1
|
Park SA, Hwang D, Kim JH, Lee SY, Lee J, Kim HS, Kim KA, Lim B, Lee JE, Jeon YH, Oh TJ, Lee J, An S. Formulation of lipid nanoparticles containing ginsenoside Rg2 and protopanaxadiol for highly efficient delivery of mRNA. Biomater Sci 2024. [PMID: 39480551 DOI: 10.1039/d4bm01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Lipid nanoparticles (LNPs) are widely recognized as crucial carriers of mRNA in therapeutic and vaccine development. The typical lipid composition of mRNA-LNP systems includes an ionizable lipid, a helper lipid, a polyethylene glycol (PEG)-lipid, and cholesterol. Concerns arise regarding cholesterol's susceptibility to oxidation, potentially leading to undesired immunological responses and toxicity. In this study, we formulated novel LNPs by replacing cholesterol with phytochemical-derived compounds, specifically ginsenoside Rg2 and its derivative phytosterol protopanaxadiol (PPD), and validated their efficacy as mRNA delivery systems. The mRNA-LNP complexes were manually prepared through a simple mixing process. The biocompatibility of these Rg2-based LNPs (Rg2-LNP) and PPD-based LNPs (PPD-LNP) was assessed through cell viability assays, while the protective function of LNPs for mRNA was demonstrated by RNase treatment. Enhanced green fluorescent protein (EGFP) mRNA delivery and expression in A549 and HeLa cells were analyzed using optical microscopy and flow cytometry. The expression efficiency of Rg2-LNP and PPD-LNP was compared with that of commercially available LNPs, with both novel formulations demonstrating superior transfection and EGFP expression. Furthermore, in vivo tests following intramuscular (I.M.) injection in hairless mice demonstrated efficient luciferase (Luc) mRNA delivery and effective Luc expression using Rg2-LNP and PPD-LNP compared to commercial LNPs. Results indicated that the efficiency of EGFP and Luc expression in Rg2-LNP and PPD-LNP surpassed that of the cholesterol-based LNP formulation. These findings suggest that Rg2-LNP and PPD-LNP are promising candidates for future drug and gene delivery systems.
Collapse
Affiliation(s)
- Sin A Park
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Dajeong Hwang
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jae Hoon Kim
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Seung-Yeul Lee
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-A Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bumhee Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Jae-Eon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Yong Hyun Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Tae Jeong Oh
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jaewook Lee
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Sungwhan An
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| |
Collapse
|
2
|
Balusamy SR, Perumalsamy H, Huq MA, Yoon TH, Mijakovic I, Thangavelu L, Yang DC, Rahimi S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med Res Rev 2023; 43:1374-1410. [PMID: 36939049 DOI: 10.1002/med.21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, Gwangjin-gu, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Md Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Yoon
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Deok Chun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Wang Y, Han Q, Zhang S, Xing X, Sun X. New perspective on the immunomodulatory activity of ginsenosides: Focus on effective therapies for post-COVID-19. Biomed Pharmacother 2023; 165:115154. [PMID: 37454595 DOI: 10.1016/j.biopha.2023.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
More than 700 million confirmed cases of Coronavirus Disease-2019 (COVID-19) have been reported globally, and 10-60% of patients are expected to exhibit "post-COVID-19 symptoms," which will continue to affect human life and health. In the absence of safer, more specific drugs, current multiple immunotherapies have failed to achieve satisfactory efficacy. Ginseng, a traditional Chinese medicine, is often used as an immunomodulator and has been used in COVID-19 treatment as a tonic to increase blood oxygen saturation. Ginsenosides are the main active components of ginseng. In this review, we summarize the multiple ways in which ginsenosides affect post-COVID-19 symptoms, including inhibition of lipopolysaccharide, tumor necrosis factor signaling, modulation of chemokine receptors and inflammasome activation, induction of macrophage polarization, effects on Toll-like receptors, nuclear factor kappa-B, the mitogen-activated protein kinase pathway, lymphocytes, intestinal flora, and epigenetic regulation. Ginsenosides affect virus-mediated tissue damage, local or systemic inflammation, immune modulation, and other links, thus alleviating respiratory and pulmonary symptoms, reducing the cardiac burden, protecting the nervous system, and providing new ideas for the rehabilitation of patients with post-COVID-19 symptoms. Furthermore, we analyzed its role in strengthening body resistance to eliminate pathogenic factors from the perspective of ginseng-epidemic disease and highlighted the challenges in clinical applications. However, the benefit of ginsenosides in modulating organismal imbalance post-COVID-19 needs to be further evaluated to better validate the pharmacological mechanisms associated with their traditional efficacy and to determine their role in individualized therapy.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Qin Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College, and Chinese Academy of Medical Sciences, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders,State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, China.
