1
|
Kumar S, Mishra A, Kumar V, Singh T, Singh AK, Singh A. Designing and comparative analysis of anti-oxidant and heat shock proteins based multi-epitopic filarial vaccines. BMC Infect Dis 2024; 24:1436. [PMID: 39695454 DOI: 10.1186/s12879-024-10272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Lymphatic Filariasis (LF) is a neglected tropical disease affecting more than 882 million people in 44 countries of the world. A multi-epitope prophylactic/therapeutic vaccination targeting filarial defense proteins would be invaluable to achieve the current LF elimination goal. METHOD Two groups of proteins, namely Anti-oxidant (AO) and Heat shock proteins (HSPs), have been implicated in the effective survival of the filarial parasites in their hosts. Several B-cell, CTL, and T-helper epitopes were predicted from the three anti-oxidant proteins GST, GPx, and SOD. Likewise, epitopes were also predicted for HSP110, HSP90, and HSP70. Among the predicted epitopes, screening was applied to include only non-allergenic, non-toxic epitopes to construct two MEVs, PVAO and PVHSP. The epitopes for each group of proteins were connected to each other by the inclusion of suitable linkers and an adjuvant. The 3D models for PVAO and PVHSP were predicted, and validated, followed by prediction of physicochemical properties using bioinformatics tools. The binding free energy of PVAO and PVHSP with Toll like Receptors (TLR) TLR1/2, TLR4, TLR5, TLR6, and TLR9 was calculated with HawkDock. The immunogenicity of both the MEVs were assessed by Immune simulation after which codon adaptation and in-silico cloning were carried out. RESULTS Conservation of the selected AOs and HSPs in other parasitic nematode species suggested that both the generated chimera could be helpful in cross-protection too. The 3D models of both MEVs contained more than 97% residues in allowed regions, as predicted by PROCHECK server. High MMGBSA and docking scores were obtained between MEVs and TLR4, TLR1/2, TLR6, and TLR9. Molecular dynamics simulation confirmed the stability of candidate vaccines in dynamic conditions present in the biological systems. The in-silico immune simulation indicated significantly high levels of IgG1, T-helper, T-cytotoxic cells, INF-γ, and IL-2 responses following immunization with PVAO and PVHSP. CONCLUSION The immunoinformatics approaches used in this study confirmed that, the designed vaccines are capable of eliciting sustained immunity against LF, however, additional in-vivo studies would be required to confirm their efficacy. Furthermore, by employing multi-epitope structures and constructing two different cocktail vaccines for LF, this study can form an important milestone in the development of future LF vaccine/s.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Ayushi Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vipin Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tripti Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Kumar Singh
- Department of Medical Health and Family Welfare, Malaria and Vector Borne Disease, Filaria Control Unit Varanasi, Varanasi, UP, 221005, India
| | - Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
2
|
Moustafa A, Perbandt M, Liebau E, Betzel C, Falke S. Crystal structure of an extracellular superoxide dismutase from Onchocerca volvulus and implications for parasite-specific drug development. Acta Crystallogr F Struct Biol Commun 2022; 78:232-240. [PMID: 35647680 PMCID: PMC9158661 DOI: 10.1107/s2053230x22005350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloproteins that are responsible for the dismutation of superoxide anion radicals. SODs are consequently protective against oxidative damage to cellular components. Among other protective mechanisms, the filarial parasite Onchocerca volvulus has a well developed defense system to scavenge toxic free radicals using SODs during migration and sojourning of the microfilariae and adult worms in the human body. O. volvulus is responsible for the neglected disease onchocerciasis or `river blindness'. In the present study, an extracellular Cu/Zn-SOD from O. volvulus (OvEC-SOD) was cloned, purified and crystallized to obtain structural insight into an attractive drug target with the potential to combat onchocerciasis. The recombinant OvEC-SOD forms a dimer and the protein structure was solved and refined to 1.55 Å resolution by X-ray crystallography. Interestingly, a sulfate ion supports the coordination of the conserved copper ion. The overall protein shape was verified by small-angle X-ray scattering. The enzyme shows a different surface charge distribution and different termini when compared with the homologous human SOD. A distinct hydrophobic cleft to which both protomers of the dimer contribute was utilized for a docking approach with compounds that have previously been identified as SOD inhibitors to highlight the potential for individual structure-based drug development.
