1
|
Swietnicki W. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules 2021; 11:892. [PMID: 34203937 PMCID: PMC8232601 DOI: 10.3390/biom11060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
2
|
Rosenzweig JA, Hendrix EK, Chopra AK. Plague vaccines: new developments in an ongoing search. Appl Microbiol Biotechnol 2021; 105:4931-4941. [PMID: 34142207 PMCID: PMC8211537 DOI: 10.1007/s00253-021-11389-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
As the reality of pandemic threats challenges humanity, exemplified during the ongoing SARS-CoV-2 infections, the development of vaccines targeting these etiological agents of disease has become increasingly critical. Of paramount concern are novel and reemerging pathogens that could trigger such events, including the plague bacterium Yersinia pestis. Y. pestis is responsible for more human deaths than any other known pathogen and exists globally in endemic regions of the world, including the four corners region and Northern California in the USA. Recent cases have been scattered throughout the world, including China and the USA, with serious outbreaks in Madagascar during 2008, 2013-2014, and, most recently, 2017-2018. This review will focus on recent advances in plague vaccine development, a seemingly necessary endeavor, as there is no Food and Drug Administration-licensed vaccine available for human distribution in western nations, and that antibiotic-resistant strains are recovered clinically or intentionally developed. Progress and recent development involving subunit, live-attenuated, and nucleic acid-based plague vaccine candidates will be discussed in this review. KEY POINTS: • Plague vaccine development remains elusive yet critical. • DNA, animal, and live-attenuated vaccine candidates gain traction.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA.
| | - Emily K Hendrix
- Departmnet of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Departmnet of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
3
|
Gupta A, Narayan B, Kumar S, Verma SK. Vaccine Potential of a Recombinant Bivalent Fusion Protein LcrV-HSP70 Against Plague and Yersiniosis. Front Immunol 2020; 11:988. [PMID: 32595634 PMCID: PMC7303293 DOI: 10.3389/fimmu.2020.00988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/27/2020] [Indexed: 01/31/2023] Open
Abstract
To counteract the deadly pathogens, i.e., Y. pestis, Y. enetrocolitica, and Y. pseudotuberculosis, we prepared a recombinant DNA construct lcrV-hsp70 encoding the bivalent fusion protein LcrV-HSP70. The lcrV gene of Y. pestis and hsp70 domain II DNA fragment of M. tuberculosis were amplified by PCR. The lcrV amplicon was first ligated in the pET vector using NcoI and BamHI restriction sites. Just downstream to the lcrV gene, the hsp70 domain II was ligated using BamHI and Hind III restriction sites. The in-frame and the orientation of cloned lcrV-hsp70 were checked by restriction analysis and nucleotide sequencing. The recombinant bivalent fusion protein LcrV-HSP70 was expressed in E. coli and purified by affinity chromatography. The vaccine potential of LcrV-HSP70 fusion protein was evaluated in formulation with alum. BALB/c mice were vaccinated, and the humoral and cellular immune responses were studied. The fusion protein LcrV-HSP70 induced a strong and significant humoral immune response in comparison to control animals. We also observed a significant difference in the expression levels of IFN-γ and TNF-α in LcrV–HSP70-immunized mice in comparison to control, HSP70, and LcrV groups. To test the protective efficacy of the LcrV–HSP70 fusion protein against plague and Yersiniosis, the vaccinated mice were challenged with Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis separately. The bivalent fusion protein LcrV–HSP70 imparted 100% protection against the plague. In the case of Yersiniosis, on day 2 post challenge, there was a significant reduction in the number of CFU of Y. enterocolitica and Y. pseudotuberculosis in the blood (CFU/ml) and the spleen (CFU/g) of vaccinated animals in comparison to the LcrV, HSP70, and control group animals.
Collapse
Affiliation(s)
- Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Bineet Narayan
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Subodh Kumar
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | | |
Collapse
|
4
|
Wang X, Singh AK, Zhang X, Sun W. Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia pestis. Infect Immun 2020; 88:e00081-20. [PMID: 32152195 PMCID: PMC7171232 DOI: 10.1128/iai.00081-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
A Yersinia pestis mutant synthesizing an adjuvant form of lipid A (monophosphoryl lipid A, MPLA) displayed increased biogenesis of bacterial outer membrane vesicles (OMVs). To enhance the immunogenicity of the OMVs, we constructed an Asd-based balanced-lethal host-vector system that oversynthesized the LcrV antigen of Y. pestis, raised the amounts of LcrV enclosed in OMVs by the type II secretion system, and eliminated harmful factors like plasminogen activator (Pla) and murine toxin from the OMVs. Vaccination with OMVs containing MPLA and increased amounts of LcrV with diminished toxicity afforded complete protection in mice against subcutaneous challenge with 8 × 105 CFU (80,000 50% lethal dose [LD50]) and intranasal challenge with 5 × 103 CFU (50 LD50) of virulent Y. pestis This protection was significantly superior to that resulting from vaccination with LcrV/alhydrogel or rF1-V/alhydrogel. At week 4 postimmunization, the OMV-immunized mice showed more robust titers of antibodies against LcrV, Y. pestis whole-cell lysate (YPL), and F1 antigen and more balanced IgG1:IgG2a/IgG2b-derived Th1 and Th2 responses than LcrV-immunized mice. Moreover, potent adaptive and innate immune responses were stimulated in the OMV-immunized mice. Our findings demonstrate that self-adjuvanting Y. pestis OMVs provide a novel plague vaccine candidate and that the rational design of OMVs could serve as a robust approach for vaccine development.
Collapse
Affiliation(s)
- Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
5
|
Development of Yersinia pestis F1 antigen-loaded liposome vaccine against plague using microneedles as a delivery system. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Noad RJ, Simpson K, Fooks AR, Hewson R, Gilbert SC, Stevens MP, Hosie MJ, Prior J, Kinsey AM, Entrican G, Simpson A, Whitty CJM, Carroll MW. UK vaccines network: Mapping priority pathogens of epidemic potential and vaccine pipeline developments. Vaccine 2019; 37:6241-6247. [PMID: 31522809 PMCID: PMC7127063 DOI: 10.1016/j.vaccine.2019.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
During the 2013-2016 Ebola outbreak in West Africa an expert panel was established on the instructions of the UK Prime Minister to identify priority pathogens for outbreak diseases that had the potential to cause future epidemics. A total of 13 priority pathogens were identified, which led to the prioritisation of spending in emerging diseases vaccine research and development from the UK. This meeting report summarises the process used to develop the UK pathogen priority list, compares it to lists generated by other organisations (World Health Organisation, National Institutes of Allergy and Infectious Diseases) and summarises clinical progress towards the development of vaccines against priority diseases. There is clear technical progress towards the development of vaccines. However, the availability of these vaccines will be dependent on sustained funding for clinical trials and the preparation of clinically acceptable manufactured material during inter-epidemic periods.
