1
|
Kim SW, Lee SH, Kim HH, Shin SH, Park SH, Park JH, Kim J, Park CK. Evaluation of Swine Protection with Three Commercial Foot-and-Mouth Disease Vaccines against Heterologous Challenge with Type A ASIA/G-VII Lineage Viruses. Vaccines (Basel) 2024; 12:476. [PMID: 38793727 PMCID: PMC11125601 DOI: 10.3390/vaccines12050476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Outbreaks caused by foot-and-mouth disease (FMD) A/ASIA/G-VII lineage viruses have often occurred in Middle Eastern and Southeast Asian countries since 2015. Because A/ASIA/G-VII lineage viruses are reported to have distinct antigenic relatedness with available commercial FMD vaccine strains, it is necessary to investigate whether inoculation with vaccines used in Korea could confer cross-protection against A/ASIA/G-VII lineage viruses. In the present study, we conducted two vaccination challenge trials to evaluate the efficacy of three commercial FMD vaccines (O/Manisa + O/3039 + A/Iraq, O/Campos + A/Cruzeiro + A/2001, and O/Primorsky + A/Zabaikalsky) against heterologous challenge with ASIA/G-VII lineage viruses (A/TUR/13/2017 or A/BHU/3/2017 strains) in pigs. In each trial, clinical signs, viremia, and salivary shedding of virus were measured for 7 days after challenge. In summary, the O/Campos + A/Cruzeiro + A/2001 vaccine provided full protection against two A/ASIA/G-VII lineage viruses in vaccinated pigs, where significant protection was observed. Although unprotected animals were observed in groups vaccinated with O/Manisa + O/3039 + A/Iraq or O/Primorsky + A/Zabaikalsky vaccines, the clinical scores and viral RNA levels in the sera and oral swabs of vaccinated animals were significantly lower than those of unvaccinated controls.
Collapse
Affiliation(s)
- Seon Woo Kim
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon City 39660, Gyeongsangbuk-do, Republic of Korea; (S.W.K.); (S.H.L.); (S.-H.S.); (S.-H.P.); (J.-H.P.)
| | - Seung Heon Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon City 39660, Gyeongsangbuk-do, Republic of Korea; (S.W.K.); (S.H.L.); (S.-H.S.); (S.-H.P.); (J.-H.P.)
| | - Ha-Hyun Kim
- Laboratory Animal Facility, Chonnam National University Medical School, Hwasun-gun 58128, Jeollanam-do, Republic of Korea;
| | - Sung-Ho Shin
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon City 39660, Gyeongsangbuk-do, Republic of Korea; (S.W.K.); (S.H.L.); (S.-H.S.); (S.-H.P.); (J.-H.P.)
| | - Sang-Hyun Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon City 39660, Gyeongsangbuk-do, Republic of Korea; (S.W.K.); (S.H.L.); (S.-H.S.); (S.-H.P.); (J.-H.P.)
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon City 39660, Gyeongsangbuk-do, Republic of Korea; (S.W.K.); (S.H.L.); (S.-H.S.); (S.-H.P.); (J.-H.P.)
| | - Jaejo Kim
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon City 39660, Gyeongsangbuk-do, Republic of Korea; (S.W.K.); (S.H.L.); (S.-H.S.); (S.-H.P.); (J.-H.P.)
| | - Choi-Kyu Park
- Animal Disease Intervention Center, College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Malirat V, Caldevilla C, Cardillo S, Espinoza AM, Novo SG, Taffarel A, Benito MB, Bergmann IE. Broad immunogenic spectrum of monovalent and trivalent foot-and-mouth disease virus vaccines containing O 1 campos, A24 cruzeiro and A Argentina 2001 strains against circulating viral lineages in cattle and pigs. Vaccine 2023; 41:5782-5790. [PMID: 37574343 DOI: 10.1016/j.vaccine.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
FMD remains endemic in many Asian and African countries where multiple variants of serotypes O and A, among others, currently circulate. Due to lack of cross-protection between serotypes and incomplete protection between some strains even within a serotype, an important challenge for the application of effective vaccination programs is to select highly immunogenic and widely cross-reactive vaccine strains. Adaptation of a candidate field virus for use as a vaccine can be quite complex, so that whenever possible, the use of well-established vaccine viruses could have enormous advantages. FMD vaccine strains harmonized for use in South America have shown excellent results in FMD control, not only in the region, where it is still used systematically as a preventive measure, but also more recently in some Asian countries. To gain further insight into the immunogenic spectrum of these strains, VN tests (VNT) were performed with sera from cattle and/or pigs vaccinated with monovalent (type O) or trivalent (types O and A) formulations against 122 type O and 32 type A field viruses isolated from 35 countries in Asia and Africa, belonging to different lineages. Almost all VNT titers obtained were within the expected protective level, indicating the wide immunogenic spectrum of high potency FMD vaccines formulated with O1 Campos, A24 Cruzeiro and A Argentina 2001 South American vaccine strains belonging to EURO-SA topotypes against currently active viruses from other topotypes. These in vitro results are in line with previously reported in vivo challenge tests in pigs against three A/ASIA/Sea-97 isolates and two isolates belonging to type O lineages O/SEA/Mya-98 and O/ME-SA/Ind-2001e.
Collapse
Affiliation(s)
- Viviana Malirat
- Centro de Virología Humana y Animal (CEVHAN), CONICET-UAI, Av. Montes de Oca 745, CABA, Argentina
| | - Cecilia Caldevilla
- Biogénesis Bagó S.A., Ruta Panamericana Km 38,5, (B1619IEA), Garín, Provincia de Buenos Aires, Argentina
| | - Sabrina Cardillo
- Biogénesis Bagó S.A., Ruta Panamericana Km 38,5, (B1619IEA), Garín, Provincia de Buenos Aires, Argentina
| | - Ana María Espinoza
- Biogénesis Bagó S.A., Ruta Panamericana Km 38,5, (B1619IEA), Garín, Provincia de Buenos Aires, Argentina
| | - Sabrina Galdo Novo
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Talcahuano 1660, CP 1640 Martínez, Argentina
| | - Ana Taffarel
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Talcahuano 1660, CP 1640 Martínez, Argentina
| | - Melanie Barrios Benito
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Talcahuano 1660, CP 1640 Martínez, Argentina
| | - Ingrid E Bergmann
- Centro de Virología Humana y Animal (CEVHAN), CONICET-UAI, Av. Montes de Oca 745, CABA, Argentina.
| |
Collapse
|
3
|
Heterologous Prime-Boost Vaccination with Commercial FMD Vaccines Elicits a Broader Immune Response than Homologous Prime-Boost Vaccination in Pigs. Vaccines (Basel) 2023; 11:vaccines11030551. [PMID: 36992134 DOI: 10.3390/vaccines11030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Three commercial vaccines are administered in domestic livestock farms for routine vaccination to aid for foot-and-mouth disease (FMD) control in Korea. Each vaccine contains distinct combinations of inactivated serotype O and A FMD virus (FMDV) antigens: O/Manisa + O/3039 + A/Iraq formulated in a double oil emulsion (DOE), O/Primorsky + A/Zabaikalsky formulated in a DOE, and O/Campos + A/Cruzeiro + A/2001 formulated in a single oil emulsion. Despite the recommendation for a prime-boost vaccination with the same vaccine in fattening pigs, occasional cross-inoculation is inevitable for many reasons, such as lack of compliance with vaccination guidelines, erroneous application, or change in vaccine types by suppliers. Therefore, there have been concerns that a poor immune response could be induced by cross-inoculation due to a failure to boost the immune response. In the present study, it was demonstrated by virus neutralization and ELISA tests that cross-inoculation of pigs with three commercial FMD vaccines does not hamper the immune response against the primary vaccine strains and enhances broader cross-reactivity against heterologous vaccine antigens whether they were applied or not. Therefore, it could be concluded that the cross-inoculation of FMD vaccines can be used as a regimen to strategically overcome the limitation of the antigenic spectrum induced by the original regimen.