Collapse
Affiliation(s)
- Amr Moustafa
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Markus Perbandt
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Eva Liebau
- Institut für Zoophysiologie, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
3
|
Xu L, Yang J, Xu M, Shan D, Wu Z, Yuan D. Speciation and adaptive evolution reshape antioxidant enzymatic system diversity across the phylum Nematoda. BMC Biol 2020; 18:181. [PMID: 33243226 PMCID: PMC7694339 DOI: 10.1186/s12915-020-00896-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Nematodes have evolved to survive in diverse ecological niches and can be a serious burden on agricultural economy, veterinary medicine, and public health. Antioxidant enzymes in parasitic nematodes play a critical role in defending against host oxidative stress. However, the features of the evolution of antioxidant enzymes in the phylum Nematoda remain elusive. Results Here, we systematically investigated the evolution and gene expression of antioxidant enzymes in the genomes of 59 nematodes and transcriptomes of 20 nematodes. Catalase has been independently lost in several orders, suggesting that it is unnecessary for some nematodes. Unlike in mammals, phospholipid hydroperoxide glutathione peroxidase is widely distributed in nematodes, among which it has evolved independently. We found that superoxide dismutase (SOD) has been present throughout nematode evolutionary process, and the extracellular isoform (SOD3) is diverged from the corresponding enzyme in mammals and has undergone duplication and differentiation in several nematodes. Moreover, the evolution of intracellular and extracellular SOD isoforms in filaria strongly indicates that extracellular SOD3 originated from intracellular SOD1 and underwent rapid evolution to form the diversity of extracellular SOD3. We identify a novel putative metal-independent extracellular SOD presenting independently in Steinernema and Strongyloididae lineage that featured a high expression level in Strongyloides larvae. Sequence divergence of SOD3 between parasitic nematodes and their closest free-living nematode, the specifically high expression in the parasitic female stage, and presence in excretory-secretory proteome of Strongyloides suggest that SOD3 may be related with parasitism. Conclusions This study advances our understanding of the complex evolution of antioxidant enzymes across Nematoda and provides targets for controlling parasitic nematode diseases.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Meng Xu
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Dongjuan Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
da Silva MB, Urrego A JR, Oviedo Y, Cooper PJ, Pacheco LGC, Pinheiro CS, Ferreira F, Briza P, Alcantara-Neves NM. The somatic proteins of Toxocara canis larvae and excretory-secretory products revealed by proteomics. Vet Parasitol 2018; 259:25-34. [PMID: 30056980 DOI: 10.1016/j.vetpar.2018.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/02/2018] [Accepted: 06/23/2018] [Indexed: 12/31/2022]
Abstract
Toxocariasis is a widespread helminth infection of dogs and cats, caused by Toxocara canis and Toxocara cati larvae, respectively. Toxocara spp. can cause zoonotic infections in humans by invading tissues and organs causing pathology. Toxocara spp. larvae release excretory-secretory molecules (TES) into the body of their host that are fundamental to the host-parasite interaction and could be used as targets for novel diagnostics and vaccines. In the present study, we identified 646 T. canis proteins from TES and larval extract using 1D-SDS PAGE followed by mass spectrometry. A wide range of proteins was identified that may play a role both in the induction of the host immune response and host pathology, and in parasite metabolism and survival. Among these proteins there are potential candidates for novel diagnostics and vaccines for dogs and cats toxocariases.
Collapse
Affiliation(s)
- Márcia B da Silva
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Juan R Urrego A
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Department of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia.
| | - Yisela Oviedo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Philip J Cooper
- Facultad de Ciencias Médicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador; Insitute of Infection and Immunity, St George's University of London, London, United Kingdom.