Collapse
Affiliation(s)
- Rob J Noad
- Pathobiology and Population Science, The Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.
| | - Karl Simpson
- JKS Bioscience Ltd, 2 Midanbury Court, 44 Midanbury Lane, Southampton SO18 4HF, UK.
| | | | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Sarah C Gilbert
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | - Mark P Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, College of Veterinary, Medical and Life Sciences, Garscube Estate, Bearsden, Glasgow G61 1QH, UK.
| | - Joann Prior
- CBR Division, Dstl Porton Down, Wiltshire SP3 4DZ, UK.
| | - Anna M Kinsey
- Medical Research Council, One Kemble Street, London WC2B 4AN, UK.
| | - Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh, Scotland EH26 0PZ, UK.
| | - Andrew Simpson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| | | | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|
7
|
Gallagher TB, Mellado-Sanchez G, Jorgensen AL, Moore S, Nataro JP, Pasetti MF, Baillie LW. Development of a multiple-antigen protein fusion vaccine candidate that confers protection against Bacillus anthracis and Yersinia pestis. PLoS Negl Trop Dis 2019; 13:e0007644. [PMID: 31430284 PMCID: PMC6716679 DOI: 10.1371/journal.pntd.0007644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/30/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022] Open
Abstract
Bacillus anthracis and Yersinia pestis are zoonotic bacteria capable of causing severe and sometimes fatal infections in animals and humans. Although considered as diseases of antiquity in industrialized countries due to animal and public health improvements, they remain endemic in vast regions of the world disproportionally affecting the poor. These pathogens also remain a serious threat if deployed in biological warfare. A single vaccine capable of stimulating rapid protection against both pathogens would be an extremely advantageous public health tool. We produced multiple-antigen fusion proteins (MaF1 and MaF2) containing protective regions from B. anthracis protective antigen (PA) and lethal factor (LF), and from Y. pestis V antigen (LcrV) and fraction 1 (F1) capsule. The MaF2 sequence was also expressed from a plasmid construct (pDNA-MaF2). Immunogenicity and protective efficacy were investigated in mice following homologous and heterologous prime-boost immunization. Antibody responses were determined by ELISA and anthrax toxin neutralization assay. Vaccine efficacy was determined against lethal challenge with either anthrax toxin or Y. pestis. Both constructs elicited LcrV and LF-specific serum IgG, and MaF2 elicited toxin-neutralizing antibodies. Immunizations with MaF2 conferred 100% and 88% protection against Y. pestis and anthrax toxin, respectively. In contrast, pDNA-MaF2 conferred only 63% protection against Y. pestis and no protection against anthrax toxin challenge. pDNA-MaF2-prime MaF2-boost induced 75% protection against Y. pestis and 25% protection against anthrax toxin. Protection was increased by the molecular adjuvant CARDif. In conclusion, MaF2 is a promising multi-antigen vaccine candidate against anthrax and plague that warrants further investigation. Anthrax and plague are ancient infectious diseases that continue to affect people living in poor, endemic regions and to threaten industrialized nations due to their potential use in biowarfare. Candidate vaccines need improvement to minimize non-desirable effects and increase their efficacy. The purpose of this work was to develop and evaluate a single subunit vaccine capable of conferring protection against Bacillus anthracis and Yersinia pestis. To this end, specific regions from their genome or key protective protein sequences from both microorganisms were combined to obtain either recombinant plasmids or recombinant proteins and tested as vaccine candidates in mice. The recombinant protein MaF2 induced specific antibody responses and afforded full and partial protection against Y. pestis and B. anthracis, respectively. Meanwhile, the DNA vaccine equivalent to MaF2 conferred only partial protection against Y. pestis, which increased when combined with an MaF2 protein boost. MaF2 emerged as a promising dual pathogen recombinant vaccine that warrants further investigation.
Collapse
Affiliation(s)
- Theresa B. Gallagher
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Gabriela Mellado-Sanchez
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Ana L. Jorgensen
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Stephen Moore
- BIOMET, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Box, Charlottesville, VA, United States of America
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail: (MFP); (LWB)
| | - Les W. Baillie
- The Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
- * E-mail: (MFP); (LWB)
| |
Collapse
|
8
|
Carvalho AL, Miquel-Clopés A, Wegmann U, Jones E, Stentz R, Telatin A, Walker NJ, Butcher WA, Brown PJ, Holmes S, Dennis MJ, Williamson ED, Funnell SGP, Stock M, Carding SR. Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization. Clin Exp Immunol 2019; 196:287-304. [PMID: 30985006 PMCID: PMC6514708 DOI: 10.1111/cei.13301] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Plague caused by the Gram‐negative bacterium, Yersinia pestis, is still endemic in parts of the world today. Protection against pneumonic plague is essential to prevent the development and spread of epidemics. Despite this, there are currently no licensed plague vaccines in the western world. Here we describe the means of delivering biologically active plague vaccine antigens directly to mucosal sites of plague infection using highly stable microvesicles (outer membrane vesicles; OMVs) that are naturally produced by the abundant and harmless human commensal gut bacterium Bacteroides thetaiotaomicron (Bt). Bt was engineered to express major plague protective antigens in its OMVs, specifically Fraction 1 (F1) in the outer membrane and LcrV (V antigen) in the lumen, for targeted delivery to the gastrointestinal (GI) and respiratory tracts in a non‐human primate (NHP) host. Our key findings were that Bt OMVs stably expresses F1 and V plague antigens, particularly the V antigen, in the correct, immunogenic form. When delivered intranasally V‐OMVs elicited substantive and specific immune and antibody responses, both in the serum [immunoglobulin (Ig)G] and in the upper and lower respiratory tract (IgA); this included the generation of serum antibodies able to kill plague bacteria. Our results also showed that Bt OMV‐based vaccines had many desirable characteristics, including: biosafety and an absence of any adverse effects, pathology or gross alteration of resident microbial communities (microbiotas); high stability and thermo‐tolerance; needle‐free delivery; intrinsic adjuvanticity; the ability to stimulate both humoral and cell‐mediated immune responses; and targeting of primary sites of plague infection.