Collapse
|
4
|
A/Raouf Y, Ibrahim I. Diversity of SAT2 foot-and-mouth disease virus in Sudan: implication for diagnosis and control. Vet Res Commun 2022; 46:789-798. [PMID: 35233700 DOI: 10.1007/s11259-022-09899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
Like other East African countries, Sudan experienced circulation of more than one topotype of SAT2 foot-and-mouth disease virus (FMDV). In Sudan, topotype XIII of SAT2 virus was recorded in 1977 and 2008 and topotype VII in 2007, 2010, 2013, 2014 and 2017. This work evaluated the impact of such diversity on diagnosis and control. After one or three doses of a vaccine derived from a Sudanese SAT2 virus of topotype VII originated in 2010, heterologous neutralizing antibody titres with Sudanese SAT2 viruses in 2008 were ≤ 1.2 log 10, not consistent with likely protection. Simultaneously, homologous titres were 1.65 (after one dose) or 1.95 and 2.55 log10 (after 3 doses). When r1 values between the vaccine virus and the SAT2 viruses isolated in 2008, whilst topotype XIII was circulating, were derived, values (≈ 0.00) suggested similarly poor antigenic relationship and unlikely cross protection. Concurrently, SAT2 positive field sera from Sudan in 2016 were not unvaryingly identified by virus neutralization tests (VNT) employing SAT2 viruses from 2010 and 2008. Proportions of positive sera by SAT2 virus from 2010 were always higher than those by viruses from 2008; consistent with the more frequent and recent circulation of topotype VII prior to 2016. Proportions by SAT2 virus from 2010 were 0.68 (± 0.1) in one location (n = 72), 0.39 (± 0.1) in another one (n = 94) and 0.52 (± 0.1) in the whole test group (n = 166). Corresponding values by viruses of 2008 were 0.53 (± 0.1), 0.27 (± 0.1) and 0.38 (± 0.1). In the whole test group, differences were statistically significant (p = .02339). Like post-vaccination sera, field sera (natural immunity) showed no considerable cross neutralization between topotype VII and presumably XIII; almost 45% (43/96) of SAT2 positive field sera were positive to one topotype but not to the other. Experimental and surveillance findings emphasized the implication of SAT2 diversity in Sudan. It is concluded that it is difficult to control SAT2 infection in Sudan using a monovalent vaccine. Beside a prophylactic vaccine from topotype VII, stockpiling of antigens from topotype XIII and enhanced virological surveillance with rapid genotyping and matching studies are necessary approaches. When more frequent circulation of more than one SAT2 topotype occurs, retrospective diagnosis by serological surveys could be problematic or imprecise.
Collapse
Affiliation(s)
- Yazeed A/Raouf
- Department of Foot-and-Mouth Disease, Central Veterinary Research Laboratory (CVRL), Soba, P.O. Box 8067, Al Amarat, Khartoum, Sudan.
| | - Inas Ibrahim
- Department of Foot-and-Mouth Disease, Central Veterinary Research Laboratory (CVRL), Soba, P.O. Box 8067, Al Amarat, Khartoum, Sudan
| |
Collapse
|
5
|
Selection of Vaccine Candidate for Foot-and-Mouth Disease Virus Serotype O Using a Blocking Enzyme-Linked Immunosorbent Assay. Vaccines (Basel) 2021; 9:vaccines9040387. [PMID: 33920779 PMCID: PMC8071201 DOI: 10.3390/vaccines9040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease and one of the most economically important diseases of livestock. Vaccination is an important measure to control FMD and selection of appropriate vaccine strains is crucial. The objective of this study was to select a vaccine candidate and to evaluate the potential of a blocking ELISA for detecting neutralizing antibodies (NA-ELISA) in vaccine strain selection. Binary ethylenimine inactivated vaccines, prepared from four representative circulating strains (FMDV O/Mya/98, SCGH/CHA/2016, O/Tibet/99, and O/XJ/CHA/2017) belonging to four lineages within three different topotypes of FMD virus (FMDV) serotype O in China, were used to vaccinate cattle (12-13 animals for each strain), sheep (12-13 animals for each strain), and pigs (10 animals for each strain). The results of immunogenicity comparison showed that O/XJ/CHA/2017 exhibited the highest immunogenicity among the four strains in pigs, cattle, and sheep both by NA-ELISA and virus neutralizing test (VNT). Cross-neutralization analysis indicated that O/XJ/CHA/2017 displayed broad antigen spectrum and was antigenically matched with other three representative strains both by NA-ELISA and VNT. In addition, A significant correlation (p < 0.0001) was observed between the NA-ELISA titers and the VNT titers for four representative strains. The results showed that O/XJ/CHA/2017 was a promising vaccine strain candidate and NA-ELISA was comparable to VNT in neutralizing antibodies detection and could be used as the reference test system for vaccine strain selection.
Collapse
|
6
|
Bidart J, Mignaqui A, Kornuta C, Lupi G, Gammella M, Soria I, Galarza R, Ferella A, Cardillo S, Langellotti C, Quattrocchi V, Durocher Y, Wigdorovitz A, Marcipar I, Zamorano P. FMD empty capsids combined with the Immunostant Particle Adjuvant -ISPA or ISA206 induce protective immunity against foot and mouth disease virus. Virus Res 2021; 297:198339. [PMID: 33596405 DOI: 10.1016/j.virusres.2021.198339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Foot and Mouth Disease Virus (FMDV) causes economy losses and is controlled by vaccination in many countries. Vaccine formulations based on empty capsids or Virus-Like Particles (VLPs) have the advantage of avoiding the biological hazard of using infectious FMDV, albeit are poorly immunogenic. Recently, we have described that ISPA a new Immune Stimulating Complex adjuvant, is useful to improve the response against FMD of vaccines that use inactivated virus. Now, the adjuvant effects of ISPA and ISA 206 (water/oil/water) on a VLPs-based FMD vaccine were evaluated. VLPs (strain A/Argentina/2001) were obtained in mammalian cell cultures and their elicitation of an immune response against FMDV with and without ISPA or ISA 206 was evaluated in mice as a first approach. Notably, VLPs-ISPA and VLPs-ISA 206 vaccines induced protection against viral challenge in 100 % of mice, while protection induced by VLPs alone was of 40 %. Total and neutralizing FMDV antibodies were higher in the VLPs-ISPA and VLPs-ISA 206 groups compared to the VLPs group. VLPs-ISPA induced significantly higher (p < 0.001) IgG1, IgG2a, IgG2b and IgG3 titers than the VLPs vaccine. Moreover, in comparison with non-adjuvanted VLPs, VLPs-ISPA and VLPs-ISA 206 elicited an increased virus-specific T response, including higher IFNγ+/CD8 + lymphocyte production in mice. When these vaccines were tested in calves, antibody titers reached an Expected Percentage of Protection (EPP) above 90 % in the case of the VLPs-ISPA and VLPs-ISA 206 vaccines, while, in the VLPs group, EPP reached 25 %. IFNγ levels secreted by mononuclear cells of VLP-ISPA-vaccinated cattle were significantly higher than in the VLPs group. Overall, the results demonstrate that VLPs-ISPA or VLPs-ISA 206 are promising formulations for the development of a novel FMD vaccine.