| | - Luis G C Pacheco
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Carina S Pinheiro
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Fátima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
5
|
Liu Y, Cao A, Li Y, Li X, Cong H, He S, Zhou H. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice. BMC Infect Dis 2017; 17:403. [PMID: 28592247 PMCID: PMC5463464 DOI: 10.1186/s12879-017-2507-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/30/2017] [Indexed: 11/21/2022] Open
Abstract
Background Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). Methods TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4+ T cells and CD8+ T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. Conclusion The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Aiping Cao
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China.,Present address Department of Clinical Laboratory, The People's Hospital of Rizhao, Rizhao, Shandong Province, People's Republic of China
| | - Yawen Li
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xun Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Hua Cong
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shenyi He
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Huaiyu Zhou
- Department of Parasitology, School of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
6
|
Epitope mapping of Brugia malayi ALT-2 and the development of a multi-epitope vaccine for lymphatic filariasis. J Helminthol 2016; 91:43-54. [PMID: 26892175 DOI: 10.1017/s0022149x16000055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human lymphatic filariasis is a neglected tropical disease, causing permanent and long-term disability with severe immunopathology. Abundant larval transcript (ALT) plays a crucial role in parasite establishment in the host, due to its multi-faceted ability in host immune regulation. Although ALT protein is a key filarial target, its exact function is yet to be explored. Here, we report epitope mapping and a structural model of Brugia malayi ALT-2, leading to development of a multi-epitope vaccine. Structural analysis revealed that ALT represents unique parasitic defence proteins belonging to a toxin family that carries a 'knottin' fold. ALT-2 has been a favourite vaccine antigen and was protective in filarial models. Due to the immunological significance of ALT-2, we mapped B-cell epitopes systematically and identified two epitope clusters, 1-30 and 89-128. To explore the prophylactic potential of epitope clusters, a recombinant multi-epitopic gene comprising the epitopic domains was engineered and the protective efficacy of recombinant ALT epitope protein (AEP) was tested in the permissive model, Mastomys coucha. AEP elicited potent antibody responses with predominant IgG1 isotype and conferred significantly high protection (74.59%) compared to ALT-2 (61.95%). This proved that these epitopic domains are responsible for the protective efficacy of ALT-2 and engineering protective epitopes as a multi-epitope protein may be a novel vaccine strategy for complex parasitic infections.
Collapse
|
7
|
Kushwaha V, Kumar V, Verma SK, Sharma R, Siddiqi M, Murthy P. Disorganized muscle protein-1 (DIM-1) of filarial parasite Brugia malayi: cDNA cloning, expression, purification, structural modeling and its potential as vaccine candidate for human filarial infection. Vaccine 2014; 32:1693-9. [DOI: 10.1016/j.vaccine.2014.01.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 12/27/2013] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
|
8
|
Saini V, Verma SK, Murthy PK, Kohli D. Poly(d,l)-lactide-co-glycolide (PLGA) microspheres as immunoadjuvant for Brugia malayi antigens. Vaccine 2013; 31:4183-91. [DOI: 10.1016/j.vaccine.2013.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/10/2013] [Accepted: 06/19/2013] [Indexed: 11/16/2022]
|
9
|
Shrivastava N, Singh PK, Nag JK, Kushwaha S, Misra-Bhattacharya S. Immunization with a multisubunit vaccine considerably reduces establishment of infective larvae in a rodent model of Brugia malayi. Comp Immunol Microbiol Infect Dis 2013; 36:507-19. [PMID: 23829972 DOI: 10.1016/j.cimid.2013.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 02/20/2013] [Accepted: 05/03/2013] [Indexed: 11/28/2022]
Abstract
Although recombinant vaccines have several advantages over conventional vaccines, protection induced by single antigen vaccines is often inadequate for a multicellular helminth parasite. Therefore, immunoprophylactic efficacy of cocktail antigen vaccines comprised of several combinations of three Brugia malayi recombinant proteins BmAF-Myo, Bm-iPGM and Bm-TPP were evaluated. Myosin+TPP and iPGM+TPP provided the best protection upon B. malayi infective larval challenge with ∼70% reduction in adult worm establishment over non-vaccinated animals that was significantly higher than the protection achieved by any single antigen vaccine. Myosin+iPGM, in contrast did not provide any enhance protection over the single recombinant protein vaccines. Specific IgG, IgM level, IgG antibody subclasses levels (IgG1, IgG2a, IgG2b, IgG3), lymphocyte proliferation, reactive oxygen species level and cytokines level were also determined to elucidate the characteristics of the protective immune responses. Thus the study undertaken provided more insight into the cocktail vaccination approach to combat LF.
