1
|
Rajendran M, Krammer F, McMahon M. The Human Antibody Response to the Influenza Virus Neuraminidase Following Infection or Vaccination. Vaccines (Basel) 2021; 9:vaccines9080846. [PMID: 34451971 PMCID: PMC8402431 DOI: 10.3390/vaccines9080846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
The influenza virus neuraminidase (NA) is primarily involved in the release of progeny viruses from infected cells—a critical role for virus replication. Compared to the immuno-dominant hemagglutinin, there are fewer NA subtypes, and NA experiences a slower rate of antigenic drift and reduced immune selection pressure. Furthermore, NA inhibiting antibodies prevent viral egress, thus preventing viral spread. Anti-NA immunity can lessen disease severity, reduce viral shedding, and decrease viral lung titers in humans and various animal models. As a result, there has been a concerted effort to investigate the possibilities of incorporating immunogenic forms of NA as a vaccine antigen in future vaccine formulations. In this review, we discuss NA-based immunity and describe several human NA-specific monoclonal antibodies (mAbs) that have a broad range of protection. We also review vaccine platforms that are investigating NA antigens in pre-clinical models and their potential use for next-generation influenza virus vaccines. The evidence presented here supports the inclusion of immunogenic NA in future influenza virus vaccines.
Collapse
Affiliation(s)
- Madhusudan Rajendran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (F.K.); (M.M.)
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Correspondence: (F.K.); (M.M.)
| |
Collapse
|
2
|
Elbahesh H, Saletti G, Gerlach T, Rimmelzwaan GF. Broadly protective influenza vaccines: design and production platforms. Curr Opin Virol 2019; 34:1-9. [DOI: 10.1016/j.coviro.2018.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
|
3
|
Kumar A, Meldgaard TS, Bertholet S. Novel Platforms for the Development of a Universal Influenza Vaccine. Front Immunol 2018; 9:600. [PMID: 29628926 PMCID: PMC5877485 DOI: 10.3389/fimmu.2018.00600] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenza-virus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.
Collapse
Affiliation(s)
- Arun Kumar
- GSK, Research and Development Center, Siena, Italy.,Linköping University, Linköping, Sweden
| | - Trine Sundebo Meldgaard
- GSK, Research and Development Center, Siena, Italy.,DTU Nanotech, Technical University of Denmark, Copenhagen, Denmark
| | - Sylvie Bertholet
- GSK, Research and Development Center, Siena, Italy.,GSK, Research and Development Center, Rockville, MD, United States
| |
Collapse
|
4
|
Rajão DS, Pérez DR. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front Microbiol 2018; 9:123. [PMID: 29467737 PMCID: PMC5808216 DOI: 10.3389/fmicb.2018.00123] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches.
Collapse
Affiliation(s)
- Daniela S. Rajão
- Department of Population Health, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
5
|
Abstract
Alphavirus vectors based on Semliki Forest virus, Sindbis virus, and Venezuelan equine encephalitis virus have been widely applied for vaccine development. Naked RNA replicons, recombinant viral particles, and layered DNA vectors have been subjected to immunization in preclinical animal models with antigens for viral targets and tumor antigens. Moreover, a limited number of clinical trials have been conducted in humans. Vaccination with alphavirus vectors has demonstrated efficient immune responses and has showed protection against challenges with lethal doses of virus and tumor cells, respectively. Moreover, vaccines have been developed against alphaviruses causing epidemics such as Chikungunya virus.
Collapse
|
6
|
Zhang H, El Zowalaty ME. DNA-based influenza vaccines as immunoprophylactic agents toward universality. Future Microbiol 2015; 11:153-64. [PMID: 26673424 DOI: 10.2217/fmb.15.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mohamed E El Zowalaty
- Biomedical Research Center, Vice President Office for Research, Qatar University, Doha 2713, Qatar
| |
Collapse
|
7
|
Alphavirus-based vaccines. Viruses 2014; 6:2392-415. [PMID: 24937089 PMCID: PMC4074933 DOI: 10.3390/v6062392] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.