Collapse
Affiliation(s)
- A L Carvalho
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - A Miquel-Clopés
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - U Wegmann
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - E Jones
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - R Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - A Telatin
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - N J Walker
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - W A Butcher
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - P J Brown
- Public Health England, Porton, Porton, Salisbury, UK
| | - S Holmes
- Public Health England, Porton, Porton, Salisbury, UK
| | - M J Dennis
- Public Health England, Porton, Porton, Salisbury, UK
| | - E D Williamson
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - S G P Funnell
- Public Health England, Porton, Porton, Salisbury, UK
| | - M Stock
- Plant Biotechnology Ltd, Norwich, UK
| | - S R Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK.,Norwich Medical School, University East Anglia, Norwich, UK
| |
Collapse
|
9
|
Hu J, Jiao L, Hu Y, Chu K, Li J, Zhu F, Li T, Wu Z, Wei D, Meng F, Wang B. One year immunogenicity and safety of subunit plague vaccine in Chinese healthy adults: An extended open-label study. Hum Vaccin Immunother 2018; 14:2701-2705. [PMID: 29927704 DOI: 10.1080/21645515.2018.1486154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To evaluate the one-year immunogenicity and safety of a subunit plague vaccine. METHODS In the initial study, 240 healthy adults aged 18-55 years were administrated with 2 doses of 15 or 30 µg plague vaccines at day 0 and 28, respectively. In this extended follow-up study, we evaluated the immunogenicity and safety of the plague vaccine up to one year. RESULTS For antibody to envelope antigen faction 1 (F1) antigen, titers were up to new peaks at month 6, then declined slowly to month 12, but remained at higher levels than those at day 56. Geometric mean titers (GMTs) of F1 were significantly higher in 30 µg group than those in 15 µg group at month 6 and 12 (P < 0.0001 and P < 0.001). However, approximate 100% seroconversion rates of F1 antibodies were found in both 15 and 30 µg groups at the both time points. For antibody to recombinant virulence (rV) antigen, titers and seroconversion rates were decreased sharply at month 6 and continue to decrease at month 12. GMTs and seroconversion rates were not significantly different between the 15 and 30 µg groups, respectively. No serious adverse events (SAEs) related to vaccine occurred. CONCLUSION The new plague vaccine (F1+rV) induced a robust immune response up to 12 months and showed a good safety profile in adults aged 18-55 years.
Collapse
Affiliation(s)
- Jialei Hu
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Lei Jiao
- b Lanzhou Institute of Biological Products Co.,Ltd. , Lanzhou , China
| | - Yuemei Hu
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Kai Chu
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Jingxin Li
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Fengcai Zhu
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Taishun Li
- c Department of Public Health , Southeast University , Nanjing , China
| | - Zhiyuan Wu
- b Lanzhou Institute of Biological Products Co.,Ltd. , Lanzhou , China
| | - Dong Wei
- d National Institute for Food and Drug Control , Beijing , China
| | - Fanyue Meng
- a Jiangsu Provincial Center for Diseases Control and Prevention , Nanjing , China
| | - Bingxiang Wang
- b Lanzhou Institute of Biological Products Co.,Ltd. , Lanzhou , China
| |
Collapse
|
10
|
Andersson JA, Sha J, Erova TE, Fitts EC, Ponnusamy D, Kozlova EV, Kirtley ML, Chopra AK. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis. Front Cell Infect Microbiol 2017; 7:448. [PMID: 29090192 PMCID: PMC5650977 DOI: 10.3389/fcimb.2017.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55-100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague.
Collapse
Affiliation(s)
- Jourdan A Andersson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashok K Chopra
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States.,WHO Collaborating Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Vander Broek CW, Stevens JM. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 2017; 7:255. [PMID: 28664152 PMCID: PMC5471309 DOI: 10.3389/fcimb.2017.00255] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular pathogen and the causative agent of melioidosis, a severe disease of both humans and animals. Melioidosis is an emerging disease which is predicted to be vastly under-reported. Type III Secretion Systems (T3SSs) are critical virulence factors in Gram negative pathogens of plants and animals. The genome of B. pseudomallei encodes three T3SSs. T3SS-1 and -2, of which little is known, are homologous to Hrp2 secretion systems of the plant pathogens Ralstonia and Xanthomonas. T3SS-3 is better characterized and is homologous to the Inv/Mxi-Spa secretion systems of Salmonella spp. and Shigella flexneri, respectively. Upon entry into the host cell, B. pseudomallei requires T3SS-3 for efficient escape from the endosome. T3SS-3 is also required for full virulence in both hamster and murine models of infection. The regulatory cascade which controls T3SS-3 expression and the secretome of T3SS-3 have been described, as well as the effect of mutations of some of the structural proteins. Yet only a few effector proteins have been functionally characterized to date and very little work has been carried out to understand the hierarchy of assembly, secretion and temporal regulation of T3SS-3. This review aims to frame current knowledge of B. pseudomallei T3SSs in the context of other well characterized model T3SSs, particularly those of Salmonella and Shigella.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| |
Collapse
|
12
|
Intranasal delivery of a protein subunit vaccine using a Tobacco Mosaic Virus platform protects against pneumonic plague. Vaccine 2016; 34:5768-5776. [PMID: 27745954 DOI: 10.1016/j.vaccine.2016.09.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
Yersinia pestis, one of history's deadliest pathogens, has killed millions over the course of human history. It has attributes that make it an ideal choice to produce mass casualties and is a prime candidate for use as a biological weapon. When aerosolized, Y. pestis causes pneumonic plague, a pneumonia that is 100% lethal if not promptly treated with effective antibiotics. Currently, there is no FDA approved plague vaccine. The current lead vaccine candidate, a parenterally administered protein subunit vaccine comprised of the Y. pestis virulence factors, F1 and LcrV, demonstrated variable levels of protection in primate pneumonic plague models. As the most likely mode of exposure in biological attack with Y. pestis is by aerosol, this raises a question of whether this parenteral vaccine will adequately protect humans against pneumonic plague. In the present study we evaluated two distinct mucosal delivery platforms for the intranasal (IN) administration of LcrV and F1 vaccine proteins, a live bacterial vector, Lactobacillus plantarum, and a Tobacco Mosaic Virus (TMV) based delivery platform. IN administration of L. plantarum expressing LcrV, or TMV-conjugated to LcrV and F1 (TMV-LcrV+TMV-F1) resulted in the similar induction of high titers of IgG antibodies and evidence of proinflammatory cytokine secretion. However, only the TMV-conjugate delivery platform protected against subsequent lethal challenge with Y. pestis. TMV-LcrV+TMV-F1 co-vaccinated mice had no discernable morbidity and no mortality, while mice vaccinated with L. plantarum expressing LcrV or rLcrV+rF1 without TMV succumbed to infection or were only partially protected. Thus, TMV is a suitable mucosal delivery platform for an F1-LcrV subunit vaccine that induces complete protection against pneumonic infection with a lethal dose of Y. pestis in mice.