Collapse
Affiliation(s)
- J Bidart
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - A Mignaqui
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche, IFAB, INTA - CONICET, San Carlos de Bariloche, Rio Negro, Argentina
| | - C Kornuta
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - G Lupi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M Gammella
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - I Soria
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - R Galarza
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - A Ferella
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - S Cardillo
- Biogenesis Bago SA, Buenos Aires, Argentina
| | - C Langellotti
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - V Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - Y Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - A Wigdorovitz
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - I Marcipar
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - P Zamorano
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Universidad del Salvador, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Bergmann IE, Malirat V, Pedemonte A, Maradei E. Challenges in foot-and-mouth disease virus strain selection as an input to attain broad vaccine intraserotype cross-protection. Expert Rev Vaccines 2021; 20:13-22. [PMID: 33455492 DOI: 10.1080/14760584.2021.1877137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Vaccination against foot-and-mouth disease virus is regarded as the most effective way to prevent disease. Selection of appropriate vaccine strains is challenging due to lack of cross-protection between serotypes and incomplete protection between some strains within a serotype. Vaccine effectiveness can be affected by vaccine formulation, vaccination approaches, and also by emerging field variants. Therefore, a precise evaluation of the protective capacity of the selected vaccine virus is essential.Areas covered: This article discusses the limitations of currently in use in vitro methods to assess the protective capacity of vaccine strains. It includes the assessment of well-established South American vaccine strains, O1/Campos and A24/Cruzeiro, against outbreaks/emergencies in the continent, as well as against recent isolates from East and Southeast Asia.Expert opinion: In vitro methods, and particularly r1 values, used to evaluate the protective capacity of vaccine strains are not conclusive and do not cover the variety of field scenarios. At present, an option when facing emergencies could be to use well-established vaccine strains with broad antigenic/immunogenic coverage, including conditions that lead to increased coverage such as vaccine formulations and vaccination schemes.
Collapse
Affiliation(s)
- Ingrid E Bergmann
- Centro De Virología Animal (CEVAN), CONICET, Pabellón IAFE, (OCA Ciudad Universitaria), Buenos Aires, Argentina
| | - Viviana Malirat
- Centro De Virología Animal (CEVAN), CONICET, Pabellón IAFE, (OCA Ciudad Universitaria), Buenos Aires, Argentina
| | - Andrea Pedemonte
- Animal Health Laboratory, Servicio Nacional De Sanidad Y Calidad Agroalimentaria (SENASA), Martínez, CP, Argentina
| | | |
Collapse
|
8
|
Xu W, Yang M. Genetic variation and evolution of foot-and-mouth disease virus serotype A in relation to vaccine matching. Vaccine 2021; 39:1420-1427. [PMID: 33526282 DOI: 10.1016/j.vaccine.2021.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease (FMD) is a severe, highly contagious viral disease that affects a wide variety of domestic and wild cloven-hoofed animals. FMD vaccines can play a vital role in disease control and are very widely used globally each year. However, due to the diversity of FMDV, the choice of FMD vaccine is still a huge challenge. In this study, 45 FMDV/A isolates were phylogenetically categorized into three topotypes: ASIA (n = 31), AFRICA (n = 10), and EURO-SA (n = 4). Three sera collected from vaccinated cattle with FMDV A22/IRQ/24/64, A/IRN/05, and A/ARG/01 were used to evaluate their antigenic relationship (r1) with the field isolates. The IRQ/24/64 serum demonstrated a 39% (17/44) match (r1 ≥ 0.3) to the field isolates, whereas IRN/05 serum and ARG/01serum showed an 18% (8/44) and a 2% (1/44) match (r1 ≥ 0.3) to the field isolates, respectively. The A22/IRQ/24/64 matched with isolates mainly from topotype ASIA, with limited cross-topotype match with isolates from topotypes AFRICA and EURO-SA. However, the A/IRN/05 did not show a cross-topotype match with topotype AFRICA isolates and A/ARG/01 failed to match any isolates from topotypes ASIA and AFRICA. After analyzing the amino acid variation of the known antigenic sites of 45 strains of FMDV/A, it was found that together antigenic sites 1 and 3 contributed about 71% of the amino acid changes to the vaccine evaluated. Based on the capsid sequences, the FMDV/A evolved unequally among topotypes. The topotypes of ASIA and AFRICA evolves faster than that of EURO-SA. The FMDV/A continues to show a high level of genetic diversity driven by a high substitution rate, purifying selection, and positive selection concentrated on antigenic sites or near antigenic sites. The current research shows the challenges of the FMDV/A vaccine selection and emphasizes the importance of continuous monitoring of antigenic evolution for the selection of effective vaccines.
Collapse
Affiliation(s)
- Wanhong Xu
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Ming Yang
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada.
| |
Collapse
|
9
|
Bidart J, Kornuta C, Gammella M, Gnazzo V, Soria I, Langellotti C, Mongini C, Galarza R, Calvinho L, Lupi G, Quattrocchi V, Marcipar I, Zamorano P. A New Cage-Like Particle Adjuvant Enhances Protection of Foot-and-Mouth Disease Vaccine. Front Vet Sci 2020; 7:396. [PMID: 32851000 PMCID: PMC7411152 DOI: 10.3389/fvets.2020.00396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 11/27/2022] Open
Abstract
Foot-and-Mouth Disease (FMD) is an acute viral disease that causes important economy losses. Vaccines with new low-cost adjuvants that stimulate protective immune responses are needed and can be assayed in a mouse model to predict their effectiveness in cattle. Immunostimulant Particle Adjuvant (ISPA), also known as cage-like particle adjuvant, consisting of lipid boxes of dipalmitoyl-phosphatidylcholine, cholesterol, sterylamine, alpha-tocopherol, and QuilA saponin, was shown to enhance protection of a recombinant vaccine against Trypanosoma cruzi in a mouse model. Thus, in the present work, we studied the effects on the magnitude and type of immunity elicited in mice and cattle in response to a vaccine based on inactivated FMD virus (iFMDV) formulated with ISPA. It was demonstrated that iFMDV–ISPA induced protection in mice against challenge and elicited a specific antibody response in sera, characterized by a balanced Th1/Th2 profile. In cattle, the antibody titers reached corresponded to an expected percentage of protection (EPP) higher than 80%. EPP calculates the probability that livestock would be protected against a 10,000 bovine infectious doses challenge after vaccination. Moreover, in comparison with the non-adjuvanted iFMDV vaccine, iFMDV–ISPA elicited an increased specific T-cell response against the virus, including higher interferon gamma (IFNγ)+/CD8+ lymphocyte production in cattle. In this work, we report for first time that an inactivated FMDV serotype A vaccine adjuvanted with ISPA is capable of inducing protection against challenge in a murine model and of improving the specific immune responses against the virus in cattle.