| |
Collapse
|
4
|
Chakraborty A, Haque SM, Ghosh D, Dey D, Mukherjee S, Maity DK, Ghosh B. Silver nanoparticle synthesis and their potency against multidrug-resistant bacteria: a green approach from tissue-cultured Coleus forskohlii. 3 Biotech 2022; 12:228. [PMID: 35992896 PMCID: PMC9385945 DOI: 10.1007/s13205-022-03295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/02/2022] [Indexed: 12/19/2022] Open
Abstract
Drug resistance is a major concern nowadays, and finding alternatives of the well-known antibiotic is necessary. Green nanoparticles are emerging as a tenable alternative to this with a large spectrum of activity. The present manuscript describes an eco-friendly approach for green synthesis of silver nanoparticles from both in vitro and in vivo leaf extract of Coleus forskohlii. Leaf extracts were used in synthesis of nanoparticles which were further analyzed through UV-Vis, dynamic light scattering, energy-dispersive spectroscopy, and transmission electron microscopy. Antimicrobial activity of silver nanoparticles alone, as well as crude extract of the plant itself, was carried out against eight multidrug-resistant respiratory tract infecting pathogenic strains. Satisfactory antimicrobial activities were found with nanoparticles, in vitro and in vivo leaf extracts. However, gradually higher to lower inhibition potential against pathogenic bacterial strains was found in silver nanoparticles, in vitro and in vivo leaf extracts. Seven bioactive compounds were detected in the crude extract through gas chromatography-mass spectroscopy analysis. Results revealed that nanoparticle formation occurred in a wide range of sizes (10-50 nm) and shapes (trigonal, hexagonal, spherical, rod). The diversity in size and shape of the nanoparticles makes them biologically active. Silver nanoparticle exhibits significantly better antimicrobial activities as compared to the plant extract in case of nearly all pathogens with a maximum zone of inhibition of 15.33 ± 0.94 mm where more than 12 well-known antibiotics failed to respond. Because of this broad-spectrum activity of nanoparticles as well as the leaf extracts against life-threatening microbes, it can be used as future generation drugs.
Collapse
Affiliation(s)
- Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118 India
| | - Sk Moquammel Haque
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118 India
- Department of Botany, East Calcutta Girls’ College, Lake Town, Kolkata, 700089 India
| | - Debasish Ghosh
- Department of Chemistry, University of Calcutta, University College of Science, 92, A. P. C Road, Kolkata, 700009 India
| | - Diganta Dey
- Department of Microbiology, Ashok Laboratory Clinical Testing Centre Private Limited, Kolkata, 700068 India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Garia, Kolkata, 700084 India
| | - Dilip K. Maity
- Department of Chemistry, University of Calcutta, University College of Science, 92, A. P. C Road, Kolkata, 700009 India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118 India
| |
Collapse
|
5
|
You L, Cha S, Kim MY, Cho JY. Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels. J Ginseng Res 2021; 46:711-721. [DOI: 10.1016/j.jgr.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
|
6
|
Zhang X, Zhang Z, Xia N, Zhao Q. Carbohydrate-containing nanoparticles as vaccine adjuvants. Expert Rev Vaccines 2021; 20:797-810. [PMID: 34101528 DOI: 10.1080/14760584.2021.1939688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Adjuvants are essential to vaccines for immunopotentiation in the elicitation of protective immunity. However, classical and widely used aluminum-based adjuvants have limited capacity to induce cellular response. There are increasing needs for appropriate adjuvants with improved profiles for vaccine development toward emerging pathogens. Carbohydrate-containing nanoparticles (NPs) with immunomodulatory activity and particulate nanocarriers for effective antigen presentation are capable of eliciting a more balanced humoral and cellular immune response.Areas covered: We reviewed several carbohydrates with immunomodulatory properties. They include chitosan, β-glucan, mannan, and saponins, which have been used in vaccine formulations. The mode of action, the preparation methods, characterization of these carbohydrate-containing NPs and the corresponding vaccines are presented.Expert opinion: Several carbohydrate-containing NPs have entered the clinical stage or have been used in licensed vaccines for human use. Saponin-containing NPs are being evaluated in a vaccine against SARS-CoV-2, the pathogen causing the on-going worldwide pandemic. Vaccines with carbohydrate-containing NPs are in different stages of development, from preclinical studies to late-stage clinical trials. A better understanding of the mode of action for carbohydrate-containing NPs as vaccine carriers and as immunostimulators will likely contribute to the design and development of new generation vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.,School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
7
|
Recent Advances in Nanotechnology with Nano-Phytochemicals: Molecular Mechanisms and Clinical Implications in Cancer Progression. Int J Mol Sci 2021; 22:ijms22073571. [PMID: 33808235 PMCID: PMC8036762 DOI: 10.3390/ijms22073571] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles), dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs, including Doxil® (liposome-encapsulated doxorubicin), Abraxane® (albumin-bound paclitaxel), and Oncaspar® (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast, several phytochemicals that were found to be effective in cultured cancer cells and animal studies have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid clearance, resistance, and toxicity. Research to overcome these drawbacks by using phytochemical NPs remains in the early stages of clinical translation. Thus, in the current review, we discuss the progress in nanotechnology, research milestones, the molecular mechanisms of phytochemicals encapsulated in NPs, and clinical implications. Several challenges that must be overcome and future research perspectives are also described.
Collapse
|
8
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
9
|
Verstraeten SL, Lorent JH, Mingeot-Leclercq MP. Lipid Membranes as Key Targets for the Pharmacological Actions of Ginsenosides. Front Pharmacol 2020; 11:576887. [PMID: 33041822 PMCID: PMC7518029 DOI: 10.3389/fphar.2020.576887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
In this review, we will focus on the activity of ginsenosides on membranes and their related effects, from physicochemical, biophysical, and pharmacological viewpoints. Ginsenosides are a class of saponins with a large structural diversity and a wide range of pharmacological effects. These effects can at least partly be related to their activity on membranes which results from their amphiphilic character. Some ginsenosides are able to interact with membrane lipids and associate into nanostructures, making them possible adjuvants for vaccines. They are able to modulate membrane biophysical properties such as membrane fluidity, permeability or the formation of lateral domains with some degree of specificity towards certain cell types such as bacteria, fungi, or cancer cells. In addition, they have shown antioxidant properties which protect membranes from lipid oxidation. They further displayed some activity on membrane proteins either through direct or indirect interaction. We investigate the structure activity relationship of ginsenosides on membranes and discuss the implications and potential use as anticancer, antibacterial, and antifungal agents.