Collapse
|
13
|
Verma SK, Batra L, Tuteja U. A Recombinant Trivalent Fusion Protein F1-LcrV-HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis. Front Microbiol 2016; 7:1053. [PMID: 27458447 PMCID: PMC4932849 DOI: 10.3389/fmicb.2016.01053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022] Open
Abstract
Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1–lcrV and caf1–lcrV–hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1–lcrV and caf1–lcrV–hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1–LcrV and F1–LcrV–HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1–LcrV and F1–LcrV–HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it’s isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1–LcrV–HSP70(II) sera in comparison to anti-F1–LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1–LcrV–HSP(II) immunized mice in comparison to F1–LcrV. Both F1–LcrV and F1–LcrV–HSP70(II) provided 100% protection. Our research findings suggest that F1–LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model.
Collapse
Affiliation(s)
- Shailendra K Verma
- Microbiology Division, Defence Research & Development Establishment, Gwalior India
| | - Lalit Batra
- Microbiology Division, Defence Research & Development Establishment, Gwalior India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior India
| |
Collapse
|
14
|
New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 2016; 60:3717-29. [PMID: 27067323 DOI: 10.1128/aac.00326-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in medically relevant bacterial pathogens, coupled with a paucity of novel antimicrobial discoveries, represents a pressing global crisis. Traditional drug discovery is an inefficient and costly process; however, systematic screening of Food and Drug Administration (FDA)-approved therapeutics for other indications in humans offers a rapid alternative approach. In this study, we screened a library of 780 FDA-approved drugs to identify molecules that rendered RAW 264.7 murine macrophages resistant to cytotoxicity induced by the highly virulent Yersinia pestis CO92 strain. Of these compounds, we identified 94 not classified as antibiotics as being effective at preventing Y. pestis-induced cytotoxicity. A total of 17 prioritized drugs, based on efficacy in in vitro screens, were chosen for further evaluation in a murine model of pneumonic plague to delineate if in vitro efficacy could be translated in vivo Three drugs, doxapram (DXP), amoxapine (AXPN), and trifluoperazine (TFP), increased animal survivability despite not exhibiting any direct bacteriostatic or bactericidal effect on Y. pestis and having no modulating effect on crucial Y. pestis virulence factors. These findings suggested that DXP, AXPN, and TFP may modulate host cell pathways necessary for disease pathogenesis. Finally, to further assess the broad applicability of drugs identified from in vitro screens, the therapeutic potential of TFP, the most efficacious drug in vivo, was evaluated in murine models of Salmonella enterica serovar Typhimurium and Clostridium difficile infections. In both models, TFP treatment resulted in increased survivability of infected animals. Taken together, these results demonstrate the broad applicability and potential use of nonantibiotic FDA-approved drugs to combat respiratory and gastrointestinal bacterial pathogens.
Collapse
|
15
|
Oyston PCF, Williamson ED. Modern Advances against Plague. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:209-41. [PMID: 22958531 DOI: 10.1016/b978-0-12-394382-8.00006-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plague has been a scourge of humanity, responsible for the deaths of millions. The etiological agent, Yersinia pestis, has evolved relatively recently from an enteropathogen, Yersinia pseudotuberculosis. The evolution of the plague pathogen has involved a complex series of genetic acquisitions, deletions, and rearrangements in its transition from an enteric niche to becoming a systemic, flea-vectored pathogen. With the advent of modern molecular biology techniques, we are starting to understand how the organism adapts to the diverse niches it encounters and how to combat the threat it poses.
Collapse
|
16
|
LcrV delivered via type III secretion system of live attenuated Yersinia pseudotuberculosis enhances immunogenicity against pneumonic plague. Infect Immun 2014; 82:4390-404. [PMID: 25114109 DOI: 10.1128/iai.02173-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we constructed a Yersinia pseudotuberculosis mutant strain with arabinose-dependent regulated and delayed shutoff of crp expression (araC P(BAD) crp) and replacement of the msbB gene with the Escherichia coli msbB gene to attenuate it. Then, we inserted the asd mutation into this construction to form χ10057 [Δasd-206 ΔmsbB868::P(msbB) msbB(EC) ΔP(crp21)::TT araC P(BAD) crp] for use with a balanced-lethal Asd-positive (Asd(+)) plasmid to facilitate antigen synthesis. A hybrid protein composed of YopE (amino acids [aa]1 to 138) fused with full-length LcrV (YopE(Nt138)-LcrV) was synthesized in χ10057 harboring an Asd(+) plasmid (pYA5199, yopE(Nt138)-lcrV) and could be secreted through a type III secretion system (T3SS) in vitro and in vivo. Animal studies indicated that mice orally immunized with χ10057(pYA5199) developed titers of IgG response to whole-cell lysates of Y. pestis (YpL) and subunit LcrV similar to those seen with χ10057(pYA3332) (χ10057 plus an empty plasmid). However, only immunization of mice with χ10057(pYA5199) resulted in a significant secretory IgA response to LcrV. χ10057(pYA5199) induced a higher level of protection (80% survival) against intranasal (i.n.) challenge with ~240 median lethal doses (LD50) (2.4 × 10(4) CFU) of Y. pestis KIM6+(pCD1Ap) than χ10057(pYA3332) (40% survival). Splenocytes from mice vaccinated with χ10057(pYA5199) produced significant levels of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-17 (IL-17) after restimulation with LcrV and YpL antigens. Our results suggest that it is possible to use an attenuated Y. pseudotuberculosis strain delivering the LcrV antigen via the T3SS as a potential vaccine candidate against pneumonic plague.
