1
|
Croia L, Boscato Sopetto G, Zanella I, Caproni E, Gagliardi A, Tamburini S, König E, Benedet M, Di Lascio G, Corbellari R, Grandi A, Tomasi M, Grandi G. Immunogenicity of Escherichia coli Outer Membrane Vesicles: Elucidation of Humoral Responses against OMV-Associated Antigens. MEMBRANES 2023; 13:882. [PMID: 37999368 PMCID: PMC10673343 DOI: 10.3390/membranes13110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have emerged as a novel and flexible vaccine platform. OMVs can be decorated with foreign antigens and carry potent immunostimulatory components. Therefore, after their purification from the culture supernatant, they are ready to be formulated for vaccine use. It has been extensively demonstrated that immunization with engineered OMVs can elicit excellent antibody responses against the heterologous antigens. However, the definition of the conditions necessary to reach the optimal antibody titers still needs to be investigated. Here, we defined the protein concentrations required to induce antigen-specific antibodies, and the amount of antigen and OMVs necessary and sufficient to elicit saturating levels of antigen-specific antibodies. Since not all antigens can be expressed in OMVs, we also investigated the effectiveness of vaccines in which OMVs and purified antigens are mixed together without using any procedure for their physical association. Our data show that in most of the cases OMV-antigen mixtures are very effective in eliciting antigen-specific antibodies. This is probably due to the capacity of OMVs to "absorb" antigens, establishing sufficiently stable interactions that allow antigen-OMV co-presentation to the same antigen presenting cell. In those cases when antigen-OMV interaction is not sufficiently stable, the addition of alum to the formulation guarantees the elicitation of high titers of antigen-specific antibodies.
Collapse
Affiliation(s)
- Lorenzo Croia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (L.C.); (G.B.S.); (I.Z.); (E.K.); (R.C.); (M.T.)
| | - Giulia Boscato Sopetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (L.C.); (G.B.S.); (I.Z.); (E.K.); (R.C.); (M.T.)
| | - Ilaria Zanella
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (L.C.); (G.B.S.); (I.Z.); (E.K.); (R.C.); (M.T.)
| | - Elena Caproni
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (E.C.); (A.G.); (S.T.); (M.B.); (G.D.L.); (A.G.)
| | - Assunta Gagliardi
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (E.C.); (A.G.); (S.T.); (M.B.); (G.D.L.); (A.G.)
| | - Silvia Tamburini
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (E.C.); (A.G.); (S.T.); (M.B.); (G.D.L.); (A.G.)
| | - Enrico König
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (L.C.); (G.B.S.); (I.Z.); (E.K.); (R.C.); (M.T.)
| | - Mattia Benedet
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (E.C.); (A.G.); (S.T.); (M.B.); (G.D.L.); (A.G.)
| | - Gabriele Di Lascio
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (E.C.); (A.G.); (S.T.); (M.B.); (G.D.L.); (A.G.)
| | - Riccardo Corbellari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (L.C.); (G.B.S.); (I.Z.); (E.K.); (R.C.); (M.T.)
| | - Alberto Grandi
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (E.C.); (A.G.); (S.T.); (M.B.); (G.D.L.); (A.G.)
- BiOMViS Srl, Via Fiorentina 1, 53100 Siena, Italy
| | - Michele Tomasi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (L.C.); (G.B.S.); (I.Z.); (E.K.); (R.C.); (M.T.)
| | - Guido Grandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (L.C.); (G.B.S.); (I.Z.); (E.K.); (R.C.); (M.T.)
| |
Collapse
|
2
|
Firth J, Sun J, George V, Huang JD, Bajaj-Elliott M, Gustafsson K. Bacterial outer-membrane vesicles promote Vγ9Vδ2 T cell oncolytic activity. Front Immunol 2023; 14:1198996. [PMID: 37529036 PMCID: PMC10388717 DOI: 10.3389/fimmu.2023.1198996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Background Increasing evidence suggests the immune activation elicited by bacterial outer-membrane vesicles (OMVs) can initiate a potent anti-tumor immunity, facilitating the recognition and destruction of malignant cells. At present the pathways underlying this response remain poorly understood, though a role for innate-like cells such as γδ T cells has been suggested. Methods Peripheral blood mononuclear cells (PBMCs) from healthy donors were co-cultured with E. coli MG1655 Δpal ΔlpxM OMVs and corresponding immune activation studied by cell marker expression and cytokine production. OMV-activated γδ T cells were co-cultured with cancer cell lines to determine cytotoxicity. Results The vesicles induced a broad inflammatory response with γδ T cells observed as the predominant cell type to proliferate post-OMV challenge. Notably, the majority of γδ T cells were of the Vγ9Vδ2 type, known to respond to both bacterial metabolites and stress markers present on tumor cells. We observed robust cytolytic activity of Vγ9Vδ2 T cells against both breast and leukaemia cell lines (SkBr3 and Nalm6 respectively) after OMV-mediated expansion. Conclusions Our findings identify for the first time, that OMV-challenge stimulates the expansion of Vγ9Vδ2 T cells which subsequently present anti-tumor capabilities. We propose that OMV-mediated immune activation leverages the anti-microbial/anti-tumor capacity of Vγ9Vδ2 T cells, an axis amenable for improved future therapeutics.