Collapse
Affiliation(s)
- Juan Bidart
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Claudia Kornuta
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - Victoria Gnazzo
- Instituto Nacional de Medicina Tropical, Puerto Iguazú, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - Cecilia Langellotti
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Claudia Mongini
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Roxana Galarza
- Agencia de Extensión Rural Chascomus, INTA, Chascomus, Argentina
| | - Luis Calvinho
- Estación Experimental Agropecuaria Rafaela, INTA, Rafaela, Argentina
| | - Giuliana Lupi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina
| | - Ivan Marcipar
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Patricia Zamorano
- Instituto de Virología e Innovaciones Tecnológicas-IVIT, CICVyA, INTA-CONICET, Hurlingham, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Universidad del Salvador, Buenos Aires, Argentina
| |
Collapse
|
10
|
Blignaut B, van Heerden J, Reininghaus B, Fosgate GT, Heath L. Characterization of SAT2 foot-and-mouth disease 2013/2014 outbreak viruses at the wildlife-livestock interface in South Africa. Transbound Emerg Dis 2020; 67:1595-1606. [PMID: 31984622 DOI: 10.1111/tbed.13493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/12/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
The Southern African Territories (SAT)-type foot-and-mouth disease viruses (FMDV) are endemic to the greater Kruger National Park (KNP) area in South Africa, where they are maintained through persistent infections in African buffalo. The occurrence of FMDV within the Greater KNP area constitutes a continual threat to the livestock industry. To expand on knowledge of FMDV diversity, the genetic and antigenic relatedness of SAT2-type viruses isolated from cattle during a FMD outbreak in Mpumalanga Province in 2013 and 2014 were investigated. Cattle from twelve diptanks tested positive on polymerase chain reaction (PCR), and molecular epidemiological relationships of the viruses were determined by VP1 sequencing. Phylogenetic analysis of the SAT2 viruses from the FMD outbreak in Mpumalanga in 2013/2014 revealed their genetic relatedness to other SAT2 isolates from topotype I (South Africa, Zimbabwe and Mozambique), albeit genetically distinct from previous South African outbreak viruses (2011 and 2012) from the same topotype. The fifteen SAT2 field isolates clustered into a novel genotype with ≥98.7% nucleotide identity. High neutralization antibody titres were observed for four 2013/2014 outbreak viruses tested against the SAT2 reference antisera representative of viruses isolated from cattle and buffalo from South Africa (topotype I) and Zimbabwe (topotype II). Comparison of the antigenic relationship (r1 values) of the outbreak viruses with reference antisera indicated a good vaccine match with 90% of r1 values > 0.3. The r1 values for the 2013/2014 outbreak viruses were 0.4 and above for the three South African vaccine/reference strains. These results confirm the presence of genetic and antigenic variability in SAT2 viruses and suggest the emergence of new variants at the wildlife-livestock interface in South Africa. Continuous characterization of field viruses should be performed to identify new virus strains as epidemiological surveillance to improve vaccination efforts.
Collapse
Affiliation(s)
- Belinda Blignaut
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa.,Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Thulamahashe, South Africa
| | - Juanita van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| | - Björn Reininghaus
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Geoffrey T Fosgate
- Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Thulamahashe, South Africa
| | - Livio Heath
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| |
Collapse
|
11
|
Willems T, De Vleeschauwer A, Perez-Filgueira M, Li Y, Ludi A, Lefebvre D, Wilsden G, Statham B, Haas B, Mattion N, Robiolo B, Beascoechea Perez C, Maradei E, Smitsaart E, La Torre J, De Clercq K. FMD vaccine matching: Inter laboratory study for improved understanding of r 1 values. J Virol Methods 2019; 276:113786. [PMID: 31765721 DOI: 10.1016/j.jviromet.2019.113786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly variable RNA virus existing as seven different serotypes. The antigenic variability between and within serotypes can limit the cross-reactivity and therefore the in vivo cross-protection of vaccines. Selection of appropriate vaccine strains is crucial in the control of FMD. Determination of indirect relationships (r1-value) between potential vaccine strains and field strains based on antibody responses against both are routinely used for vaccine matching purposes. Aiming at the investigation of the repeatability, reproducibility and comparability of r1-value determination within and between laboratories and serological tests, a small scale vaccine matching ring test for FMDV serotype A was organized. Well-characterized serum pools from cattle vaccinated with a monovalent A24/Cruzeiro/Brazil/55 (A24) FMD vaccine with known in vivo protection status (homologous and heterologous) were distributed to four laboratories to determine r1-values for the heterologous FMD strains A81/Argentina/87, A/Argentina/2000 and A/Argentina/2001 using the virus neutralization tests (VNT) and liquid phase blocking ELISA (LPBE). Within laboratories, the repeatability of r1-value determination was high for both antibody assays. VNT resulted in reproducible and comparable r1-values between laboratories, indicative of a lack of antigenic relatedness between the A24 strain and the heterologous strains tested in this work, thus corresponding to some of the in vivo findings with these strains. Using LPBE, similar trends in r1-values were observed in all laboratories, but the overall reproducibility was lower than with VNT. Inconsistencies between laboratories may at least in part be attributed to differences in LPBE protocols as well as the in preexisting information generated in each laboratory (such as antibody titer-protection correlation curves). To gain more insight in the LPBE-derived r1-values standard bovine control sera were included in the antibody assays performed in each laboratory and a standardization exercise was performed.
Collapse
Affiliation(s)
- Tom Willems
- Unit Exotic Viruses and Particular Diseases, SD Infectious Diseases in Animals, Sciensano (formerly CODA-CERVA), Groeselenberg 99, 1180 Brussel, Belgium
| | - Annebel De Vleeschauwer
- Unit Exotic Viruses and Particular Diseases, SD Infectious Diseases in Animals, Sciensano (formerly CODA-CERVA), Groeselenberg 99, 1180 Brussel, Belgium
| | - Mariano Perez-Filgueira
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), N Repetto y De Los Reseros s/n, Hurlingham (1686), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Yanmin Li
- The Chinese National/OIE Reference Laboratory for Foot and Mouth Disease, Lanzhou Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, Gansu, PR China
| | - Anna Ludi
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - David Lefebvre
- Unit Exotic Viruses and Particular Diseases, SD Infectious Diseases in Animals, Sciensano (formerly CODA-CERVA), Groeselenberg 99, 1180 Brussel, Belgium
| | - Ginette Wilsden
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Bob Statham
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Bernd Haas
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Nora Mattion
- Centro de Virología Animal (CEVAN), Av Fleming 1653, Martinez, Buenos Aires, Argentina
| | - Blanca Robiolo
- Centro de Virología Animal (CEVAN), Av Fleming 1653, Martinez, Buenos Aires, Argentina
| | - Claudia Beascoechea Perez
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), FMD Reference Laboratory, Talcahuano 1660, Martinez, Buenos Aires, Argentina
| | - Eduardo Maradei
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), FMD Reference Laboratory, Talcahuano 1660, Martinez, Buenos Aires, Argentina
| | | | - José La Torre
- Centro de Virología Animal (CEVAN), Av Fleming 1653, Martinez, Buenos Aires, Argentina
| | - Kris De Clercq
- Unit Exotic Viruses and Particular Diseases, SD Infectious Diseases in Animals, Sciensano (formerly CODA-CERVA), Groeselenberg 99, 1180 Brussel, Belgium.
| |
Collapse
|
12
|
Paton DJ, Reeve R, Capozzo AV, Ludi A. Estimating the protection afforded by foot-and-mouth disease vaccines in the laboratory. Vaccine 2019; 37:5515-5524. [PMID: 31405637 DOI: 10.1016/j.vaccine.2019.07.102] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Foot-and-mouth disease (FMD) vaccines must be carefully selected and their application closely monitored to optimise their effectiveness. This review covers serological techniques for FMD vaccine quality control, including potency testing, vaccine matching and post-vaccination monitoring. It also discusses alternative laboratory procedures, such as antigen quantification and nucleotide sequencing, and briefly compares the approaches for FMD with those for measuring protection against influenza virus, where humoral immunity is also important. Serology is widely used to predict the protection afforded by vaccines and has great practical utility but also limitations. Animals differ in their responses to vaccines and in the protective mechanisms that they develop. Antibodies have a variety of properties and tests differ in what they measure. Antibody-virus interactions may vary between virus serotypes and strains and protection may be affected by the vaccination regime and the nature and timing of field virus challenge. Finally, tests employing biological reagents are difficult to standardise, whilst cross-protection data needed for test calibration and validation are scarce. All of this is difficult to reconcile with the desire for simple and universal criteria and thresholds for evaluating vaccines and vaccination responses and means that oversimplification of test procedures and their interpretation can lead to poor predictions. A holistic approach is therefore recommended, considering multiple sources of field, experimental and laboratory data. New antibody avidity and isotype tests seem promising alternatives to evaluate cross-protective, post-vaccination serological responses, taking account of vaccine potency as well as match. After choosing appropriate serological tests or test combinations and cut-offs, results should be interpreted cautiously and in context. Since opportunities for experimental challenge studies of cross-protection are limited and the approaches incompletely reflect real life, more field studies are needed to quantify cross-protection and its correlation to in vitro measurements.