Collapse
Affiliation(s)
- Nidhi Shrivastava
- Divisions of Parasitology, Central Drug Research Institute CSIR, Jankipuram Extension BS10/1, Sector 10, Sitapur Road, Lucknow 226021, UP, India
| | | | | | | | | |
Collapse
|
10
|
Morris CP, Evans H, Larsen SE, Mitre E. A comprehensive, model-based review of vaccine and repeat infection trials for filariasis. Clin Microbiol Rev 2013; 26:381-421. [PMID: 23824365 PMCID: PMC3719488 DOI: 10.1128/cmr.00002-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY Filarial worms cause highly morbid diseases such as elephantiasis and river blindness. Since the 1940s, researchers have conducted vaccine trials in 27 different animal models of filariasis. Although no vaccine trial in a permissive model of filariasis has provided sterilizing immunity, great strides have been made toward developing vaccines that could block transmission, decrease pathological sequelae, or decrease susceptibility to infection. In this review, we have organized, to the best of our ability, all published filaria vaccine trials and reviewed them in the context of the animal models used. Additionally, we provide information on the life cycle, disease phenotype, concomitant immunity, and natural immunity during primary and secondary infections for 24 different filaria models.
Collapse
Affiliation(s)
- C. Paul Morris
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly Evans
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sasha E. Larsen
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Vaccination with intestinal tract antigens does not induce protective immunity in a permissive model of filariasis. Exp Parasitol 2013; 135:87-95. [PMID: 23792131 DOI: 10.1016/j.exppara.2013.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
Antigens obtained from the intestinal tract of filarial nematodes have been proposed as potential safe and effective vaccine candidates. Because they may be 'hidden' from the immune response during natural infection, yet accessible by antibodies induced by vaccination, intestinal antigens may have a low potential for eliciting allergic responses when vaccinating previously infected individuals. Despite prior promising data, vaccination with intestinal antigens has yet to be tested in a permissive model of filariasis. In this study we investigated the efficacy of vaccination with filarial intestinal antigens in the permissive Litomosoides sigmodontis BALB/c model of filariasis, and we evaluated the extent to which these antigens are recognized by the immune system during and after infection. Infected BALB/c mice developed lower IgG antibody responses to soluble intestinal antigens (GutAg) than to soluble antigens of whole worms (LsAg). Similarly, GutAg induced less proliferation and less production of IL-4 and IFNγ from splenocytes of infected mice than LsAg. In contrast to these differences, active infection resulted in equivalent levels of circulating GutAg-specific IgE and LsAg-specific IgE levels. Consistent with this, basophil activation, as assessed by flow cytometric staining of intracellular basophil IL-4 expression, was equivalent in response to GutAg and LsAg. Vaccination with GutAg adsorbed to CpG/alum induced GutAg specific IgG1 and IgG2A production, with GutAg specific IgG titers greater than 5-fold higher than those measured in previously infected animals. Despite this response to GutAg vaccination, vaccinated mice harbored similar parasite burdens 8 weeks post infection when compared to non-vaccinated controls. These studies demonstrate that soluble antigens obtained from the intestinal tracts of L. sigmodontis have some qualities of 'hidden' antigens, but they still sensitize mice to allergic reactions and fail to protect against future infection when given as a vaccine adsorbed to alum/CPG.
Collapse
|
12
|
Ajonina-Ekoti I, Ndjonka D, Tanyi MK, Wilbertz M, Younis AE, Boursou D, Kurosinski MA, Eberle R, Lüersen K, Perbandt M, Breloer M, Brattig NW, Liebau E. Functional characterization and immune recognition of the extracellular superoxide dismutase from the human pathogenic parasite Onchocerca volvulus (OvEC-SOD). Acta Trop 2012; 124:15-26. [PMID: 22677600 DOI: 10.1016/j.actatropica.2012.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/23/2012] [Accepted: 05/28/2012] [Indexed: 01/04/2023]
Abstract
Onchocerca volvulus is a human pathogenic filarial nematode causing chronic onchocerciasis, a disease characterized by chronic skin and eye lesions. Despite attempts to control this infection from many perspectives, it still remains a threat to public health because of adverse effects of available drugs and recent reports of drug resistance. Under control of an intact immune system, O. volvulus survives for a long time in the host by employing a variety of strategies including the utility of antioxidant enzymes. In the present study, we focus on the extracellular superoxide dismutase from O. volvulus (OvEC-SOD) found in the excretory/secretory products of adult worms. Contrary to previous studies, the OvEC-SOD was found to have a 19 amino acid long signal peptide that is cleaved off during the process of maturation. To validate this result, we designed a novel method based on Caenorhabditis elegans cup5(ar465) mutants to specifically evaluate signal peptide-mediated secretion of nematodal proteins. Following purification, the recombinant OvEC-SOD was active as a dimer. Site-directed mutagenesis of the three cysteines present in the OvEC-SOD shows that enzyme activity is markedly reduced in the Cys-192 mutant. A homology model of the OvEC-SOD underlines the importance of Cys-192 for the stabilization of the adjacent active site channel. The generation of a humoral immune response to secretory OvEC-SOD was indicated by demonstrating IgG reactivity in sera from patients infected with O. volvulus while the cross-reactivity of IgG in plasma samples from cows, infected with the most closely related parasite Onchocerca ochengi, occurred only marginally. High IgG1 and IgM titres were recorded in sera from mice infected with the filaria Litomosoides sigmodontis, however, low or no cellular proliferative responses were observed. Thus, the present data suggest that secretory OvEC-SOD is a target of the humoral immune response in human onchocerciasis and induced strongest IgG responses in hyperreactive onchocerciasis. Furthermore, humoral response during murine infection induced SOD-specific IgG that cross-reacted with OvEC-SOD.