Collapse
Affiliation(s)
- Jack Firth
- Department of Biochemical Engineering University College London, London, United Kingdom
| | - Jingjing Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Vaques George
- Department of Biochemical Engineering University College London, London, United Kingdom
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mona Bajaj-Elliott
- Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
| | - Kenth Gustafsson
- Department of Biochemical Engineering University College London, London, United Kingdom
| |
Collapse
|
3
|
Thapa HB, Ebenberger SP, Schild S. The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities. Antibiotics (Basel) 2023; 12:1045. [PMID: 37370364 PMCID: PMC10295235 DOI: 10.3390/antibiotics12061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing mechanisms from Gram-negative and -positive bacteria. It is becoming increasingly evident that MVs can promote antimicrobial resistance but also provide versatile opportunities for therapeutic exploitation. As non-living facsimiles of parent bacteria, MVs can carry multiple bioactive molecules such as proteins, lipids, nucleic acids, and metabolites, which enable them to participate in intra- and interspecific communication. Although energetically costly, the release of MVs seems beneficial for bacterial fitness, especially for pathogens. In this review, we briefly discuss the current understanding of diverse MV biogenesis routes affecting MV cargo. We comprehensively highlight the physiological functions of MVs derived from human pathogens covering in vivo adaptation, colonization fitness, and effector delivery. Emphasis is given to recent findings suggesting a vicious cycle of MV biogenesis, pathophysiological function, and antibiotic therapy. We also summarize potential therapeutical applications, such as immunotherapy, vaccination, targeted delivery, and antimicrobial potency, including their experimental validation. This comparative overview identifies common and unique strategies for MV modification used along diverse applications. Thus, the review summarizes timely aspects of MV biology in a so far unprecedented combination ranging from beneficial function for bacterial pathogen survival to future medical applications.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stephan P. Ebenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence Biohealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Li Q, Zhou G, Fei X, Tian Y, Wang S, Shi H. Engineered Bacterial Outer Membrane Vesicles with Lipidated Heterologous Antigen as an Adjuvant-Free Vaccine Platform for Streptococcus suis. Appl Environ Microbiol 2023; 89:e0204722. [PMID: 36809058 PMCID: PMC10057044 DOI: 10.1128/aem.02047-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are considered a promising vaccine platform for their high built-in adjuvanticity and ability to efficiently induce immune responses. OMVs can be engineered with heterologous antigens based on genetic engineering strategies. However, several critical issues should still be validated, including optimal exposure to the OMV surface, increased production of foreign antigens, nontoxicity, and induction of powerful immune protection. In this study, engineered OMVs with the lipoprotein transport machinery (Lpp) were designed to present SaoA antigen as a vaccine platform against Streptococcus suis. The results suggest that Lpp-SaoA fusions can be delivered on the OMV surface and do not have significant toxicity. Moreover, they can be engineered as lipoprotein and significantly accumulated in OMVs at high levels, thus accounting for nearly 10% of total OMV proteins. Immunization with OMVs containing Lpp-SaoA fusion antigen induced strong specific antibody responses and high levels of cytokines, as well as a balanced Th1/Th2 immune response. Furthermore, the decorated OMV vaccination significantly enhanced microbial clearance in a mouse infection model. It was found that antiserum against lipidated OMVs significantly promoted the opsonophagocytic uptake of S. suis in RAW246.7 macrophages. Lastly, OMVs engineered with Lpp-SaoA induced 100% protection against a challenge with 8× the 50% lethal dose (LD50) of S. suis serotype 2 and 80% protection against a challenge with 16× the LD50 in mice. Altogether, the results of this study provide a promising versatile strategy for the engineering of OMVs and suggest that Lpp-based OMVs may be a universal adjuvant-free vaccine platform for important pathogens. IMPORTANCE Bacterial outer membrane vesicles (OMVs) have become a promising vaccine platform due to their excellent built-in adjuvanticity properties. However, the location and amount of the expression of the heterologous antigen in the OMVs delivered by the