Collapse
|
17
|
Efficacy of primate humoral passive transfer in a murine model of pneumonic plague is mouse strain-dependent. J Immunol Res 2014; 2014:807564. [PMID: 25097863 PMCID: PMC4109106 DOI: 10.1155/2014/807564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/21/2014] [Accepted: 06/18/2014] [Indexed: 11/23/2022] Open
Abstract
New vaccines against biodefense-related and emerging pathogens are being prepared for licensure using the US Federal Drug Administration's “Animal Rule.” This allows licensure of drugs and vaccines using protection data generated in animal models. A new acellular plague vaccine composed of two separate recombinant proteins (rF1 and rV) has been developed and assessed for immunogenicity in humans. Using serum obtained from human volunteers immunised with various doses of this vaccine and from immunised cynomolgus macaques, we assessed the pharmacokinetic properties of human and cynomolgus macaque IgG in BALB/c and the NIH Swiss derived Hsd:NIHS mice, respectively. Using human and cynomolgus macaque serum with known ELISA antibody titres against both vaccine components, we have shown that passive immunisation of human and nonhuman primate serum provides a reproducible delay in median time to death in mice exposed to a lethal aerosol of plague. In addition, we have shown that Hsd:NIHS mice are a better model for humoral passive transfer studies than BALB/c mice.
Collapse
|
18
|
Li W, Wang S, Lu S. Pilot Study on the Use of DNA Priming Immunization to Enhance Y. pestis LcrV-Specific B Cell Responses Elicited by a Recombinant LcrV Protein Vaccine. Vaccines (Basel) 2013; 2:36-48. [PMID: 26344467 PMCID: PMC4494201 DOI: 10.3390/vaccines2010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 11/17/2022] Open
Abstract
Recent studies indicate that DNA immunization is powerful in eliciting antigen-specific antibody responses in both animal and human studies. However, there is limited information on the mechanism of this effect. In particular, it is not known whether DNA immunization can also enhance the development of antigen-specific B cell development. In this report, a pilot study was conducted using plague LcrV immunogen as a model system to determine whether DNA immunization is able to enhance LcrV-specific B cell development in mice. Plague is an acute and often fatal infectious disease caused by Yersinia pestis (Y. pestis). Humoral immune responses provide critical protective immunity against plague. Previously, we demonstrated that a DNA vaccine expressing LcrV antigen can protect mice from lethal mucosal challenge. In the current study, we further evaluated whether the use of a DNA priming immunization is able to enhance the immunogenicity of a recombinant LcrV protein vaccine, and in particular, the development of LcrV-specific B cells. Our data indicate that DNA immunization was able to elicit high-level LcrV antibody responses when used alone or as part of a prime-boost immunization approach. Most significantly, DNA immunization was also able to increase the levels of LcrV-specific B cell development. The finding that DNA immunization can enhance antigen-specific B cell responses is highly significant and will help guide similar studies in other model antigen systems.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Butler T. Plague gives surprises in the first decade of the 21st century in the United States and worldwide. Am J Trop Med Hyg 2013; 89:788-93. [PMID: 24043686 DOI: 10.4269/ajtmh.13-0191] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Plague is an ancient disease caused by the bacterium Yersinia pestis and transmitted by rodent flea bites that continues to surprise us with first-ever events. This review documents plague in human cases in the 1st decade of the 21st century and updates our knowledge of clinical manifestations, transmission during outbreaks, diagnostic testing, antimicrobial treatment, and vaccine development. In the United States, 57 persons were reported to have the disease, of which seven died. Worldwide, 21,725 persons were affected with 1,612 deaths, for a case-fatality rate of 7.4%. The Congo reported more cases than any other country, including two large outbreaks of pneumonic plague, surpassing Madagascar, which had the most cases in the previous decade. Two United States scientists suffered fatal accidental exposures: a wildlife biologist, who carried out an autopsy on a mountain lion in Arizona in 2007, and a geneticist with subclinical hemochromatosis in Chicago, who was handling an avirulent strain of Y. pestis in 2009. Antimicrobial drugs given early after the onset of symptoms prevented many deaths; those recommended for treatment and prophylaxis included gentamicin, doxycycline, and fluoroquinolones, although fluoroquinolones have not been adequately tested in humans. Fleas that do not have their guts blocked by clotted blood meals were shown to be better transmitters of plague than blocked fleas. Under development for protection against bioterrorist use, a subunit vaccine containing F1 and V antigens of Y. pestis was administered to human volunteers eliciting antibodies without any serious side effects. These events, although showing progress, suggest that plague will persist in rodent reservoirs mostly in African countries burdened by poverty and civil unrest, causing death when patients fail to receive prompt antimicrobial treatment.
Collapse
Affiliation(s)
- Thomas Butler
- Ross University School of Medicine, Portsmouth, Dominica, West Indies
| |
Collapse
|
20
|
Tao P, Mahalingam M, Kirtley ML, van Lier CJ, Sha J, Yeager LA, Chopra AK, Rao VB. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog 2013; 9:e1003495. [PMID: 23853602 PMCID: PMC3708895 DOI: 10.1371/journal.ppat.1003495] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/28/2013] [Indexed: 12/17/2022] Open
Abstract
Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines. Plague caused by Yersinia pestis is a deadly disease that wiped out one-third of Europe's population in the 14th century. The organism is listed by the CDC as Tier-1 biothreat agent, and currently, there is no FDA-approved vaccine against this pathogen. Stockpiling of an efficacious plague vaccine that could protect people against a potential bioterror attack has been a national priority. The current vaccines based on the capsular antigen (F1) and the low calcium response V antigen, are promising against both bubonic and pneumonic plague. However, the polymeric nature of F1 with its propensity to aggregate affects vaccine efficacy and generates varied immune responses in humans. We have addressed a series of concerns and generated mutants of F1 and V, which are completely soluble and produced in high yields. We then engineered the vaccine into a novel delivery platform using the bacteriophage T4 nanoparticle. The nanoparticle vaccines induced robust immunogenicity and provided 100% protection to mice and rats against pneumonic plague. These highly efficacious new generation plague vaccines are easily manufactured, and the potent T4 platform which can simultaneously incorporate antigens from other biothreat or emerging infectious agents provides a convenient way for mass vaccination of humans against multiple pathogens.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacteriophage T4/chemistry
- Bacteriophage T4/immunology
- Bacteriophage T4/metabolism
- Capsid/chemistry
- Capsid/immunology
- Capsid/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Female
- Mice
- Mice, Inbred BALB C
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Particle Size
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Plague/immunology
- Plague/microbiology
- Plague/prevention & control
- Plague/virology
- Plague Vaccine/chemistry
- Plague Vaccine/immunology
- Pore Forming Cytotoxic Proteins/chemistry
- Pore Forming Cytotoxic Proteins/genetics
- Pore Forming Cytotoxic Proteins/metabolism
- Protein Interaction Domains and Motifs
- Random Allocation
- Rats
- Rats, Inbred BN
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Vaccines, Virus-Like Particle/chemistry
- Vaccines, Virus-Like Particle/immunology
- Yersinia pestis/immunology
- Yersinia pestis/virology
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
| | - Michelle L. Kirtley
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christina J. van Lier
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jian Sha
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Linsey A. Yeager
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (AKC); (VBR)
| | - Venigalla B. Rao
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
- * E-mail: (AKC); (VBR)
| |
Collapse
|
21
|
Physiological levels of glucose induce membrane vesicle secretion and affect the lipid and protein composition of Yersinia pestis cell surfaces. Appl Environ Microbiol 2013; 79:4509-14. [PMID: 23686263 DOI: 10.1128/aem.00675-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis grown with physiologic glucose increased cell autoaggregation and deposition of extracellular material, including membrane vesicles. Membranes were characterized, and glucose had significant effects on protein, lipid, and carbohydrate profiles. These effects were independent of temperature and the biofilm-related locus pgm and were not observed in Yersinia pseudotuberculosis.