Collapse
|
13
|
Brugia malayi thioredoxin peroxidase as a potential vaccine candidate antigen for lymphatic filariasis. Appl Biochem Biotechnol 2012; 167:1351-64. [PMID: 22528648 DOI: 10.1007/s12010-012-9643-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Attempts were made to evaluate the protective efficacy of Brugia malayi thioredoxin peroxidase (BmTPX) in a mouse model. Mice immunized with a protein vaccine containing rBmTPX developed higher titres (1:5,000/1:10,000) of anti-BmTPX antibodies, compared with the mice immunized with the alum control. There was a higher level of cellular proliferative response in mice immunized with BmTPX compared with the alum control (p < 0.05), which was associated with a Th2-type of response. In order to compare the prophylactic efficacy of BmTPX in natural infection, we evaluated the human immune responses to these antigens in endemic normals (EN) and infected individuals (microfilaraemic and chronic pathology). Results showed that EN subjects carry BmTPX-specific IgG1 and IgG3 circulating antibodies against natural exposure to filariasis. Peripheral blood mononuclear cells from EN subjects responded strongly to rBmTPX by proliferating, as well as by secreting interferon (IFN)-γ (Th1) and IL-5 (Th2), a mixed type of response to rBmTPX. In the case of infected individuals, there was no IFN-γ or IL-5 response. Thus, there was a clear dichotomy in the cytokine production by infected versus EN individuals. Our findings suggest that BmTPX may be a suitable antigen candidate for lymphatic filariasis, but a further study is still required.
Collapse
|
14
|
Ziewer S, Hübner MP, Dubben B, Hoffmann WH, Bain O, Martin C, Hoerauf A, Specht S. Immunization with L. sigmodontis microfilariae reduces peripheral microfilaraemia after challenge infection by inhibition of filarial embryogenesis. PLoS Negl Trop Dis 2012; 6:e1558. [PMID: 22413031 PMCID: PMC3295809 DOI: 10.1371/journal.pntd.0001558] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/24/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for alternative treatment ways, i.e. other effective drugs or vaccines. METHODOLOGY/PRINCIPAL FINDINGS Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as IFN-γ secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden. CONCLUSIONS/SIGNIFICANCE Our results present a tool to understand the immunological basis of vaccine induced protection in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful weapon to stop transmission of filariasis.
