7925, Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Applying genomic and bioinformatic resources to human adenovirus genomes for use in vaccine development and for applications in vector development for gene delivery. Viruses 2010; 2:1-26. [PMID: 21994597 PMCID: PMC3185558 DOI: 10.3390/v2010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/05/2009] [Accepted: 12/17/2009] [Indexed: 12/25/2022] Open
Abstract
Technological advances and increasingly cost-effect methodologies in DNA sequencing and computational analysis are providing genome and proteome data for human adenovirus research. Applying these tools, data and derived knowledge to the development of vaccines against these pathogens will provide effective prophylactics. The same data and approaches can be applied to vector development for gene delivery in gene therapy and vaccine delivery protocols. Examination of several field strain genomes and their analyses provide examples of data that are available using these approaches. An example of the development of HAdV-B3 both as a vaccine and also as a vector is presented.
Collapse
|
38
|
Abstract
Malaria remains one of the most devastating infectious diseases that threaten humankind. Human malaria is caused by five different species of Plasmodium parasites, each transmitted by the bite of female Anopheles mosquitoes. Plasmodia are eukaryotic protozoans with more than 5000 genes and a complex life cycle that takes place in the mosquito vector and the human host. The life cycle can be divided into pre-erythrocytic stages, erythrocytic stages and mosquito stages. Malaria vaccine research and development faces formidable obstacles because many vaccine candidates will probably only be effective in a specific species at a specific stage. In addition, Plasmodium actively subverts and escapes immune responses, possibly foiling vaccine-induced immunity. Although early successful vaccinations with irradiated, live-attenuated malaria parasites suggested that a vaccine is possible, until recently, most efforts have focused on subunit vaccine approaches. Blood-stage vaccines remain a primary research focus, but real progress is evident in the development of a partially efficacious recombinant pre-erythrocytic subunit vaccine and a live-attenuated sporozoite vaccine. It is unlikely that partially effective vaccines will eliminate malaria; however, they might prove useful in combination with existing control strategies. Elimination of malaria will probably ultimately depend on the development of highly effective vaccines.
Collapse
|
39
|
Lasaro MO, Ertl HCJ. New insights on adenovirus as vaccine vectors. Mol Ther 2009; 17:1333-9. [PMID: 19513019 PMCID: PMC2835230 DOI: 10.1038/mt.2009.130] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 05/20/2009] [Indexed: 12/15/2022] Open
Abstract
Adenovirus (Ad) vectors were initially developed for treatment of genetic diseases. Their usefulness for permanent gene replacement was limited by their high immunogenicity, which resulted in rapid elimination of transduced cells through induction of T and B cells to antigens of Ad and the transgene product. The very trait that excluded their use for sustained treatment of genetic diseases made them highly attractive as vaccine carriers. Recently though results showed that Ad vectors based on common human serotypes, such as serotype 5, may not be ideal as vaccine carriers. A recently conducted phase 2b trial, termed STEP trial, with an AdHu5-based vaccine expressing antigens of human immunodeficiency virus 1 (HIV-1) not only showed lack of efficacy in spite of the vaccine's immunogenicity, but also suggested an increased trend for HIV acquisition in individuals that had circulating AdHu5 neutralizing antibodies prior to vaccination. Alternative serotypes from humans or nonhuman primates (NHPs), to which most humans lack pre-existing immunity, have been vectored and may circumvent the problems encountered with the use of AdHu5 vectors in humans. In summary, although Ad vectors have seen their share of setbacks in recent years, they remain viable tools for prevention or treatment of a multitude of diseases.
