1
|
Xu Y, Yang L, Li P, Gu Q. Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus Lactis. Protein Expr Purif 2019; 159:10-16. [DOI: 10.1016/j.pep.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
|
2
|
Cano-Garrido O, Céspedes MV, Unzueta U, Saccardo P, Roldán M, Sánchez-Chardi A, Cubarsi R, Vázquez E, Mangues R, García-Fruitós E, Villaverde A. CXCR4(+)-targeted protein nanoparticles produced in the food-grade bacterium Lactococcus lactis. Nanomedicine (Lond) 2016; 11:2387-98. [PMID: 27529439 DOI: 10.2217/nnm-2016-0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Lactococcus lactis is a Gram-positive (endotoxin-free) food-grade bacteria exploited as alternative to Escherichia coli for recombinant protein production. We have explored here for the first time the ability of this platform as producer of complex, self-assembling protein materials. MATERIALS & METHODS Biophysical properties, cell penetrability and in vivo biodistribution upon systemic administration of tumor-targeted protein nanoparticles produced in L. lactis have been compared with the equivalent material produced in E. coli. RESULTS Protein nanoparticles have been efficiently produced in L. lactis, showing the desired size, internalization properties and biodistribution. CONCLUSION In vitro and in vivo data confirm the potential and robustness of the production platform, pointing out L. lactis as a fascinating cell factory for the biofabrication of protein materials intended for therapeutic applications.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Roldán
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rafael Cubarsi
- Departament de Matemàtica Aplicada IV. Universitat Politècnica de Catalunya. Jordi Girona 1-3. 08034 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Oncogenesis & Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu I Sant Pau, 08025 Barcelona, Spain
| | - Elena García-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Allain T, Mansour NM, Bahr MMA, Martin R, Florent I, Langella P, Bermúdez-Humarán LG. A new lactobacilli in vivo expression system for the production and delivery of heterologous proteins at mucosal surfaces. FEMS Microbiol Lett 2016; 363:fnw117. [PMID: 27190148 DOI: 10.1093/femsle/fnw117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Food-grade lactic acid bacteria, such as lactobacilli, represent good candidates for the development of mucosal vectors. Indeed, they are generally recognized as safe microorganisms and some strains display beneficial effects (probiotics). In this study, we described a new lactobacilli in vivo expression (LIVE) system for the production and delivery of therapeutic molecules at mucosal surfaces. The versatility and functionality of this system was successfully validated in several lactobacilli species; furthermore, we assessed in vivo LIVE system in two different mouse models of human pathologies: (i) a model of therapy against intestinal inflammation (inflammatory bowel diseases) and (ii) a model of vaccination against dental caries. We demonstrated that Lactobacillus gasseri expressing the anti-inflammatory cytokine IL-10 under LIVE system efficiently delivered the recombinant protein at mucosal surfaces and display anti-inflammatory effects. In the vaccination model against caries, LIVE system allowed the heterologous expression of Streptococcus mutans antigen GbpB by L. gasseri, leading to a stimulation of the host immune response.
Collapse
Affiliation(s)
- Thibault Allain
- Micalis Institute, INRA, AgroParisTech, Paris-Saclay University, Domaine de Vilvert, 78350 Jouy-en-Josas, France Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Nahla M Mansour
- Gut Microbiology and Immunology Group, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki 12622, Cairo, Egypt
| | - May M A Bahr
- Gut Microbiology and Immunology Group, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki 12622, Cairo, Egypt
| | - Rebeca Martin
- Micalis Institute, INRA, AgroParisTech, Paris-Saclay University, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Isabelle Florent
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Paris-Saclay University, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, INRA, AgroParisTech, Paris-Saclay University, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| |
Collapse
|
4
|
Kuczkowska K, Mathiesen G, Eijsink VGH, Øynebråten I. Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microb Cell Fact 2015; 14:169. [PMID: 26494531 PMCID: PMC4618854 DOI: 10.1186/s12934-015-0360-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/11/2015] [Indexed: 02/08/2023] Open
Abstract
Background Chemokines are attractive candidates for vaccine adjuvants due to their ability to recruit the immune cells. Lactic acid bacteria (LAB)-based delivery vehicles have potential to be used as a cheap and safe option for vaccination. Chemokine produced on the surface of LAB may potentially enhance the immune response to an antigen and this approach can be considered in development of future mucosal vaccines. Results We have constructed strains of Lactobacillusplantarum displaying a chemokine on their surface. L. plantarum was genetically engineered to express and anchor to the surface a protein called CCL3Gag. CCL3Gag is a fusion protein comprising of truncated HIV-1 Gag antigen and the murine chemokine CCL3, also known as MIP-1α. Various surface anchoring strategies were explored: (1) a lipobox-based covalent membrane anchor, (2) sortase-mediated covalent cell wall anchoring, (3) LysM-based non-covalent cell wall anchoring, and (4) an N-terminal signal peptide-based transmembrane anchor. Protein production and correct localization were confirmed using Western blotting, flow cytometry and immunofluorescence microscopy. Using a chemotaxis assay, we demonstrated that CCL3Gag-producing L. plantarum strains are able to recruit immune cells in vitro. Conclusions The results show the ability of engineered L. plantarum to produce a functional chemotactic protein immobilized on the bacterial surface. We observed that the activity of surface-displayed CCL3Gag differed depending on the type of anchor used. The chemokine which is a part of the bacteria-based vaccine may increase the recruitment of immune cells and, thereby, enhance the reaction of the immune system to the vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0360-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Kuczkowska
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Inger Øynebråten
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet, and University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Sci Rep 2014; 4:5849. [PMID: 25068919 PMCID: PMC5376178 DOI: 10.1038/srep05849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/07/2014] [Indexed: 01/03/2023] Open
Abstract
Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications.