Collapse
|
22
|
Williamson ED, Oyston PCF. Protecting against plague: towards a next-generation vaccine. Clin Exp Immunol 2013; 172:1-8. [PMID: 23480179 PMCID: PMC3719925 DOI: 10.1111/cei.12044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 01/22/2023] Open
Abstract
The causative organism of plague is the bacterium Yersinia pestis. Advances in understanding the complex pathogenesis of plague infection have led to the identification of the F1- and V-antigens as key components of a next-generation vaccine for plague, which have the potential to be effective against all forms of the disease. Here we review the roles of F1- and V-antigens in the context of the range of virulence mechanisms deployed by Y. pestis, in order to develop a greater understanding of the protective immune responses required to protect against plague.
Collapse
Affiliation(s)
- E D Williamson
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Salisbury, Wilts, UK.
| | | |
Collapse
|
23
|
|
24
|
Mellado-Sanchez G, Ramirez K, Drachenberg CB, Diaz-McNair J, Rodriguez AL, Galen JE, Nataro JP, Pasetti MF. Characterization of systemic and pneumonic murine models of plague infection using a conditionally virulent strain. Comp Immunol Microbiol Infect Dis 2012. [PMID: 23195858 DOI: 10.1016/j.cimid.2012.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Yersinia pestis causes bubonic and pneumonic plague in humans. The pneumonic infection is the most severe and invariably fatal if untreated. Because of its high virulence, ease of delivery and precedent of use in warfare, Y. pestis is considered as a potential bioterror agent. No licensed plague vaccine is currently available in the US. Laboratory research with virulent strains requires appropriate biocontainment (i.e., Biosafety Level 3 (BSL-3) for procedures that generate aerosol/droplets) and secure facilities that comply with federal select agent regulations. To assist in the identification of promising vaccine candidates during the early phases of development, we characterized mouse models of systemic and pneumonic plague infection using the Y. pestis strain EV76, an attenuated human vaccine strain that can be rendered virulent in mice under in vivo iron supplementation. Mice inoculated intranasally or intravenously with Y. pestis EV76 in the presence of iron developed a systemic and pneumonic plague infection that resulted in disease and lethality. Bacteria replicated and severely compromised the spleen, liver and lungs. Susceptibility was age dependent, with younger mice being more vulnerable to pneumonic infection. We used these models of infection to assess the protective capacity of newly developed Salmonella-based plague vaccines. The protective outcome varied depending on the route and dose of infection. Protection was associated with the induction of specific immunological effectors in systemic/mucosal compartments. The models of infection described could serve as safe and practical tools for identifying promising vaccine candidates that warrant further potency evaluation using fully virulent strains in BSL-3 settings.
Collapse
Affiliation(s)
- Gabriela Mellado-Sanchez
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kolodziejek AM, Hovde CJ, Minnich SA. Yersinia pestis Ail: multiple roles of a single protein. Front Cell Infect Microbiol 2012; 2:103. [PMID: 22919692 PMCID: PMC3417512 DOI: 10.3389/fcimb.2012.00103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/14/2012] [Indexed: 01/03/2023] Open
Abstract
Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen.
Collapse
Affiliation(s)
- Anna M Kolodziejek
- School of Food Science, University of Idaho Moscow, ID, USA. akolodziejek@ vandals.uidaho.edu
| | | | | |
Collapse
|
26
|
Jeong YJ, Kim CH, Song EJ, Kang MJ, Kim JC, Oh SM, Lee KB, Park JH. Nucleotide-binding oligomerization domain 2 (Nod2) is dispensable for the innate immune responses of macrophages against Yersinia enterocolitica. J Microbiol 2012; 50:489-95. [PMID: 22752913 DOI: 10.1007/s12275-012-1534-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/13/2012] [Indexed: 01/10/2023]
Abstract
Nucleotide-binding oligomerization domain 2 (Nod2) is a cytosolic sensor for muramyl dipeptide, a component of bacterial peptidoglycan. In this study, we have examined whether Nod2 mediates the immune response of macrophages against Yersinia enterocolitica. Bone-marrow-derived macrophages (BMDMs) were isolated from WT and Nod2-deficient mice and were infected with various strains of Y. enterocolitica. ELISA showed that the production of IL-6 and TNF-α in BMDMs infected with Y. enterocolitica was not affected by the Nod2 deficiency. iNOS mRNA expression was induced in both WT and Nod2-deficienct BMDMs in response to Y. enterocolitica, beginning 2 h after infection. Nitric oxide (NO) production by Y. enterocolitica did not differ between WT and Nod2-deficient BMDMs. Western blot analysis revealed that Y. enterocolitica induces activation of NF-κB, p38, and ERK MAPK through a Nod2-independent pathway. Neither LDH release by Y. enterocolitica nor the phagocytic activity of the macrophages was altered by Nod2 deficiency. An in vivo experiment showed that bacterial clearance ability and production of IL-6 and KC in serum were comparable in WT and Nod2-deficient mice infected with Y. enterocolitica. These findings suggest that Nod2 may not be critical for initiating the innate immune response of macrophages against Yersinia infection.