Collapse
Affiliation(s)
- Sandrine L Verstraeten
- Cellular & Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Joseph H Lorent
- Cellular & Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium.,Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Marie-Paule Mingeot-Leclercq
- Cellular & Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
10
|
de Groot C, Müsken M, Müller-Goymann CC. The bidesmosidic triterpene saponins hederacoside C and ginsenoside Rb1 exhibit low affinity to cholesterol in liposomal membranes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
de Groot C, Müsken M, Bleckmann M, Ebensen T, Guzmán CA, Müller-Goymann CC. Novel colloidal associations of soyasaponins and lipid components (DPPC, cholesterol) as potential adjuvants for vaccines. Vaccine 2019; 37:4975-4986. [PMID: 31320217 DOI: 10.1016/j.vaccine.2019.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 11/16/2022]
Abstract
Soyasaponins from soybean (Glycine max) represent promising new potent adjuvants for vaccine research because of their immunostimulating properties and weak hemolytic activity. In the present study, saponin microstructures of soyasaponins (soyasaponin Bb, soyasaponin Ab) with lipid components (cholesterol, DPPC (dipalmitoylphosphatidylcholine)) were designed by the lipid film method. In interaction studies between soyasaponins (soyasaponin Ab/Bb) and Langmuir monolayers (model membranes), composed of cholesterol and DPPC, marked interactions between soyasaponins and a pure cholesterol monolayer were observed. No interaction was detected for soyasaponins with a pure DPPC monolayer. The intercalation of soyasaponins in a mixed DPPC/cholesterol (3:1, w/w) monolayer was only observed for the monodesmosidic soyasaponin Bb whereas the second sugar chain of the bidesmosidic soyasaponin Ab impaired the access to the monolayer. Transmission electron microscopy was used for visualizing particle formation of soyasaponins and lipid components. Pseudo-binary systems (soyasaponin Ab/Bb, cholesterol) formed colloidal associations built up from ring-like subunits in the nanometer size range. In pseudo-ternary systems (soyasaponin, cholesterol, DPPC) soyasaponin Bb attacked the liposomal membrane by forming colloidal associations. Colloidal associations in pseudo-ternary systems with soyasaponin Ab, cholesterol and a phospholipid were only observed in the presence of PE (phosphatidylethanolamine) instead of DPPC. In an MTT assay with a HaCaT cell line (keratinocyte cell line) the cell viability was neither affected by the soyasaponins nor by the corresponding formulations. Both the pure soyasaponin solution and the saponin formulations may be promising adjuvant systems for the intradermal vaccine application. Furthermore, interaction studies between the model antigen ovalbumin and colloidal associations of saponins and cholesterol using MST (Microscale Thermophoresis) gave first indications of an antigen binding to colloidal associations. Ex vivo T-cell proliferation in the presence of soyasaponin Ab was confirmed.
Collapse
Affiliation(s)
- Carolin de Groot
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mathias Müsken
- Helmholtz-Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Maren Bleckmann
- Institut für Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Ebensen
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, 38124 Braunschweig, Germany
| | - Carlos A Guzmán
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, 38124 Braunschweig, Germany
| | - Christel C Müller-Goymann
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
12
|
Kamel MEF, Mohammad HMF, Maurice C, Hagras MM. Ginseng Nanoparticles Protect Against Methotrexate-Induced Testicular Toxicity in Rats. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019. [DOI: 10.32527/2019/101397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Riaz M, Rahman NU, Zia-Ul-Haq M, Jaffar HZ, Manea R. Ginseng: A dietary supplement as immune-modulator in various diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Jin H, Xu Y, Shi F, Hu S. Vaccination at different anatomic sites induces different levels of the immune responses. Res Vet Sci 2018; 122:50-55. [PMID: 30453180 DOI: 10.1016/j.rvsc.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/05/2018] [Accepted: 11/11/2018] [Indexed: 11/16/2022]
Abstract
This study was to evaluate the effects of anatomical sites for vaccination on the immune responses. In experiment A, rats were subcutaneously (s.c.) immunized with a quintuplet vaccine twice at houhai acupoint, underjaw, popliteal fossa or back with a two weeks interval. The serum specific antibody levels were determined 2, 4 and 6 weeks after second immunization. Splenocytes were separated for detection of lymphocyte proliferation and cytokine mRNA expression. In experiment B, 10 female Rottweiler puppies at their age of 34 ± 2 days were subcutaneously injected with a bivalent vaccine Nobivac® Puppy DP containing live attenuated canine distemper virus (CDV) and parvovirus (CPV) for primary vaccination, and a quadrivalent vaccine Nobivac® DHPPI containing live attenuated canine distemper virus (CDV), adenovirus type 2 (CAV-2), parvovirus (CPV) and parainfluenza virus (CPIV) for subsequent vaccination at houhai acupoint (4 dogs), the shoulder (3 dogs) or the nape (3 dogs) region. Blood samples were collected at 0, 2, 4 and 6 weeks after vaccination for determination of serum specific antibody responses by ELISA. The results showed that injection of a vaccine in houhai acupoint induced the highest antibody responses in both rats and dogs. When a vaccine was injected in houhai acupoint, significantly increased proliferative responses to Con A and LPS as well as mRNA expression of IL-4, IL-10, IL-12 and IFN-γ of splenocytes were detected in rats. Therefore, houhai acupoint is recommended for injection of a vaccine to improve the immune response in dogs.