Collapse
Affiliation(s)
- Sebastian Ziewer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Bettina Dubben
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wolfgang H. Hoffmann
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Odile Bain
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Coralie Martin
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
15
|
Kalyanasundaram R, Balumuri P. Multivalent vaccine formulation with BmVAL-1 and BmALT-2 confer significant protection against challenge infections with Brugia malayi in mice and jirds. Res Rep Trop Med 2011; 2011:45-56. [PMID: 21760754 DOI: 10.2147/rrtm.s13679] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE: Lymphatic filariasis, a mosquito-borne infection, affects 120 million people in 83 different countries. Mass drug administration is fully underway in several parts of the world to eradicate this infection by year 2020. Drugs alone are highly efficient treatments, but long-term sustainable prophylaxis requires an effective vaccine. No vaccines are available for humans and animals despite several potential candidate vaccine antigens having been identified. Brugia malayi vespid venom allergen homolog-like protein (BmVAL-1) and B. malayi abundant larval transcript (BmALT-2) are two of the most promising vaccine candidates. We evaluated various vaccination regimens consisting of DNA and protein antigens and evaluated the potential of monovalent and multivalent vaccine formulations in mice and jird animal models. METHODS: Mice and jirds were vaccinated with monovalent DNA preparations of BmVAL-1 or BmALT-2 in pVAX-1 vector or monovalent protein preparations of rBmVAL-1 and rBmALT-2 in alum using a homologous or heterologous prime boost approach. These vaccine regimens were then compared with a multivalent vaccine formulation consisting of DNA or hybrid protein formulation of the two antigens. Challenge experiments were performed with B. malayi L3 in mice and jirds to evaluate the degree of protection, and immunological parameters were determined in mice and humans to elucidate the characteristics of the protective immune responses. RESULTS: Vaccination with monovalent BmVAL-1 vaccine conferred 39% (DNA vaccine) to 54% (DNA prime and protein boost) protection in mice. A similar degree of protection was observed in jirds (50% to 52%). Monovalent BmALT-2 afforded 51% to 75% protection in mice and 58% to 79% protection in jirds. Our testing of a multivalent formulation of BmVAL-1 and BmALT-2, showed 57% to 82% protection in mice and 77% to 85% protection in jirds. A heterologous prime boost approach using the multivalent vaccine gave the highest degree of protection in both mice and jirds. Serological analysis in mice showed that BmVAL-1 vaccination induced an IgG1, IgG2a, and IgG3 antibody response, whereas BmALT-2 vaccination predominantly induced an IgG1 and IgG3 antibody response. Cytokine responses of antigen-responding cells in the spleen secreted predominantly IFN-γ and IL-5 in response to BmVAL-1, and IL-4, and IL-5 in response to BmALT-2. CONCLUSION: A multivalent vaccine formulation of BmVAL-1 and BmALT-2 given as a prime boost regimen gave significant protection against lymphatic filariasis caused by B. malayi in mice and jirds. Because putatively immune endemic normal subjects also carry protective antibodies against BmVAL-1 and BmALT-2, developing this multivalent formulation as a prophylactic vaccine against B. malayi for human and veterinary use has great potential.
Collapse
|
16
|
Identification and characterization of nematode specific protective epitopes of Brugia malayi TRX towards development of synthetic vaccine construct for lymphatic filariasis. Vaccine 2010; 28:5038-48. [PMID: 20653106 DOI: 10.1016/j.vaccine.2010.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although multi-epitope vaccines have been evaluated for various diseases, they have not yet been investigated for lymphatic filariasis. Here, we report for the first time identification of two immunodominant B epitopes (TRXP1 and TRXP2) from the antioxidant Brugia malayi thioredoxin by studying their immune responses in mice model and human subjects. TRXP1 was also found to harbor a T epitope recognized by human PBMCs and mice splenocytes. Further, the epitopic peptides were synthesized as a single peptide conjugate (PC1) and their prophylactic efficacy was tested in a murine model of filariasis with L3 larvae. PC1 conferred a significantly high protection (75.14%) (P < 0.0001) compared to control (3.7%) and recombinant TRX (63.03%) (P < 0.018) in experimental filariasis. Our results suggest that multi-epitope vaccines could be a promising strategy in the control of lymphatic filariasis.
Collapse
|
17
|
Sahoo M, Sisodia B, Dixit S, Joseph S, Gaur R, Verma S, Verma A, Shasany A, Dowle A, Murthy PK. Immunization with inflammatory proteome of Brugia malayi adult worm induces a Th1/Th2-immune response and confers protection against the filarial infection. Vaccine 2009; 27:4263-71. [DOI: 10.1016/j.vaccine.2009.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/23/2009] [Accepted: 05/10/2009] [Indexed: 11/27/2022]
|
18
|
Protective efficacy of a filarial surface antigen in experimental filariasis. J Helminthol 2009; 83:47-50. [DOI: 10.1017/s0022149x08087117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractA water-insoluble, detergent-soluble, surface-associated glycoprotein, designated as Dssd1, was found to induce microfilaria clearance in Mastomys coucha implanted with Setaria digitata. Intraperitoneal implantation of adult female worms of S. digitata in M. coucha could induce microfilaraemia lasting about 165 days in circulation. Immunization of M. coucha with Dssd1 antigen either before or after implantation of worms resulted in a significant reduction in microfilaria density. Complete clearance of circulating microfilaria was achieved by immunization (before and after implantation) in animals by 95 and 105 days post-implantation, respectively, indicating the efficacy of Dssd1 antigen in the clearance of microfilaraemia in infected M. coucha.
Collapse
|