Collapse
Affiliation(s)
- Yu-Jin Jeong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 302-711, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cao L, Lim T, Jun S, Thornburg T, Avci R, Yang X. Vulnerabilities in Yersinia pestis caf operon are unveiled by a Salmonella vector. PLoS One 2012; 7:e36283. [PMID: 22558420 PMCID: PMC3340336 DOI: 10.1371/journal.pone.0036283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
During infection, Yersinia pestis uses its F1 capsule to enhance survival and cause virulence to mammalian host. Since F1 is produced in large quantities and secreted into the host tissues, it also serves as a major immune target. To hold this detrimental effect under proper control, Y. pestis expresses the caf operon (encoding the F1 capsule) in a temperature-dependent manner. However, additional properties of the caf operon limit its expression. By overexpressing the caf operon in wild-type Salmonella enterica serovar Typhimurium under a potent promoter, virulence of Salmonella was greatly attenuated both in vitro and in vivo. In contrast, expression of the caf operon under the regulation of its native promoter exhibited negligible impairment of Salmonellae virulence. In-depth investigation revealed all individual genes in the caf operon attenuated Salmonella when overexpressed. The deleterious effects of caf operon and the caf individual genes were further confirmed when they were overexpressed in Y. pestis KIM6+. This study suggests that by using a weak inducible promoter, the detrimental effects of the caf operon are minimally manifested in Y. pestis. Thus, through tight regulation of the caf operon, Y. pestis precisely balances its capsular anti-phagocytic properties with the detrimental effects of caf during interaction with mammalian host.
Collapse
Affiliation(s)
- Ling Cao
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Timothy Lim
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - SangMu Jun
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Theresa Thornburg
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Recep Avci
- Imaging and Chemical Analysis Laboratory, Department of Physics, Montana State University, Bozeman, Montana, United States of America
| | - Xinghong Yang
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
28
|
Fellows P, Lin W, Detrisac C, Hu SC, Rajendran N, Gingras B, Holland L, Price J, Bolanowski M, House RV. Establishment of a Swiss Webster mouse model of pneumonic plague to meet essential data elements under the animal rule. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:468-76. [PMID: 22336286 PMCID: PMC3318273 DOI: 10.1128/cvi.05591-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
Abstract
A recombinant vaccine (rF1V) is being developed for protection against pneumonic plague. This study was performed to address essential data elements to establish a well-characterized Swiss Webster mouse model for licensing the rF1V vaccine using the FDA's Animal Rule. These elements include the documentation of challenge material characteristics, aerosol exposure parameters, details of the onset and severity of clinical signs, pathophysiological response to disease, and relevance to human disease. Prior to animal exposures, an evaluation of the aerosol system was performed to determine and understand the variability of the aerosol exposure system. Standardized procedures for the preparation of Yersinia pestis challenge material also were developed. The 50% lethal dose (LD(50)) was estimated to be 1,966 CFU using Probit analysis. Following the LD(50) determination, pathology was evaluated by exposing mice to a target LD(99) (42,890 CFU). Mice were euthanized at 12, 24, 36, 48, 60, and 72 h postexposure. At each time point, samples were collected for clinical pathology, detection of bacteria in blood and tissues, and pathology evaluations. A general increase in incidence and severity of microscopic findings was observed in the lung, lymph nodes, spleen, and liver from 36 to 72 h postchallenge. Similarly, the incidence and severity of pneumonia increased throughout the study; however, some mice died in the absence of pneumonia, suggesting that disease progression does not require the development of pneumonia. Disease pathology in the Swiss Webster mouse is similar to that observed in humans, demonstrating the utility of this pneumonic plague model that can be used by researchers investigating plague countermeasures.
Collapse
Affiliation(s)
- Patricia Fellows
- DynPort Vaccine Company LLC, A CSC Company, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Williamson ED, Oyston PCF. The natural history and incidence of Yersinia pestis and prospects for vaccination. J Med Microbiol 2012; 61:911-918. [PMID: 22442294 DOI: 10.1099/jmm.0.037960-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Plague is an ancient, serious, infectious disease which is still endemic in regions of the modern world and is a potential biothreat agent. This paper discusses the natural history of the bacterium and its evolution into a flea-vectored bacterium able to transmit bubonic plague. It reviews the incidence of plague in the modern world and charts the history of vaccines which have been used to protect against the flea-vectored disease, which erupts as bubonic plague. Current approaches to vaccine development to protect against pneumonic, as well as bubonic, plague are also reviewed. The considerable challenges in achieving a vaccine which is licensed for human use and which will comprehensively protect against this serious human pathogen are assessed.
Collapse
Affiliation(s)
- E D Williamson
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - P C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury SP4 0JQ, UK
| |
Collapse
|
30
|
Fimbrial Polyadhesins: Anti-immune Armament of Yersinia. ADVANCES IN YERSINIA RESEARCH 2012; 954:183-201. [DOI: 10.1007/978-1-4614-3561-7_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
The role of immune correlates and surrogate markers in the development of vaccines and immunotherapies for plague. Adv Prev Med 2011; 2012:365980. [PMID: 21991451 PMCID: PMC3182760 DOI: 10.1155/2012/365980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/08/2011] [Indexed: 01/28/2023] Open
Abstract
One of the difficulties in developing countermeasures to biothreat agents is the challenge inherent in demonstrating their efficacy in man. Since the first publication of the Animal Rule by the FDA, there has been increased discussion of potential correlates of protection in animal models and their use to establish surrogate markers of efficacy in man. The latter need to be relatively easy to measure in assays that are at least qualified, if not validated, in order to derive a quantitative assessment of the clinical benefit conferred. The demonstration of safety and clinical benefit is essential to achieve regulatory approval for countermeasures for which clinical efficacy cannot be tested directly, as is the case for example, for biodefence vaccines. Plague is an ancient, serious infectious disease which is still endemic in regions of the modern world and is a potential biothreat agent. This paper discusses potential immune correlates of protection for plague, from which it may be possible to derive surrogate markers of efficacy, in order to predict the clinical efficacy of candidate prophylaxes and therapies.
Collapse
|
32
|
Patel N, Conejero L, De Reynal M, Easton A, Bancroft GJ, Titball RW. Development of vaccines against burkholderia pseudomallei. Front Microbiol 2011; 2:198. [PMID: 21991263 PMCID: PMC3180847 DOI: 10.3389/fmicb.2011.00198] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium which is the causative agent of melioidosis, a disease which carries a high mortality and morbidity rate in endemic areas of South East Asia and Northern Australia. At present there is no available human vaccine that protects against B. pseudomallei, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. This review considers the multiple elements of melioidosis vaccine research including: (i) the immune responses required for protective immunity, (ii) animal models available for preclinical testing of potential candidates, (iii) the different experimental vaccine strategies which are being pursued, and (iv) the obstacles and opportunities for eventual registration of a licensed vaccine in humans.