Collapse
Affiliation(s)
- Haibo Jin
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Ye Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Animal hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
15
|
Kim YS, Kim DY, Kang DW, Park CS. Hydrolysis of the outer β-(1,2)-d-glucose linkage at the C-3 position of ginsenosides by a commercial β-galactosidase and its use in the production of minor ginsenosides. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1483348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yeong-Su Kim
- Plant Resource Industry Division, Baekdudaegan National Arboretum, Bonghwa, Republic of Korea
| | - Do-Yeon Kim
- International Ginseng & Herb Research Institute, Geumsan, Republic of Korea
| | - Dong Wook Kang
- Department of Pharmaceutical Science and Technology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Chang-Su Park
- Department of Food Science and Technology, Daegu Catholic University, Gyeongsan, Republic of Korea
| |
Collapse
|
16
|
Cho JH, Chun HY, Lee JS, Lee JH, Cheong KJ, Jung YS, Woo TG, Yoon MH, Oh AY, Kang SM, Lee C, Sun H, Hwang J, Song GY, Park BJ. Prevention effect of rare ginsenosides against stress-hormone induced MTOC amplification. Oncotarget 2018; 7:35144-58. [PMID: 27147573 PMCID: PMC5085216 DOI: 10.18632/oncotarget.9059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 04/11/2016] [Indexed: 01/20/2023] Open
Abstract
Stress has been suggested as one of important cause of human cancer without molecular biological evidence. Thus, we test the effect of stress-related hormones on cell viability and mitotic fidelity. Similarly to estrogen, stress hormone cortisol and its relative cortisone increase microtubule organizing center (MTOC) number through elevated expression of γ-tubulin and provide the Taxol resistance to human cancer cell lines. However, these effects are achieved by glucocorticoid hormone receptor (GR) but not by estrogen receptor (ER). Since ginsenosides possess steroid-like structure, we hypothesized that it would block the stress or estrogen-induced MTOC amplification and Taxol resistance. Among tested chemicals, rare ginsenoside, CSH1 (Rg6) shows obvious effect on inhibition of MTOC amplification, γ-tubulin induction and Taxol resistance. Comparing to Fulvestant (FST), ER-α specific inhibitor, this chemical can block the cortisol/cortisone-induced MTOC deregulation as well as ER-α signaling. Our results suggest that stress hormone induced tumorigenesis would be achieved by MTOC amplification, and CSH1 would be useful for prevention of stress-hormone or steroid hormone-induced chromosomal instability.
Collapse
Affiliation(s)
- Jung-Hyun Cho
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - Ho-Young Chun
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - Jung Suk Lee
- College of Pharmacy, Chungnam National University, Daejoen, Korea
| | - Jee-Hyun Lee
- College of Pharmacy, Chungnam National University, Daejoen, Korea
| | - Kyu Jin Cheong
- College of Pharmacy, Chungnam National University, Daejoen, Korea
| | - Youn-Sang Jung
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - Tae-Gyun Woo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - Ah-Young Oh
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - Chunghui Lee
- Department of Statistics, College of Natural Science, Pusan National University, Busan, Korea
| | - Hokeun Sun
- Department of Statistics, College of Natural Science, Pusan National University, Busan, Korea
| | - Jihwan Hwang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejoen, Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| |
Collapse
|
17
|
Elshafay A, Tinh NX, Salman S, Shaheen YS, Othman EB, Elhady MT, Kansakar AR, Tran L, Van L, Hirayama K, Huy NT. Ginsenoside Rk1 bioactivity: a systematic review. PeerJ 2017; 5:e3993. [PMID: 29158964 PMCID: PMC5695252 DOI: 10.7717/peerj.3993] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
Ginsenoside Rk1 (G-Rk1) is a unique component created by processing the ginseng plant (mainly Sung Ginseng (SG)) at high temperatures. The aim of our study was to systematically review the pharmacological effects of G-Rk1. We utilized and manually searched eight databases to select in vivo and in vitro original studies that provided information about biological, pharmaceutical effects of G-Rk1 and were published up to July 2017 with no restriction on language or study design. Out of the 156 papers identified, we retrieved 28 eligible papers in the first skimming phase of research. Several articles largely described the G-Rk1 anti-cancer activity investigating "cell viability", "cell proliferation inhibition", "apoptotic activity", and "effects of G-Rk1 on G1 phase and autophagy in tumor cells" either alone or in combination with G-Rg5. Others proved that it has antiplatelet aggregation activities, anti-inflammatory effects, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis. In conclusion, G-Rk1 has a significant anti-tumor effect on liver cancer, melanoma, lung cancer, cervical cancer, colon cancer, pancreatic cancer, gastric cancer, and breast adenocarcinoma against in vitro cell lines. In vivo experiments are further warranted to confirm these effects.