Collapse
Affiliation(s)
- D J Paton
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
| | - R Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - A V Capozzo
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Godoy Cruz 2290 (C1454FQB), Buenos Aires, Argentina
| | - A Ludi
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
13
|
Sirdar MM, Fosgate GT, Blignaut B, Gummow B, Shileyi B, Lazarus DD, Mutowembwa P, van der Merwe D, Heath L. A novel method for performing antigenic vaccine matching for foot-and-mouth disease in absence of the homologous virus. Vaccine 2019; 37:5025-5034. [PMID: 31296377 DOI: 10.1016/j.vaccine.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Foot-and-mouth-disease (FMD) is a highly contagious transboundary animal disease that has negative consequences on regional and international trade. Vaccination is an important approach for FMD control and an essential consideration is the degree of cross-protection conferred by the vaccine against currently circulating field viruses. The objective of this study was to evaluate a new vaccine matching technique that does not require knowledge concerning the homologous vaccine virus. As a proof of concept, the vaccine-match was assessed for 41 FMD field viruses isolated from southern Africa over a 25-year period. A diverse group of 20 SAT1 and 21 SAT2 FMDV isolates collected from cattle and wildlife during 1991-2015 were selected for this study. Virus neutralization tests were performed against two sets of pooled sera for each serotype: vaccinated cattle sera (4-16 weeks post-vaccination) and convalescent cattle sera (3 weeks post-experimental challenge). Novel r1-values were calculated as the ratio of the titre of the vaccinated sera to the titre for convalescent cattle sera. A validation r1-value was calculated based on an assumption concerning the true homologous vaccine virus. There was a strong positive correlation between r1-values for the novel and the validation methods for SAT1 viruses (Spearman's rho = 0.84, P < 0.01) and a very strong correlation for SAT2 viruses (Spearman's rho = 0.90, P < 0.01). In addition, there was moderate to good agreement between the novel and validation methods for both serotypes based on a r1-value cut-off of 0.3, which is presumed to represent a good vaccine-match. The agreement between methods using prevalence-adjusted and bias-adjusted kappa (PABAK) was 0.67 and 0.84 for SAT1 and SAT2 viruses, respectively. The new r1-value method provides a feasible, alternative vaccine matching approach that could benefit FMD control in southern Africa.
Collapse
Affiliation(s)
- Mohamed M Sirdar
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa.
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Belinda Blignaut
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| | - Bruce Gummow
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; College of Public Health, Medical and Veterinary Sciences, James Cook University, QLD, Australia
| | - Bernard Shileyi
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| | - David D Lazarus
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; National Veterinary Research Institute, Foot-and-Mouth Disease Laboratory, PMB 01, Vom, Nigeria
| | - P Mutowembwa
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| | - Danica van der Merwe
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa; Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| | - Livio Heath
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, 0110, South Africa
| |
Collapse
|
14
|
Kim T, Hong JK, Oem JK, Lee KN, Lee HS, Kim YJ, Ryoo S, Ko YJ, Park JH, Choi J, Lee SH, Jo HJ, Lee MH, Kim B, Kim J. Cross-protective efficacy of the O1 Manisa + O 3039 bivalent vaccine and the O 3039 monovalent vaccine against heterologous challenge with FMDV O/Jincheon/SKR/2014 in pig. Vaccine 2019; 37:1702-1709. [PMID: 30712811 DOI: 10.1016/j.vaccine.2018.11.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022]
Abstract
After massive foot-and-mouth disease (FMD) outbreaks originated from Jincheon County from Dec. 2014 to Apr. 2015, the effectiveness of the previous FMD vaccine containing only the O1 Manisa as the O antigen, O1 Manisa + A Malaysia 97 + Asia 1 Sharmir trivalent vaccine, was questioned in South Korea, and a change in the O antigen in FMD vaccines was demanded to control the FMD caused by FMDV O/Jincheon/SKR/2014, the O Jincheon strain. Therefore, the efficacies of O1 Manisa + O 3039 bivalent vaccine and O 3039 monovalent vaccine were studied for cross-protection against heterologous challenge with the O Jincheon strain. In this study, the efficacy of the O1 Manisa + O 3039 bivalent vaccine was better than that of the O 3039 monovalent vaccine, even though the serological relationship (r1 value) between O Jincheon and O 3039 was matched according to the OIE Terrestrial Manual. According to serological test results from vaccinated specific pathogen free pigs, virus neutralization test titers against Jincheon were good estimates for predicting protection against challenge. A field trial of the O1 Manisa + O 3039 bivalent vaccine was performed to estimate the possibility of field application in conventional pig farms, especially due to concerns about the effect of maternally derived antibodies (MDA) in field application of the FMD vaccine. According to the result of the field trial, the O1 Manisa + O 3039 bivalent vaccine was considered to overcome MDA. The results of the efficacy and field trials indicated that the O1 Manisa + O3039 vaccine could be suitable to replace previous FMD vaccines to control the FMD field situation caused by O Jincheon FMDV.
Collapse
Affiliation(s)
- Taeseong Kim
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jang-Kwan Hong
- Daesung Microbiological Laboratory, 103, Deogyeong-daero, Uiwang City, Gyeonggi-do 16103, Republic of Korea
| | - Jae-Ku Oem
- Korean Zoonosis Research Institute, Chonbuk National University, 820-120 Hana-ro, Iksan City, Jeollabuk-do 54531, Republic of Korea
| | - Kwang-Nyeong Lee
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Hyang-Sim Lee
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yong Joo Kim
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Soyoon Ryoo
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Young-Joon Ko
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jida Choi
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Seung Heon Lee
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Hye Jun Jo
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Myoung-Heon Lee
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Byounghan Kim
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jaejo Kim
- Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon City, Gyeongsangbuk-do 39660, Republic of Korea.