Collapse
|
6
|
Saadeddin A, Rodrigo-Navarro A, Monedero V, Rico P, Moratal D, González-Martín ML, Navarro D, García AJ, Salmerón-Sánchez M. Functional living biointerphases. Adv Healthc Mater 2013; 2:1213-8. [PMID: 23447109 DOI: 10.1002/adhm.201200473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 12/21/2022]
Abstract
Lactococcus lactis is modified to express a fibronectin fragment (FNIII₇₋₁₀) as a membrane protein. This interphase, based on a living system, can be further exploited to provide spatio-temporal factors to direct cell function at the material interface. This approach establishes a new paradigm in biomaterial surface functionalization for biomedical applications.
Collapse
Affiliation(s)
- Anas Saadeddin
- Abengoa Research, Abengoa, Campus Palmas Altas, Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy 2013; 4:807-40. [PMID: 22947009 DOI: 10.2217/imt.12.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major role of chemokines is to mediate leukocyte migration through interaction with G-protein-coupled receptors. Various delivery systems have been developed to utilize the chemokine properties for combating disease. Viral and mutant viral vectors expressing chemokines, genetically modified dendritic cells with chemokine or chemokine receptors, engineered chemokine-expressing tumor cells and pDNA encoding chemokines are among these methods. Another approach for inducing a targeted immune response is fusion of a targeting antibody or antibody fragment to a chemokine. In addition, chemokines induce more effective antitumor immunity when used as adjuvants. In this regard, chemokines are codelivered along with antigens or fused as a targeting unit with antigenic moieties. In this review, several chemokines with their role in inducing immune response against different diseases are discussed, with a major emphasis on cancer.
Collapse
Affiliation(s)
- Elham Mohit
- Molecular Immunology & Vaccine Research Lab, Pasteur Institute of Iran, Tehran 13164, Iran
| | | |
Collapse
|
8
|
Wells J. Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu Rev Food Sci Technol 2012; 2:423-45. [PMID: 22129390 DOI: 10.1146/annurev-food-022510-133640] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that afford protection against infectious challenges. To be effective via oral administration, frequent dosing over several weeks is required but new targeting and adjuvant strategies have clearly demonstrated the potential to increase the immunogenicity and protective immunity of LAB vaccines. Oral administration of Lactococcus lactis has been shown to induce antigen-specific oral tolerance (OT) to secreted recombinant antigens. LAB delivery is more efficient at inducing OT than the purified antigen, thus avoiding the need for purification of large quantities of antigen. This approach holds promise for new therapeutic interventions in allergies and antigen-induced autoimmune diseases. Several clinical and research reports demonstrate considerable progress in the application of genetically modified L. lactis for the treatment of inflammatory bowel disease (IBD). New medical targets are on the horizon, and the approval by several health authorities and biosafety committees of a containment system for a genetically modified L. lactis that secretes Il-10 should pave the way for new LAB delivery applications in the future.