Collapse
Affiliation(s)
| | - Ngo Xuan Tinh
- Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | | | | | | | | | | | - Linh Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Le Van
- Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Ratheesh G, Tian L, Venugopal JR, Ezhilarasu H, Sadiq A, Fan TP, Ramakrishna S. Role of medicinal plants in neurodegenerative diseases. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40898-017-0004-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Lee YK, Choi KH, Kwak HS, Chang YH. The preventive effects of nanopowdered red ginseng on collagen-induced arthritic mice. Int J Food Sci Nutr 2017; 69:308-317. [PMID: 28770639 DOI: 10.1080/09637486.2017.1358359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study was carried out to investigate the efficiency of red ginseng nanopowder in preventing collagen-induced arthritis (CIA) in mice. The mice were divided into five groups: normal group (no immunisation), control (CIA), powdered red ginseng (PRG), nanopowdered red ginseng (NRG) and methotrexate (MTX). Administering MTX, PRG and NRG to arthritic mice significantly decreased spleen indexes, clinical and histological scores compared to control group. Serum analysis of NRG and MTX groups showed a reduction in the cytokines such as the levels of tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1β (IL-1β) in comparison to PRG group. The levels of immunoglobulin M (IgM) and immunoglobulin G1 (IgG1) in the NRG group were significantly lower than those of the PRG group. In summary, the present study indicated that NRG can be effective in preventing type II collagen-induced rheumatoid arthritis in mice.
Collapse
Affiliation(s)
- Yun-Kyung Lee
- a Department of Food and Nutrition , Kyung Hee University , Seoul , Republic of Korea
| | - Kyung-Hoon Choi
- b Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | - Hae-Soo Kwak
- b Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | - Yoon Hyuk Chang
- a Department of Food and Nutrition , Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
20
|
The Adjuvant Activity of Epimedium Polysaccharide-Propolis Flavone Liposome on Enhancing Immune Responses to Inactivated Porcine Circovirus Vaccine in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:972083. [PMID: 26612996 PMCID: PMC4647051 DOI: 10.1155/2015/972083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022]
Abstract
Objectives. The adjuvant activity of Epimedium polysaccharide-propolis flavone liposome (EPL) was investigated in vitro and in vivo. Methods. In vitro, the effects of EPL at different concentrations on splenic lymphocytes proliferation and mRNA expression of IFN-γ and IL-6 were determined. In vivo, the adjuvant activities of EPL, EP, and mineral oil were compared in BALB/c mice through vaccination with inactivated porcine circovirus type 2 (PCV2) vaccine. Results. In vitro, EPL promoted lymphocytes proliferation and increased the mRNA expression of IFN-γ and IL-6, and the effect was significantly better than EP at all concentrations. In vivo, EPL significantly promoted the lymphocytes proliferation and the secretion of cytokines and improved the killing activity of NK cells, PCV2-specific antibody titers, and the proportion of T-cell subgroups. The effects of EPL were significantly better than EP and oil adjuvant at most time points. Conclusion. EPL could significantly improve both PCV2-specific cellular and humoral immune responses, and its medium dose had the best efficacy. Therefore, EPL would be exploited in an effective immune adjuvant for inactivated PCV2 vaccine.
Collapse
|
21
|
Wang WN, Yan BX, Xu WD, Qiu Y, Guo YL, Qiu ZD. Highly Selective Bioconversion of Ginsenoside Rb1 to Compound K by the Mycelium of Cordyceps sinensis under Optimized Conditions. Molecules 2015; 20:19291-309. [PMID: 26512632 PMCID: PMC6332142 DOI: 10.3390/molecules201019291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 02/05/2023] Open
Abstract
Compound K (CK), a highly active and bioavailable derivative obtained from protopanaxadiol ginsenosides, displays a wide variety of pharmacological properties, especially antitumor activity. However, the inadequacy of natural sources limits its application in the pharmaceutical industry. In this study, we firstly discovered that Cordyceps sinensis was a potent biocatalyst for the biotransformation of ginsenoside Rb1 into CK. After a series of investigations on the biotransformation parameters, an optimal composition of the biotransformation culture was found to be lactose, soybean powder and MgSO₄ without controlling the pH. Also, an optimum temperature of 30 °C for the biotransformation process was suggested in a range of 25 °C-50 °C. Then, a biotransformation pathway of Rb1→Rd→F2→CK was established using high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Our results demonstrated that the molar bioconversion rate of Rb1 to CK was more than 82% and the purity of CK produced by C. sinensis under the optimized conditions was more than 91%. In conclusion, the combination of C. sinensis and the optimized conditions is applicable for the industrial preparation of CK for medicinal purposes.
Collapse
Affiliation(s)
- Wei-Nan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Bing-Xiong Yan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wen-Di Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yun-Long Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhi-Dong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
22
|
Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq MP. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem 2015; 12:8803-22. [PMID: 25295776 DOI: 10.1039/c4ob01652a] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds.
Collapse
Affiliation(s)
- Joseph H Lorent
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology (FACM), Avenue Mounier 73, B1.73.05, B-1200 Brussels, Belgium.