Collapse
Affiliation(s)
- Natasha Patel
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine London, UK
| | | | | | | | | | | |
Collapse
|
33
|
Intranasal administration of an inactivated Yersinia pestis vaccine with interleukin-12 generates protective immunity against pneumonic plague. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1925-35. [PMID: 21880856 DOI: 10.1128/cvi.05117-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inhalation of Yersinia pestis causes pneumonic plague, which rapidly progresses to death. A previously licensed killed whole-cell vaccine is presently unavailable due to its reactogenicity and inconclusive evidence of efficacy. The present study now shows that vaccination intranasally (i.n.) with inactivated Y. pestis CO92 (iYp) adjuvanted with interleukin-12 (IL-12) followed by an i.n. challenge with a lethal dose of Y. pestis CO92 prevented bacterial colonization and protected 100% of mice from pneumonic plague. Survival of the vaccinated mice correlated with levels of systemic and lung antibodies, reduced pulmonary pathology and proinflammatory cytokines, and the presence of lung lymphoid cell aggregates. Protection against pneumonic plague was partially dependent upon Fc receptors and could be transferred to naïve mice with immune mouse serum. On the other hand, protection was not dependent upon complement, and following vaccination, depletion of CD4 and/or CD8 T cells before challenge did not affect survival. In summary, the results demonstrate the safety, immunogenicity, and protective efficacy of i.n. administered iYp plus IL-12 in a mouse model of pneumonic plague.
Collapse
|
34
|
Matoba N, Shah NR, Mor TS. Humoral immunogenicity of an HIV-1 envelope residue 649-684 membrane-proximal region peptide fused to the plague antigen F1-V. Vaccine 2011; 29:5584-90. [PMID: 21693158 DOI: 10.1016/j.vaccine.2011.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/09/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
The membrane-proximal region spanning residues 649-684 of the HIV-1 envelope protein gp41 (MPR₆₄₉₋₆₈₄) is an attractive vaccine target for humoral immunity that blocks viral transcytosis across the mucosal epithelia. However, induction of high-titer MPR₆₄₉₋₆₈₄-specific antibodies remains a challenging task. To explore potential solutions for this challenge, we tested a new translational fusion protein comprising the plague F1-V antigen and MPR₆₄₉₋₆₈₄ (F1-V-MPR₆₄₉₋₆₈₄). We employed systemic immunization for initial feasibility analyses. Despite strong immunogenicity demonstrated for the immunogen, repeated systemic immunizations of mice with F1-V-MPR₆₄₉₋₆₈₄ hardly induced MPR₆₄₉₋₆₈₄-specific IgG. In contrast, a single immunization with F1-V-MPR₆₄₉₋₆₈₄ mounted a significant anti-MPR₆₄₉₋₆₈₄ IgG response in animals that were primed with another MPR₆₄₉₋₆₈₄ fusion protein based on the cholera toxin B subunit. Additional boost immunizations with F1-V-MPR₆₄₉₋₆₈₄ recalled and maintained the antibody response and expanded the number of specific antibody-secreting B cells. Thus, while F1-V-MPR₆₄₉₋₆₈₄ alone was not sufficiently immunogenic to induce detectable levels of MPR₆₄₉₋₆₈₄-specific antibodies, these results suggest that prime-boost immunization using heterologous antigen-display platforms may overcome the poor humoral immunogenicity of MPR₆₄₉₋₆₈₄ for the induction of durable humoral immunity. Further studies are warranted to evaluate the feasibility of this strategy in mucosal immunization. Lastly, our findings add to a growing body of evidence in support of this strategy for immunogen design for poorly immunogenic epitopes besides the MPR of HIV-1's transmembrane envelope protein.
Collapse
Affiliation(s)
- Nobuyuki Matoba
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute and School of Life Sciences, P.O. Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
35
|
Wang S, Goguen JD, Li F, Lu S. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge. Vaccine 2011; 29:6802-9. [PMID: 21199697 DOI: 10.1016/j.vaccine.2010.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans.
Collapse
Affiliation(s)
- Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
36
|
Lin JS, Park S, Adamovicz JJ, Hill J, Bliska JB, Cote CK, Perlin DS, Amemiya K, Smiley ST. TNFα and IFNγ contribute to F1/LcrV-targeted immune defense in mouse models of fully virulent pneumonic plague. Vaccine 2010; 29:357-62. [PMID: 20840834 DOI: 10.1016/j.vaccine.2010.08.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/25/2010] [Accepted: 08/29/2010] [Indexed: 10/19/2022]
Abstract
Immunization with the Yersinia pestis F1 and LcrV proteins improves survival in mouse and non-human primate models of pneumonic plague. F1- and LcrV-specific antibodies contribute to protection, however, the mechanisms of antibody-mediated defense are incompletely understood and serum antibody titers do not suffice as quantitative correlates of protection. Previously we demonstrated roles for tumor necrosis factor-alpha (TNFα) and gamma-interferon (IFNγ) during defense against conditionally attenuated pigmentation (pgm) locus-negative Y. pestis. Here, using intranasal challenge with fully virulent pgm-positive Y. pestis strain CO92, we demonstrate that neutralizing TNFα and IFNγ interferes with the capacity of therapeutically administered F1- or LcrV-specific antibody to reduce bacterial burden and increase survival. Moreover, using Y. pestis strain CO92 in an aerosol challenge model, we demonstrate that neutralizing TNFα and IFNγ interferes with protection conferred by immunization with recombinant F1-LcrV fusion protein vaccine (p<0.0005). These findings establish that TNFα and IFNγ contribute to protection mediated by pneumonic plague countermeasures targeting F1 and LcrV, and suggest that an individual's capacity to produce these cytokines in response to Y. pestis challenge will be an important co-determinant of antibody-mediated defense against pneumonic plague.
Collapse
Affiliation(s)
- Jr-Shiuan Lin
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Repertoire of HLA-DR1-restricted CD4 T-cell responses to capsular Caf1 antigen of Yersinia pestis in human leukocyte antigen transgenic mice. Infect Immun 2010; 78:4356-62. [PMID: 20660611 DOI: 10.1128/iai.00195-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T-cell responses for Caf1. We characterized CD4 T-cell epitopes of Caf1 in "humanized" HLA-DR1 transgenic mice lacking endogenous major histocompatibility complex class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T-cell immunity was measured with respect to proliferative and gamma interferon T-cell responses and recognition by a panel of T-cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased toward a single immunodominant epitope near the C terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Collapse
|