Collapse
Affiliation(s)
- Jerry Wells
- Host-Microbe-Interactomics, University of Wageningen, Animal Sciences Department, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Production of a particulate hepatitis C vaccine candidate by an engineered Lactococcus lactis strain. Appl Environ Microbiol 2011; 77:8516-22. [PMID: 21984246 DOI: 10.1128/aem.06420-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccine delivery systems based on display of antigens on bioengineered bacterial polyester inclusions can stimulate cellular immune responses. The food-grade Gram-positive bacterium Lactococcus lactis was engineered to produce spherical polyhydroxybutyrate (PHB) inclusions which abundantly displayed the hepatitis C virus core (HCc) antigen. In mice, the immune response induced by this antigen delivery system was compared to that induced by vaccination with HCc antigen displayed on PHB beads produced in Escherichia coli, to PHB beads without antigen produced in L. lactis or E. coli, or directly to the recombinant HCc protein. Vaccination site lesions were minimal in all mice vaccinated with HCc PHB beads or recombinant protein, all mixed in the oil-in-water adjuvant Emulsigen, while vaccination with the recombinant protein in complete Freund's adjuvant produced a marked inflammatory reaction at the vaccination site. Vaccination with the PHB beads produced in L. lactis and displaying HCc antigen produced antigen-specific cellular immune responses with significant release of gamma interferon (IFN-γ) and interleukin-17A (IL-17A) from splenocyte cultures and no significant antigen-specific serum antibody, while the PHB beads displaying HCc but produced in E. coli released IFN-γ and IL-17A as well as the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-6 and low levels of IgG2c antibody. In contrast, recombinant HCc antigen in Emulsigen produced a diverse cytokine response and a strong IgG1 antibody response. Overall it was shown that L. lactis can be used to produce immunogenic PHB beads displaying viral antigens, making the beads suitable for vaccination against viral infections.
Collapse
|
10
|
Bermúdez-Humarán LG, Kharrat P, Chatel JM, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact 2011; 10 Suppl 1:S4. [PMID: 21995317 PMCID: PMC3231930 DOI: 10.1186/1475-2859-10-s1-s4] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Food-grade Lactic Acid Bacteria (LAB) have been safely consumed for centuries by humans in fermented foods. Thus, they are good candidates to develop novel oral vectors, constituting attractive alternatives to attenuated pathogens, for mucosal delivery strategies. Herein, this review summarizes our research, up until now, on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of our work has been based on the model LAB Lactococcus lactis, for which we have developed efficient genetic tools, including expression signals and host strains, for the heterologous expression of therapeutic proteins such as antigens, cytokines and enzymes. Resulting recombinant lactococci strains have been tested successfully for their prophylactic and therapeutic effects in different animal models: i) against human papillomavirus type 16 (HPV-16)-induced tumors in mice, ii) to partially prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice and iii) to regulate body weight and food consumption in obese mice. Strikingly, all of these tools have been successfully transposed to the Lactobacillus genus, in recent years, within our laboratory. Notably, anti-oxidative Lactobacillus casei strains were constructed and tested in two chemically-induced colitis models. In parallel, we also developed a strategy based on the use of L. lactis to deliver DNA at the mucosal level, and were able to show that L. lactis is able to modulate the host response through DNA delivery. Today, we consider that all of our consistent data, together with those obtained by other groups, demonstrate and reinforce the interest of using LAB, particularly lactococci and lactobacilli strains, to develop novel therapeutic protein mucosal delivery vectors which should be tested now in human clinical trials.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- INRA, UMR1319 Micalis, Commensal and Probiotics-Host Interactions Laboratory, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | | | | | | |
Collapse
|
11
|
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42:635-43. [PMID: 20395631 DOI: 10.1165/rcmb.2010-0095rt] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation.
Collapse
|
12
|
Bermúdez-Humarán LG, Langella P. Utilisation des bactéries lactiques comme vecteurs vaccinaux. REVUE FRANCOPHONE DES LABORATOIRES 2009; 2009:79-89. [PMID: 32518601 PMCID: PMC7270964 DOI: 10.1016/s1773-035x(09)70312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/12/2009] [Indexed: 11/26/2022]
Abstract
Aujourd’hui, nous disposons de données suffisantes qui confortent l’intérêt d’utiliser des bactéries lactiques (BL), notamment des souches des lactocoques et lactobacilles, pour le développement de nouvelles stratégies de vaccination mucosale. Les BL sont des bactéries à Gram positif utilisées depuis des millénaires dans la production d’aliments fermentés. Elles sont donc de bonnes candidates pour le développement de nouvelles stratégies de vectorisation orale et constituent des alternatives attractives aux stratégies vaccinales basées sur des bactéries pathogènes atténuées dont l’utilisation présente des risques sanitaires. Ce chapitre passe en revue la recherche et les progrès les plus récents dans l’utilisation des BL comme vecteurs de délivrance de protéines d’intérêt médical pour développer de nouveaux vaccins.
Collapse
|
13
|
Charalampopoulos D, Rastall RA. Development of Mucosal Vaccines Based on Lactic Acid Bacteria. PREBIOTICS AND PROBIOTICS SCIENCE AND TECHNOLOGY 2009. [PMCID: PMC7121035 DOI: 10.1007/978-0-387-79058-9_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.
Collapse
Affiliation(s)
| | - Robert A. Rastall
- Department of Food Biosciences, University of Reading Whiteknights, Reading, UK
| |
Collapse
|