| | | | | |
Collapse
|
23
|
Wang Y, Choi KD, Yu H, Jin F, Im WT. Production of ginsenoside F1 using commercial enzyme Cellulase KN. J Ginseng Res 2015; 40:121-6. [PMID: 27158232 PMCID: PMC4845047 DOI: 10.1016/j.jgr.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 11/05/2022] Open
Abstract
Background Ginsenoside F1, a pharmaceutical component of ginseng, is known to have antiaging, antioxidant, anticancer, and keratinocyte protective effects. However, the usage of ginsenoside F1 is restricted owing to the small amount found in Korean ginseng. Methods To enhance the production of ginsenoside F1 as a 10 g unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the commercial enzyme Cellulase KN from Aspergillus niger with food grade, which has ginsenoside-transforming ability. The proposed optimum reaction conditions of Cellulase KN were pH 5.0 and 50°C. Results Cellulase KN could effectively transform the ginsenosides Re and Rg1 into F1. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 5.0 and 50°C for 48 h with protopanaxatriol-type ginsenoside mixture (at a concentration of 10 mg/mL) from ginseng roots. Finally, 13.0 g of F1 was produced from 50 g of protopanaxatriol-type ginsenoside mixture with 91.5 ± 1.1% chromatographic purity. Conclusion The results suggest that this enzymatic method could be exploited usefully for the preparation of ginsenoside F1 to be used in cosmetic, functional food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yu Wang
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, PR China; Department of Biotechnology, Hankyong National University, Anseong, Korea
| | - Kang-Duk Choi
- Genomic Informatics Center, Graduate School of Future Convergence Technology, Hankyong National University, Anseong, Korea
| | - Hongshan Yu
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, PR China
| | - Fengxie Jin
- College of Biotechnology, Dalian Polytechnic University, Ganjingzi-qu, Dalian, PR China
| | - Wan-Taek Im
- Department of Biotechnology, Hankyong National University, Anseong, Korea; Genomic Informatics Center, Graduate School of Future Convergence Technology, Hankyong National University, Anseong, Korea
| |
Collapse
|
24
|
Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends of nano bioactive compounds from ginseng for its possible preventive role in chronic disease models. RSC Adv 2015. [DOI: 10.1039/c5ra20559j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bioactive nano ginseng has roles in various diseases.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Nanotechnology Research Center and Department of Applied Life Science
- College of Biomedical and Health Science
- Konkuk University
- Chungju 380-701
- Republic of Korea
| | - Hyun-Myung Ko
- Department of Biotechnology
- College of Biomedical and Health Science
- Konkuk University
- Chungju 380-701
- Republic of Korea
| | - In-Su Kim
- Department of Biotechnology
- College of Biomedical and Health Science
- Konkuk University
- Chungju 380-701
- Republic of Korea
| | - Dong-Kug Choi
- Nanotechnology Research Center and Department of Applied Life Science
- College of Biomedical and Health Science
- Konkuk University
- Chungju 380-701
- Republic of Korea
| |
Collapse
|
25
|
Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. APPLIED NANOSCIENCE 2014. [DOI: 10.1007/s13204-014-0387-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wu H, Høiby N, Yang L, Givskov M, Song Z. Effects of radix ginseng on microbial infections: a narrative review. J TRADIT CHIN MED 2014; 34:227-33. [PMID: 24783938 DOI: 10.1016/s0254-6272(14)60083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarized the antimicrobial-like effects of Radix Ginseng, which provide important information to the relevant researchers and clinicians, and will benefit the clinical treatment of infectious diseases. METHODS PubMed and Google were used to search for and collect scientific publications related to Radix Ginseng and microbial infections. The authors read, classified, and discussed the associated scientific results or evidences, and summarized the corresponding results. RESULTS In this review, recent studies on the beneficial effects of Radix Ginseng extracts on microbial and biofilm infections were reviewed. The importance and significance of Radix Ginseng's beneficial effects are discussed. Evidence for the favorable effects of Radix Ginseng extracts on viral, bacterial, fungal, and parasitic infections and the possible underlying mechanisms are summarized. CONCLUSION Radix Ginseng might be a promising supplemental remedy for the prevention and treatment of infectious diseases.
Collapse
|
27
|
Lee YT, Kim KH, Ko EJ, Lee YN, Kim MC, Kwon YM, Tang Y, Cho MK, Lee YJ, Kang SM. New vaccines against influenza virus. Clin Exp Vaccine Res 2013; 3:12-28. [PMID: 24427759 PMCID: PMC3890446 DOI: 10.7774/cevr.2014.3.1.12] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 12/23/2022] Open
Abstract
Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs.
Collapse
Affiliation(s)
- Young-Tae Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Animal and Plant Quarantine Agency, Anyang, Korea
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Yinghua Tang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Min-Kyoung Cho
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
28
|
Shan SM, Luo JG, Huang F, Kong LY. Chemical characteristics combined with bioactivity for comprehensive evaluation of Panax ginseng C.A. Meyer in different ages and seasons based on HPLC-DAD and chemometric methods. J Pharm Biomed Anal 2013; 89:76-82. [PMID: 24252727 DOI: 10.1016/j.jpba.2013.10.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
Abstract
Panax ginseng C.A. Meyer has been known as a valuable traditional Chinese medicines for thousands years of history. Ginsenosides, the main active constituents, exhibit prominent immunoregulation effect. The present study first describes a holistic method based on chemical characteristic and lymphocyte proliferative capacity to evaluate systematically the quality of P. ginseng in thirty samples from different seasons during 2-6 years. The HPLC fingerprints were evaluated using principle component analysis (PCA) and hierarchical clustering analysis (HCA). The spectrum-efficacy model between HPLC fingerprints and T-lymphocyte proliferative activities was investigated by principal component regression (PCR) and partial least squares (PLS). The results indicated that the growth of the ginsenosides could be grouped into three periods and from August of the fifth year, P. ginseng appeared significant lymphocyte proliferative capacity. Close correlation existed between the spectrum-efficacy relationship and ginsenosides Rb1, Ro, Rc, Rb2 and Re were the main contributive components to the lymphocyte proliferative capacity. This comprehensive strategy, providing reliable and adequate scientific evidence, could be applied to other TCMs to ameliorate their quality control.