| |
Collapse
|
15
|
Xu W, Zhang Z, Nfon C, Yang M. Genetic and antigenic relationship of foot–and–mouth disease virus serotype O isolates with the vaccine strain O1/BFS. Vaccine 2018; 36:3802-3808. [DOI: 10.1016/j.vaccine.2018.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022]
|
16
|
Galdo Novo S, Malirat V, Maradei E, Pedemonte A, Espinoza A, Smitsaart E, Lee K, Park J, Bergmann I. Efficacy of a high quality O1/Campos foot-and-mouth disease vaccine upon challenge with a heterologous Korean O Mya98 lineage virus in pigs. Vaccine 2018; 36:1570-1576. [DOI: 10.1016/j.vaccine.2018.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
|
17
|
Duque H, Naranjo J, Carrillo C, Burbano A, Vargas J, Pauszek L, Olesen I, Sanchez-Vazquez MJ, Cosivi O, Allende RM. Protection induced by a commercial bivalent vaccine against Foot-and-Mouth Disease 2010 field virus from Ecuador. Vaccine 2016; 34:4140-4144. [DOI: 10.1016/j.vaccine.2016.06.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
|
18
|
Brito B, König G, Cabanne GS, Beascoechea CP, Rodriguez L, Perez A. Phylogeographic analysis of the 2000-2002 foot-and-mouth disease epidemic in Argentina. INFECTION GENETICS AND EVOLUTION 2016; 41:93-99. [PMID: 27074336 DOI: 10.1016/j.meegid.2016.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/18/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly transmissible disease of hooved livestock. Although FMD has been eradicated from many countries, economic and social consequences of FMD reintroductions are devastating. After achieving disease eradication, Argentina was affected by a major epidemic in 2000-2002, and within few months, FMD virus spread throughout most of the country and affected >2500 herds. Available records and viral strains allowed us to assess the origins, spread and progression of this FMD epidemic, which remained uncertain. We used whole genome viral sequences and a continuous phylogeographic diffusion approach, which revealed that the viruses that caused the outbreaks spread fast in different directions from a central area in Argentina. The analysis also suggests that the virus that caused the outbreaks in the year 2000 was different from those found during the 2001 epidemic. To estimate if the approximate overall genetic diversity of the virus was related to disease transmission, we reconstructed the viral demographic variation in time using Bayesian Skygrid approach and compared it with the epidemic curve and the within-herd transmission rate and showed that the genetic temporal diversity of the virus was associated with the increasing number of outbreaks in the exponential phase of the epidemic. Results here provide new evidence of how the disease entered and spread throughout the country. We further demonstrate that genetic data collected during a FMD epidemic can be informative indicators of the progression of an ongoing epidemic.
Collapse
Affiliation(s)
- Barbara Brito
- USDA/ARS Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA.
| | - Guido König
- Instituto de Biotecnología, INTA, Buenos Aires, Argentina
| | - Gustavo Sebastian Cabanne
- Instituto de Biotecnología, INTA, Buenos Aires, Argentina; Museo Argentino de Ciencias Naturales Bernardino Rivadavia, CONICET, Buenos Aires, Argentina
| | - Claudia Perez Beascoechea
- FMD Virology Department, OIE FMD Reference Laboratory, DLA, Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Dirección de Laboratorio Animal, Argentina
| | - Luis Rodriguez
- USDA/ARS Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, USA
| | - Andres Perez
- University of Minnesota, Department of Veterinary Population Medicine, College of Veterinary Medicine, Saint Paul, MN, USA
| |
Collapse
|
19
|
Maree FF, Kasanga CJ, Scott KA, Opperman PA, Melanie C, Sangula AK, Raphael S, Yona S, Wambura PN, King DP, Paton DJ, Rweyemamu MM. Challenges and prospects for the control of foot-and-mouth disease: an African perspective. VETERINARY MEDICINE-RESEARCH AND REPORTS 2014; 5:119-138. [PMID: 32670853 PMCID: PMC7337166 DOI: 10.2147/vmrr.s62607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022]
Abstract
The epidemiology of foot-and-mouth disease (FMD) in Africa is unique in the sense that six of the seven serotypes of FMD viruses (Southern African Territories [SAT] 1, SAT2, SAT3, A, O, and C), with the exception of Asia-1, have occurred in the last decade. Due to underreporting of FMD, the current strains circulating throughout sub-Saharan Africa are in many cases unknown. For SAT1, SAT2, and serotype A viruses, the genetic diversity is reflected in antigenic variation, and indications are that vaccine strains may be needed for each topotype. This has serious implications for control using vaccines and for choice of strains to include in regional antigen banks. The epidemiology is further complicated by the fact that SAT1, SAT2, and SAT3 viruses are maintained and spread by wildlife, persistently infecting African buffalo in particular. Although the precise mechanism of transmission of FMD from buffalo to cattle is not well understood, it is facilitated by direct contact between these two species. Once cattle are infected they may maintain SAT infections without the further involvement of buffalo. No single strategy for control of FMD in Africa is applicable. Decision on the most effective regional control strategy should focus on an ecosystem approach, identification of primary endemic areas, animal husbandry practices, climate, and animal movement. Within each ecosystem, human behavior could be integrated in disease control planning. Different regions in sub-Saharan Africa are at different developmental stages and are thus facing unique challenges and priorities in terms of veterinary disease control. Many science-based options targeting improved vaccinology, diagnostics, and other control measures have been described. This review therefore aims to emphasize, on one hand, the progress that has been achieved in the development of new technologies, including research towards improved tailored vaccines, appropriate vaccine strain selection, vaccine potency, and diagnostics, and how it relates to the conditions in Africa. On the other hand, we focus on the unique epidemiological, ecological, livestock farming and marketing, socioeconomic, and governance issues that constrain effective FMD control. Any such new technologies should have the availability of safe livestock products for trade as the ultimate goal.
Collapse
Affiliation(s)
- Francois F Maree
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Christopher J Kasanga
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Katherine A Scott
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa
| | - Pamela A Opperman
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Chitray Melanie
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Sallu Raphael
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Sinkala Yona
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Philemon N Wambura
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | | | - Mark M Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
20
|
Tekleghiorghis T, Weerdmeester K, van Hemert-Kluitenberg F, Moormann RJM, Dekker A. No significant differences in the breadth of the foot-and-mouth disease serotype A vaccine induced antibody responses in cattle, using different adjuvants, mixed antigens and different routes of administration. Vaccine 2014; 32:5330-6. [PMID: 25092634 DOI: 10.1016/j.vaccine.2014.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/12/2014] [Accepted: 07/09/2014] [Indexed: 10/24/2022]
Abstract
Inactivated whole virus foot-and-mouth disease (FMD) vaccines are used worldwide for protection against FMD, but not all vaccines induce protection against all genetic variants of the same FMD virus serotype. The aim of this study is to investigate whether the "breadth" of the antibody response against different strains of the same FMD virus serotype in cattle could be improved by using a different adjuvant, a mix of antigens and/or different routes of administration. To this end, six groups of five cattle were vaccinated with different FMD virus serotype A strain vaccines formulated with Montanide ISA 206 VG adjuvant. Antibody responses for homologous and heterologous cross-reactivity against a panel of 10 different FMD virus serotype A strains were tested by a liquid-phase blocking ELISA. Results of cattle vaccinated with ISA 206 VG adjuvanted vaccine were compared with results obtained in a previous study using aluminium hydroxide-saponin adjuvant. No significant effect of adjuvant on the breadth of the antibody response was observed, neither for mixing of antigens nor for the route of administration (subcutaneous vs. intradermal). Comparison of antigen payload, however, increased both homologous and heterologous titres; a 10-fold higher antigen dose resulted in approximately four times higher titres against all tested strains. Our study shows that breadth of the antibody response depends mainly on the vaccine strain; we therefore propose that, for vaccine preparation, only FMD virus strains are selected that, among other important characteristics, will induce a wide antibody response to different field strains.