Collapse
Affiliation(s)
- Marcio O Lasaro
- The Wistar Institute Vaccine Center, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
40
|
Mmbando BP, Segeja MD, Msangeni HA, Sembuche SH, Ishengoma DS, Seth MD, Francis F, Rutta AS, Kamugisha ML, Lemnge MM. Epidemiology of malaria in an area prepared for clinical trials in Korogwe, north-eastern Tanzania. Malar J 2009; 8:165. [PMID: 19615093 PMCID: PMC2720983 DOI: 10.1186/1475-2875-8-165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background Site preparation is a pre-requesite in conducting malaria vaccines trials. This study was conducted in 12 villages to determine malariometric indices and associated risk factors, during long and short rainy seasons, in an area with varying malaria transmission intensities in Korogwe district, Tanzania. Four villages had passive case detection (PCD) of fever system using village health workers. Methods Four malariometric cross-sectional surveys were conducted between November 2005 and May 2007 among individuals aged 0–19 years, living in lowland urban, lowland rural and highland strata. A total of 10,766 blood samples were collected for malaria parasite diagnosis and anaemia estimation. Blood smears were stained with Giemsa while haemoglobin level was measured by HaemoCue. Socio-economic data were collected between Jan-Apr 2006. Results Adjusting for the effect of age, the risk of Plasmodium falciparum parasitaemia was significantly lower in both lowland urban, (OR = 0.26; 95%CI: 0.23–0.29, p < 0.001) and highlands, (OR = 0.21; 95%CI: 0.17–0.25, p < 0.001) compared to lowland rural. Individuals aged 6–9 years in the lowland rural and 4–19 years in both lowland urban and highlands had the highest parasite prevalence, whilst children below five years in all strata had the highest parasite density. Prevalence of splenomegaly and gametocyte were also lower in both lowland urban and highlands than in lowland rural. Anaemia (Hb <11 g/dl) prevalence was lowest in the lowland urban. Availability of PCD and higher socio-economic status (SES) were associated with reduced malaria and anaemia prevalence. Conclusion Higher SES and use of bed nets in the lowland urban could be the important factors for low malaria infections in this stratum. Results obtained here were used together with those from PCD and DSS in selecting a village for Phase 1b MSP3 vaccine trial, which was conducted in the study area in year 2008.
Collapse
Affiliation(s)
- Bruno P Mmbando
- National Institute for Medical Research, Tanga Medical Research Centre, Tanga, Tanzania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Potthoff A, Schwannecke S, Nabi G, Hoffmann D, Grunwald T, Wildner O, Brockmeyer N, Überla K, Tenbusch M. Immunogenicity and efficacy of intradermal tattoo immunization with adenoviral vector vaccines. Vaccine 2009; 27:2768-74. [DOI: 10.1016/j.vaccine.2009.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/24/2009] [Accepted: 03/02/2009] [Indexed: 12/17/2022]
|
42
|
Seto J, Walsh MP, Mahadevan P, Purkayastha A, Clark JM, Tibbetts C, Seto D. Genomic and bioinformatics analyses of HAdV-14p, reference strain of a re-emerging respiratory pathogen and analysis of B1/B2. Virus Res 2009; 143:94-105. [PMID: 19463726 DOI: 10.1016/j.virusres.2009.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/22/2009] [Accepted: 03/23/2009] [Indexed: 11/25/2022]
Abstract
Unlike other human adenovirus (HAdV) species, B is divided into subspecies B1 and B2. Originally this was partly based on restriction enzyme (RE) analysis. B1 members, except HAdV-50, are commonly associated with respiratory diseases while B2 members are rarely associated with reported respiratory diseases. Recently two members of B2 have been identified in outbreaks of acute respiratory disease (ARD). One, HAdV-14, has re-emerged after an apparent 52-year absence. Genomic analysis and bioinformatics data are reported for HAdV-14 prototype for use as a reference and to understand and counter its re-emergence. The data complement and extend the original criteria for subspecies designation, unique amongst the adenoviruses, and highlight differences between B1 and B2, representing the first comprehensive analysis of this division. These data also provide finer granularity into the pathoepidemiology of the HAdVs. Whole genome analysis uncovers heterogeneous identity structures of the hexon and fiber genes amongst the HAdV-14 and the B1/B2 subspecies, which may be important in prescient vaccine development. Analysis of cell surface proteins provides insight into HAdV-14 tropism, accounting for its role as a respiratory pathogen. This HAdV-14 prototype genome is also a reference for applications of B2 adenoviruses as vectors for vaccine development and gene therapy.
Collapse
Affiliation(s)
- Jason Seto
- Department of Bioinformatics and Computational Biology, George Mason University, 10900 University Blvd., MSN 5B3, Manassas, VA 20110, USA.
| | | | | | | | | | | | | |
Collapse
|