Collapse
Affiliation(s)
- Si-Ming Shan
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Fang Huang
- Department of Pharmacology for Chinese Materia Medica, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
29
|
Kim EM, Seo JH, Kim J, Park JS, Kim DH, Kim BG. Production of ginsenoside aglycons and Rb1 deglycosylation pathway profiling by HPLC and ESI-MS/MS using Sphingobacterium multivorum GIN723. Appl Microbiol Biotechnol 2013; 97:8031-9. [DOI: 10.1007/s00253-013-4982-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/13/2013] [Accepted: 05/02/2013] [Indexed: 11/30/2022]
|
30
|
Kang S, Min H. Ginseng, the 'Immunity Boost': The Effects of Panax ginseng on Immune System. J Ginseng Res 2013; 36:354-68. [PMID: 23717137 PMCID: PMC3659612 DOI: 10.5142/jgr.2012.36.4.354] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/28/2022] Open
Abstract
Thousands of literatures have described the diverse role of ginseng in physiological processes such as cancer, neurodegenerative disorders, insulin resistance, and hypertension. In particular, ginseng has been extensively reported to maintain homeostasis of the immune system and to enhance resistance to illness or microbial attacks through the regulation of immune system. Immune system comprises of different types of cells fulfilling their own specialized functions, and each type of the immune cells is differentially influenced and may be simultaneously controlled by ginseng treatment. This review summarizes the current knowledge on the effects of ginseng on immune system. We discuss how ginseng regulates each type of immune cells including macrophages, natural killer cells, dendritic cells, T cells, and B cells. We also describe how ginseng exhibits beneficial effects on controlling inflammatory diseases and microbial infections.
Collapse
Affiliation(s)
- Soowon Kang
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | |
Collapse
|
31
|
Kim GS, Lee SE, Noh HJ, Kwon H, Lee SW, Kim SY, Kim YB. Effects of Natural Bioactive Products on the Growth and Ginsenoside Contents of Panax ginseng Cultured in an Aeroponic System. J Ginseng Res 2013; 36:430-41. [PMID: 23717147 PMCID: PMC3659602 DOI: 10.5142/jgr.2012.36.4.430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 05/11/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to evaluate the effects of natural bioactive products such as Manda enzyme (T1), Yangmyeongwon (T2), effective microorganisms (T3), and Kelpak (T4) on the growth and ginsenoside contents of Panax ginseng cultured in an aeroponic system using a two-layer vertical type of nutrient bath under natural light conditions. The growth of ginseng plants showed specific characteristics according to the positions in which they were cultured due to the difference of light transmittance and temperature in the upper and lower layers during aeroponic culture in a two-layer vertical type of system. The growth of the aerial part of the leaves and stems of ginseng plants cultured in the lower layer (4,000 to 6,000 lx, 23℃ to 26℃) of the nutrient bath was observed to be superior to that of the ginseng plants cultured in the upper layer (12,000 to 15,000 lx, 25℃ to 28℃). The leaf area was significantly larger in the treatment of T2 and T4 (46.70 cm2) than with other treatments. Conversely, the values of the root weight and root diameter were higher in ginseng plants cultured in the upper layer of the nutrient bath. The root weight was significantly heavier in the treatment of T4 (6.46 g) and T3 (6.26 g) than with other treatments. The total ginsenoside content in the leaves and roots was highest in the ginseng plants cultured by the treatment of T1, at 16.20%, while the total ginsenoside content obtained by other treatments decreased in the order of T4, T5 (control), T2, and T3, at 13.21%, 12.30%, 14.84%, and 14.86%, respectively. The total ginsenoside content of the ginseng leaves was found to be significantly higher in the treatment of T1 in the lower layer of the nutrient bath, at 15.30%, while the content of the ginseng roots in the treatments of T3 and T4, at 1.27% and 1.23%, respectively, was significantly higher than in other treatments in the upper layer of the nutrient bath.
Collapse
Affiliation(s)
- Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong 369-873, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Son HM, Yang JE, Kook MC, Shin HS, Park SY, Lee DG, Yi TH. Sphingobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from the soil of a ginseng field. J GEN APPL MICROBIOL 2013; 59:345-52. [DOI: 10.2323/jgam.59.345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Enzymatic transformation of the major ginsenoside Rb2 to minor compound Y and compound K by a ginsenoside-hydrolyzing β-glycosidase from Microbacterium esteraromaticum. ACTA ACUST UNITED AC 2012; 39:1557-62. [DOI: 10.1007/s10295-012-1158-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Abstract
The ginsenoside-hydrolyzing β-glycosidase (Bgp3) derived from Microbacterium esteraromaticum transformed the major ginsenoside Rb2 to more pharmacologically active minor ginsenosides including compounds Y and K. The bgp3 gene consists of 2,271 bp encoding 756 amino acids which have homology to the glycosyl hydrolase family 3 protein domain. Bgp3 is capable of hydrolyzing beta-glucose links and arabinose links. HPLC analysis of the time course of ginsenoside Rb2 hydrolysis by Bgp3 (0.1 mg enzyme ml−1 in 20 mM sodium phosphate buffer at 40 °C and pH 7.0) showed that the glycosidase first hydrolyzed the inner glucose moiety attached to the C-3 position and then the arabinopyranose moiety attached to the C-20 position. Thus, Bgp3 hydrolyzed the ginsenoside Rb2 via the following pathway: Rb2 → compound Y → compound K.