Collapse
Affiliation(s)
- Tesfaalem Tekleghiorghis
- Central Veterinary Institute, part of Wageningen UR, Houtribweg 39, 8221 RA, Lelystad, The Netherlands; National Veterinary Laboratory, Ministry of Agriculture, Asmara, Eritrea
| | - Klaas Weerdmeester
- Central Veterinary Institute, part of Wageningen UR, Houtribweg 39, 8221 RA, Lelystad, The Netherlands
| | | | - Rob J M Moormann
- Central Veterinary Institute, part of Wageningen UR, Houtribweg 39, 8221 RA, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Aldo Dekker
- Central Veterinary Institute, part of Wageningen UR, Houtribweg 39, 8221 RA, Lelystad, The Netherlands.
| |
Collapse
|
21
|
Yang M, Xu W, Goolia M, Zhang Z. Characterization of monoclonal antibodies against foot-and-mouth disease virus serotype O and application in identification of antigenic variation in relation to vaccine strain selection. Virol J 2014; 11:136. [PMID: 25085313 PMCID: PMC4125342 DOI: 10.1186/1743-422x-11-136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foot-and-mouth disease (FMD) has severe implications for animal farming which leads to considerable financial losses because of its rapid spread, high morbidity and loss of productivity. For these reasons, the use of vaccine is often favoured to prevent and control FMD. Selection of the proper vaccine is extremely difficult because of the antigenic variation within FMDV serotypes. The aim of the current study was to produce a panel of mAbs and use it for the characterization of new isolates of FMDV serotype O. RESULTS A panel of FMDV/O specific mAb was produced. The generated mAbs were then characterized using the peptide array and mAb resistant mutant selection. Seven out of the nine mAbs reacted with five known antigenic sites, thus the other two mAbs against non-neutralizing sites were identified. The mAbs were then evaluated by antigenic ELISA for the detection of forty-six FMDV serotype O isolates representing seven of ten known topotypes. Isolates ECU/4/10 and HKN/2/11 demonstrated the highest antigenic variation compared to the others. Furthermore, the panel of mAbs was used in vaccine matching by antigenic profiling ELISA with O1/Manisa as the reference strain. However, there was no correlation between vaccine matching by antigenic ELISA and the gold standard method, virus neutralisation test (VNT), for the forty-six FMDV/O isolates. Nine isolates had particularly poor correlation with the reference vaccine strain as revealed by the low r1 values in VNT. The amino acid sequences of the outer capsid proteins for these nine isolates were analyzed and compared with the vaccine strain O1/Manisa. The isolate ECU/4/10 displayed three unique amino acid substitutions around the antigenic sites 1, 3 and 4. CONCLUSIONS The panel of mAbs is useful to monitor the emergence of antigenically different strains and determination of relevant antigenic site differences. However, for vaccine matching VNT remains the preferred method but a combination of VNT, antigenic profiling with a panel of mAbs and genetic sequencing would probably be more ideal for full characterization of any new outbreak isolates as well as for selection of vaccine strains from FMDV antigen banks.
Collapse
Affiliation(s)
- Ming Yang
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg R3E 3 M4, Manitoba, Canada.
| | | | | | | |
Collapse
|
22
|
Madhanmohan M, Yuvaraj S, Nagendrakumar SB, Srinivasan VA, Gubbins S, Paton DJ, Parida S. Transmission of foot-and-mouth disease virus from experimentally infected Indian buffalo (Bubalus bubalis) to in-contact naïve and vaccinated Indian buffalo and cattle. Vaccine 2014; 32:5125-30. [PMID: 24837776 DOI: 10.1016/j.vaccine.2014.03.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
This study investigated the transmission of foot-and-mouth disease virus (FMDV) from experimentally infected Indian buffalo to in-contact naïve and vaccinated cattle and buffalo. In each of six rooms, two donor buffalo that had been inoculated with FMDV were housed for five days with four recipient animals, comprising one vaccinated buffalo, one vaccinated calf, one unvaccinated buffalo and one unvaccinated calf. Vaccination was carried out with current Indian vaccine strain (O/IND/R2/75) and challenged on 28 days post-vaccination with an antigenically similar strain (O/HAS/34/05). All 12 donor buffalo and the six unvaccinated cattle and six unvaccinated calves developed clinical signs of foot-and-mouth disease (FMD). In contrast, all six vaccinated cattle (100%) and four out of six vaccinated buffalo (66.6%) were protected from disease but all became infected with FMDV. This confirms that buffalo have the potential to spread FMD by direct contact and that vaccination can block this spread. The numbers of animals in the study were too small to determine if the differences in clinical protection afforded by vaccination of cattle and buffalo are significant and warrant a different dose regime.
Collapse
Affiliation(s)
- M Madhanmohan
- Foot-and-Mouth disease Virus laboratory, Research and Development Centre, Indian Immunologicals Limited, Gachibowli, Hyderabad 500 032, India
| | - S Yuvaraj
- Foot-and-Mouth disease Virus laboratory, Research and Development Centre, Indian Immunologicals Limited, Gachibowli, Hyderabad 500 032, India
| | - S B Nagendrakumar
- Foot-and-Mouth disease Virus laboratory, Research and Development Centre, Indian Immunologicals Limited, Gachibowli, Hyderabad 500 032, India
| | - V A Srinivasan
- Foot-and-Mouth disease Virus laboratory, Research and Development Centre, Indian Immunologicals Limited, Gachibowli, Hyderabad 500 032, India.
| | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - David James Paton
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
23
|
Maradei E, Malirat V, Beascoechea CP, Espinoza AM, Novo SG, Smitsaart E, Salgado G, Mattion N, Toledo JR, Bergmann IE. Emergence of antigenic variants of Foot-and-Mouth Disease Virus serotype O in Ecuador and preliminary evaluation of a field strain as a vaccine candidate. Vaccine 2014; 32:2446-51. [DOI: 10.1016/j.vaccine.2014.02.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
24
|
Comparison of test methodologies for foot-and-mouth disease virus serotype A vaccine matching. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:674-83. [PMID: 24623625 DOI: 10.1128/cvi.00034-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination has been one of the most important interventions in disease prevention and control. The impact of vaccination largely depends on the quality and suitability of the chosen vaccine. To determine the suitability of a vaccine strain, antigenic matching is usually studied by in vitro analysis. In this study, we performed three in vitro test methods to determine which one gives the lowest variability and the highest discriminatory capacity. Binary ethylenimine inactivated vaccines, prepared from 10 different foot-and-mouth disease (FMD) virus serotype A strains, were used to vaccinate cattle (5 animals for each strain). The antibody titers in blood serum samples 3 weeks postvaccination (w.p.v.) were determined by a virus neutralization test, neutralization index test, and liquid-phase blocking enzyme-linked immunosorbent assay (ELISA). The titers were then used to calculate relationship coefficient (r1) values. These r1 values were compared to the genetic lineage using receiver operating characteristic (ROC) analysis. In the two neutralization test methods, the median titers observed against the test strains differed considerably, and the sera of the vaccinated animals did not always show the highest titers against their respective homologous virus strains. When the titers were corrected for test strain effect (scaling), the variability (standard error of the mean per vaccinated group) increased because the results were on a different scale, but the discriminatory capacity improved. An ROC analysis of the r1 value calculated on both observed and scaled titers showed that only r1 values of the liquid-phase blocking ELISA gave a consistent statistically significant result. Under the conditions of the present study, the liquid-phase blocking ELISA showed less variation and still had a higher discriminatory capacity than the other tests.