Collapse
|
8
|
Abstract
The challenges in successful vaccination against influenza using conventional approaches lie in their variable efficacy in different age populations, the antigenic variability of the circulating virus, and the production and manufacturing limitations to ensure safe, timely, and adequate supply of vaccine. The conventional influenza vaccine platform is based on stimulating immunity against the major neutralizing antibody target, hemagglutinin (HA), by virus attenuation or inactivation. Improvements to this conventional system have focused primarily on improving production and immunogenicity. Cell culture, reverse genetics, and baculovirus expression technology allow for safe and scalable production, while adjuvants, dose variation, and alternate routes of delivery aim to improve vaccine immunogenicity. Fundamentally different approaches that are currently under development hope to signal new generations of influenza vaccines. Such approaches target nonvariable regions of antigenic proteins, with the idea of stimulating cross-protective antibodies and thus creating a "universal" influenza vaccine. While such approaches have obvious benefits, there are many hurdles yet to clear. Here, we discuss the process and challenges of the current influenza vaccine platform as well as new approaches that are being investigated based on the same antigenic target and newer technologies based on different antigenic targets.
Collapse
|
9
|
Liniger M, Summerfield A, Ruggli N. MDA5 can be exploited as efficacious genetic adjuvant for DNA vaccination against lethal H5N1 influenza virus infection in chickens. PLoS One 2012; 7:e49952. [PMID: 23227156 PMCID: PMC3515599 DOI: 10.1371/journal.pone.0049952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022] Open
Abstract
Chickens lack the retinoic acid-inducible gene I (RIG-I) and sense avian influenza virus (AIV) infections by means of the melanoma differentiation-associated gene 5 product (chMDA5). Plasmid-driven expression of the N-terminal half of chMDA5 containing the caspase activation and recruitment domains [chMDA5(1-483)] triggers interferon-β responses in chicken cells. We hypothesized that mimicking virus infection by chMDA5(1-483) expression may enhance vaccine-induced adaptive immunity. In order to test this, the potential genetic adjuvant properties of chMDA5(1-483) were evaluated in vivo in combination with a suboptimal quantity of a plasmid DNA vaccine expressing haemagglutinin (HA) of H5N1 AIV. Co-administration of the HA plasmid with plasmid DNA for chMDA5(1-483) expression resulted in approximately 10-fold higher HA-specific antibody responses than injection of the HA plasmid mixed with empty vector DNA as control. Accordingly, compared with HA DNA vaccination alone, the chMDA5(1-483)-adjuvanted HA DNA vaccine mediated enhanced protection against a lethal H5N1 challenge infection in chickens, with reduced clinical signs and cloacal virus shedding. These data demonstrate that innate immune activation by expression of signaling domains of RIG-I-like receptors can be exploited to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Matthias Liniger
- Research Department, Institute of Virology and Immunoprophylaxis (IVI), Mittelhäusern, Switzerland
| | - Artur Summerfield
- Research Department, Institute of Virology and Immunoprophylaxis (IVI), Mittelhäusern, Switzerland
| | - Nicolas Ruggli
- Research Department, Institute of Virology and Immunoprophylaxis (IVI), Mittelhäusern, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Wolf A, Hodneland K, Frost P, Braaen S, Rimstad E. A hemagglutinin-esterase-expressing salmonid alphavirus replicon protects Atlantic salmon (Salmo salar) against infectious salmon anemia (ISA). Vaccine 2012. [PMID: 23200939 DOI: 10.1016/j.vaccine.2012.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A replicon expression system based on the salmonid alphavirus (SAV) that encodes the infectious salmon anemia virus (ISAV) hemagglutinin-esterase (HE) was constructed and found to be an efficacious vaccine against infectious salmon anemia (ISA). Following a single intramuscular immunization, Atlantic salmon (Salmo salar) were effectively protected against subsequent ISAV challenge. Additional replicons coding for the ISAV fusion glycoprotein (F) or the ISAV matrix protein (M) were created and tested in combination with the replicon that encodes the HE. The ISAV HE was confirmed as a potent antigen, but neither the F nor the M proteins were found to be essential for immunization-induced protection. Innate immune response induced at the site of vaccination illustrated the immunogenicity of the SAV-based replicon and its ability to activate antiviral responses in Atlantic salmon. The successful testing of the SAV-based replicon as a vaccine model against ISA showed that the replicon approach may represent a novel immunization technology for the aquaculture industry. It offers potential benefits in terms of safety, efficacy, flexibility, and vaccine production complexity.
Collapse
Affiliation(s)
- Astrid Wolf
- Department of Food Safety and Infection Biology, The Norwegian School of Veterinary Science, N-0033 Oslo, Norway.
| | | | | | | | | |
Collapse
|