Collapse
|
34
|
Senchina DS, Hallam JE, Cheney DJ. Multidisciplinary perspectives on mechanisms of activity of popular immune-enhancing herbal supplements used by athletes. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1197-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Zhang DF, Xu H, Sun BB, Li JQ, Zhou QJ, Zhang HL, Du AF. Adjuvant effect of ginsenoside-based nanoparticles (ginsomes) on the recombinant vaccine against Eimeria tenella in chickens. Parasitol Res 2012; 110:2445-53. [DOI: 10.1007/s00436-011-2784-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
36
|
Megna M, Pamico A, Cristella G, Saggini R, Jirillo E, Ranieri M. Effects of Herbal Supplements on the Immune System in Relation to Exercise. Int J Immunopathol Pharmacol 2012; 25:43S-49S. [DOI: 10.1177/03946320120250s107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- M. Megna
- Neuroscience and Sense Organs Department Physical Medicine and Rehabilitation Bari “Aldo Moro” University — Italy
| | - A. Pamico
- Neuroscience and Sense Organs Department Physical Medicine and Rehabilitation Bari “Aldo Moro” University — Italy
| | - G. Cristella
- Osmairm Neuropsychomotor Rehabilitation Center Laterza (Ta) Italy
| | - R. Saggini
- Department of Physical Medicine and Rehabilitation “G. D'annunzio” University -Chieti, Italy
| | - E. Jirillo
- Department of Clinica Medica, Immunologica e Malattie Infettive Bari “Aldo Moro” University - Italy
| | - M. Ranieri
- Neuroscience and Sense Organs Department Physical Medicine and Rehabilitation Bari “Aldo Moro” University — Italy
| |
Collapse
|
37
|
Natural products and the search for novel vaccine adjuvants. Vaccine 2011; 29:6464-71. [DOI: 10.1016/j.vaccine.2011.07.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 01/07/2023]
|
38
|
Elavazhagan T, Arunachalam KD. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine 2011; 6:1265-78. [PMID: 21753878 PMCID: PMC3131193 DOI: 10.2147/ijn.s18347] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Indexed: 01/17/2023] Open
Abstract
We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.
Collapse
Affiliation(s)
- Tamizhamudu Elavazhagan
- Centre for Interdisciplinary Research, Directorate of Research, SRM University, Kattankulathur, Tamilnadu, India.
| | | |
Collapse
|
39
|
Osbourn A, Goss RJM, Field RA. The saponins: polar isoprenoids with important and diverse biological activities. Nat Prod Rep 2011; 28:1261-8. [PMID: 21584304 DOI: 10.1039/c1np00015b] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Saponins are polar molecules that consist of a triterpene or steroid aglycone with one or more sugar chains. They are one of the most numerous and diverse groups of plant natural products. These molecules have important ecological and agronomic functions, contributing to pest and pathogen resistance and to food quality in crop plants. They also have a wide range of commercial applications in the food, cosmetics and pharmaceutical sectors. Although primarily found in plants, saponins are produced by certain other organisms, including starfish and sea cucumbers. The under explored biodiversity of this class of natural products is likely to prove to be a vital resource for discovery of high-value compounds. This review will focus on the biological activity of some of the best-studied examples of saponins, on the relationship between structure and function, and on prospects for synthesis of ‘‘designer’’ saponins.
Collapse
Affiliation(s)
- Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, UK.
| | | | | |
Collapse
|
40
|
Wee J, Park K, Chung AS. Biological Activities of Ginseng and Its Application to Human Health. OXIDATIVE STRESS AND DISEASE 2011. [DOI: 10.1201/b10787-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Guan S, Lu J, Shen X, Qian W, Liu J, Deng X. Florfenicol impairs the immune responses to vaccination against foot-and-mouth disease in mice. Immunopharmacol Immunotoxicol 2011; 33:609-13. [PMID: 21428714 DOI: 10.3109/08923973.2011.552507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Florfenicol is a new type of broad-spectrum antibacterial that has been used in veterinary clinics. It showed immunosuppressive activity on the immune responses to vaccination against foot-and-mouth disease virus (FMDV) serotype O in mice. In the present study, BALB/c mice were immunized subcutaneously with FMDV serotype O antigen on days 1 and 14. Beginning on day 21, mice were treated with a single daily oral dose of florfenicol (50, 100, and 200 mg/kg) for seven consecutive days. On day 28, blood samples were collected to analyze FMDV-specific immunoglobulin G (IgG), IgG1, and IgG2b antibodies, and splenocytes were harvested to assess lymphocyte proliferation, CD3(+) T- and CD19(+) B-lymphocyte subsets. The results presented here demonstrated that florfenicol not only significantly suppressed concanavalin A-, lipopolysaccharide-induced splenocyte proliferation but also decreased the percentage of CD19(+) B-cells in a dose-dependent manner and suppressed CD3(+) T-cell at high doses. Moreover, FMDV-specific IgG, IgG1, and IgG2b antibody levels in FMDV-immunized mice were reduced by florfenicol. These results suggested that florfenicol could suppress humoral and cellular immune responses to vaccination against foot-and-mouth disease (FMD) in mice.
Collapse
Affiliation(s)
- Shuang Guan
- Department of Veterinary Pharmacology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Park YM, Im AR, Joo EJ, Lee JH, Park HG, Kang YH, Linhardt RJ, Kim YS. Conjugation of Ginsenoside Rg3 with Gold Nanoparticles. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.1.286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Pollier J, Moses T, Goossens A. Combinatorial biosynthesis in plants: A (p)review on its potential and future exploitation. Nat Prod Rep 2011; 28:1897-916. [DOI: 10.1039/c1np00049g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 2010; 87:9-19. [DOI: 10.1007/s00253-010-2567-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|