Collapse
|
25
|
Brito BP, Perez AM, Capozzo AV. Accuracy of traditional and novel serology tests for predicting cross-protection in foot-and-mouth disease vaccinated cattle. Vaccine 2014; 32:433-6. [DOI: 10.1016/j.vaccine.2013.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/25/2022]
|
26
|
Ludi AB, Horton DL, Li Y, Mahapatra M, King DP, Knowles NJ, Russell CA, Paton DJ, Wood JLN, Smith DJ, Hammond JM. Antigenic variation of foot-and-mouth disease virus serotype A. J Gen Virol 2013; 95:384-392. [PMID: 24187014 DOI: 10.1099/vir.0.057521-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The current measures to control foot-and-mouth disease (FMD) include vaccination, movement control and slaughter of infected or susceptible animals. One of the difficulties in controlling FMD by vaccination arises due to the substantial diversity found among the seven serotypes of FMD virus (FMDV) and the strains within these serotypes. Therefore, vaccination using a single vaccine strain may not fully cross-protect against all strains within that serotype, and therefore selection of appropriate vaccines requires serological comparison of the field virus and potential vaccine viruses using relationship coefficients (r1 values). Limitations of this approach are that antigenic relationships among field viruses are not addressed, as comparisons are only with potential vaccine virus. Furthermore, inherent variation among vaccine sera may impair reproducibility of one-way relationship scores. Here, we used antigenic cartography to quantify and visualize the antigenic relationships among FMD serotype A viruses, aiming to improve the understanding of FMDV antigenic evolution and the scope and reliability of vaccine matching. Our results suggest that predicting antigenic difference using genetic sequence alone or by geographical location is not currently reliable. We found co-circulating lineages in one region that were genetically similar but antigenically distinct. Nevertheless, by comparing antigenic distances measured from the antigenic maps with the full capsid (P1) sequence, we identified a specific amino acid substitution associated with an antigenic mismatch among field viruses and a commonly used prototype vaccine strain, A22/IRQ/24/64.
Collapse
Affiliation(s)
- A B Ludi
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.,The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - D L Horton
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Y Li
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - M Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - D P King
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - N J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - C A Russell
- WHO Collaborating Centre for Modelling, Evolution and Control of Emerging Infectious Diseases, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - D J Paton
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - J L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - D J Smith
- WHO Collaborating Centre for Modelling, Evolution and Control of Emerging Infectious Diseases, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Department of Virology, Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - J M Hammond
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
27
|
Characterization of a type O foot-and-mouth disease virus re-emerging in the year 2011 in free areas of the Southern Cone of South America and cross-protection studies with the vaccine strain in use in the region. Vet Microbiol 2013. [DOI: 10.1016/j.vetmic.2012.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Characterization of foot-and-mouth disease virus from outbreaks in Ecuador during 2009–2010 and cross-protection studies with the vaccine strain in use in the region. Vaccine 2011; 29:8230-40. [DOI: 10.1016/j.vaccine.2011.08.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/08/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022]
|
29
|
Rodriguez LL, Gay CG. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert Rev Vaccines 2011; 10:377-87. [PMID: 21434805 DOI: 10.1586/erv.11.4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Foot-and-mouth disease (FMD) is one of the most economically and socially devastating diseases affecting animal agriculture throughout the world. Although mortality is usually low in adult animals, millions of animals have been killed in efforts to rapidly control and eradicate FMD. The causing virus, FMD virus (FMDV), is a highly variable RNA virus occurring in seven serotypes (A, O, C, Asia 1, Sat 1, Sat 2 and Sat 3) and a large number of subtypes. FMDV is one of the most infectious agents known, affecting cloven-hoofed animals with significant variations in infectivity and virus transmission. Although inactivated FMD vaccines have been available for decades, there is little or no cross-protection across serotypes and subtypes, requiring vaccines that are matched to circulating field strains. Current inactivated vaccines require growth of virulent virus, posing a threat of escape from manufacturing sites, have limited shelf life and require re-vaccination every 4-12 months. These vaccines have aided in the eradication of FMD from Europe and the control of clinical disease in many parts of the world, albeit at a very high cost. However, FMDV persists in endemic regions impacting millions of people dependent on livestock for food and their livelihood. Usually associated with developing countries that lack the resources to control it, FMD is a global problem and the World Organization for Animal Health and the United Nations' Food Agriculture Organization have called for its global control and eradication. One of the main limitations to FMDV eradication is the lack of vaccines designed for this purpose, vaccines that not only protect against clinical signs but that can actually prevent infection and effectively interrupt the natural transmission cycle. These vaccines should be safely and inexpensively produced, be easy to deliver, and also be capable of inducing lifelong immunity against multiple serotypes and subtypes. Furthermore, there is a need for better integrated strategies that fit the specific needs of endemic regions. Availability of these critical components will greatly enhance the chances for the global control and eradication of FMDV.
Collapse
Affiliation(s)
- Luis L Rodriguez
- Agricultural Research Service, United States Department of Agriculture, Foreign Animal Disease Research Unit, Orient Point, New York, NY, USA.
| | | |
Collapse
|
30
|
Diagnostic performance and application of two commercial cell viability assays in foot-and-mouth disease research. J Virol Methods 2011; 173:108-14. [PMID: 21295609 DOI: 10.1016/j.jviromet.2011.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/10/2011] [Accepted: 01/25/2011] [Indexed: 11/21/2022]
Abstract
Cell-based assays are still used widely in foot-and-mouth disease (FMD) research, despite the existence of a wide variety of molecular techniques. The aim of this study was to validate an automated, quantitative spectrometric reading to replace the time-consuming and subjective microscopic (MIC) evaluation of the FMD virus-induced cytopathic effect (CPE). Therefore, the diagnostic performance of two commercial cell viability assays (CellTiter 96(®) AQueous One Solution Cell Proliferation Assay (MTS) and CellTiter-Blue(®) Cell Viability Assay (CTB), both from Promega, Leiden, The Netherlands) was evaluated. Following optimization of the assay protocols and using the MIC results as a reference standard, the absorbance-read MTS assay, the fluorescence-read CTB assay and the absorbance-read CTB (CTB(abs)) assay demonstrated similar high sensitivities (97%, 99% and 98%, respectively), specificities (100%, 98% and 99%, respectively), accuracy measures (0.99, 0.98 and 0.98, respectively), precision measures (1.00, 0.98 and 0.99, respectively) and Cohen kappa agreement indices (0.97, 0.97 and 0.96, respectively) for detecting CPE in cell cultures. Due to its performance, cost effectiveness and ease of use, the CTB(abs) assay was selected for further evaluation of its ability to detect virus neutralization and to screen antiviral compounds. The CTB(abs) assay had 99% sensitivity and 100% specificity for the detection of neutralizing antibodies in sera from cattle infected with FMDV and in sera from unvaccinated, uninfected cattle and resulted in a mean Z'-factor of 0.85 for antiviral compound test plates. The CTB(abs) assay is now used routinely in the Belgian FMD reference laboratory for serological testing and high-throughput antiviral compound screening.
Collapse
|
31
|
Reeve R, Blignaut B, Esterhuysen JJ, Opperman P, Matthews L, Fry EE, de Beer TAP, Theron J, Rieder E, Vosloo W, O'Neill HG, Haydon DT, Maree FF. Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus. PLoS Comput Biol 2010; 6:e1001027. [PMID: 21151576 PMCID: PMC3000348 DOI: 10.1371/journal.pcbi.1001027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/09/2010] [Indexed: 11/29/2022] Open
Abstract
Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence – by controlling for phylogenetic structure – for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease. New strains of viruses arise continually. Consequently, predicting when past exposure to closely related strains will protect against infection by novel strains is central to understanding the dynamics of a broad range of the world's most important infectious diseases. While previous research has developed valuable tools for describing the observed antigenic landscapes, our ability to predict cross-protection between different viral strains depends almost entirely on cumbersome and expensive live animal work, often restricted to model species rather than the natural host. The development of computer-based approaches to the estimation of cross-protection from viral sequence data would be hugely valuable, and our study represents a significant step towards this research goal.
Collapse
Affiliation(s)
- Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Confidence in indirect assessment of foot-and-mouth disease vaccine potency and vaccine matching carried out by liquid phase ELISA and virus neutralization tests. Vaccine 2010; 28:6235-41. [DOI: 10.1016/j.vaccine.2010.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 11/20/2022]
|