genetic engineering strategies should be optimized. In this study, we exploited the lipoprotein transport pathway to engineer OMVs with heterologous antigen. Not only did lapidated heterologous antigen accumulate in the engineered OMV compartment at high levels, but also it was engineered to be delivered on the OMV surface, thus leading to the optimal activation of antigen-specific B cells and T cells. Immunization with engineered OMVs induced a strong antigen-specific antibodies in mice and conferred 100% protection against S. suis challenge. In general, the data of this study provide a versatile strategy for the engineering of OMVs and suggest that OMVs engineered with lipidated heterologous antigens may be a vaccine platform for significant pathogens.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xia Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety (JIRLAAPS), Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Suri K, D'Souza A, Huang D, Bhavsar A, Amiji M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater 2022; 22:551-566. [PMID: 36382022 PMCID: PMC9637733 DOI: 10.1016/j.bioactmat.2022.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer therapy is undergoing a paradigm shift toward immunotherapy focusing on various approaches to activate the host immune system. As research to identify appropriate immune cells and activate anti-tumor immunity continues to expand, scientists are looking at microbial sources given their inherent ability to elicit an immune response. Bacterial extracellular vesicles (BEVs) are actively studied to control systemic humoral and cellular immune responses instead of using whole microorganisms or other types of extracellular vesicles (EVs). BEVs also provide the opportunity as versatile drug delivery carriers. Unlike mammalian EVs, BEVs have already made it to the clinic with the meningococcal vaccine (Bexsero®). However, there are still many unanswered questions in the use of BEVs, especially for chronic systemically administered immunotherapies. In this review, we address the opportunities and challenges in the use of BEVs for cancer immunotherapy and provide an outlook towards development of BEV products that can ultimately translate to the clinic.
Collapse
Affiliation(s)
- Kanika Suri
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Aashray Bhavsar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA,Corresponding author. Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
7
|
Neisseria meningitidis Factor H Binding Protein Surface Exposure on Salmonella Typhimurium GMMA Is Critical to Induce an Effective Immune Response against Both Diseases. Pathogens 2021; 10:pathogens10060726. [PMID: 34207575 PMCID: PMC8229706 DOI: 10.3390/pathogens10060726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
GMMA, outer membrane vesicles resulting from hyperblebbing mutated bacterial strains, are a versatile vaccine platform for displaying both homologous and heterologous antigens. Periplasmic expression is a popular technique for protein expression in the lumen of the blebs. However, the ability of internalized antigens to induce antibody responses has not been extensively investigated. Herein, the Neisseria meningitidis factor H binding protein (fHbp) was heterologously expressed in the lumen of O-antigen positive (OAg+) and O-antigen negative (OAg−) Salmonella Typhimurium GMMA. Only the OAg− GMMA induced an anti-fHbp IgG response in mice if formulated on Alum, although it was weak and much lower compared to the recombinant fHbp. The OAg− GMMA on Alum showed partial instability, with possible exposure of fHbp to the immune system. When we chemically conjugated fHbp to the surface of both OAg+ and OAg− GMMA, these constructs induced a stronger functional response compared to the fHbp immunization alone. Moreover, the OAg+ GMMA construct elicited a strong response against both the target antigens (fHbp and OAg), with no immune interference observed. This result suggests that antigen localization on GMMA surface can play a critical role in the induction of an effective immune response and can encourage the development of GMMA based vaccines delivering key protective antigens on their surface.
Collapse
|
8
|
Zingl FG, Leitner DR, Thapa HB, Schild S. Outer membrane vesicles as versatile tools for therapeutic approaches. MICROLIFE 2021; 2:uqab006. [PMID: 37223254 PMCID: PMC10117751 DOI: 10.1093/femsml/uqab006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/05/2021] [Indexed: 05/25/2023]
Abstract
Budding of the bacterial surface results in the formation and secretion of outer membrane vesicles, which is a conserved phenomenon observed in Gram-negative bacteria. Recent studies highlight that these sphere-shaped facsimiles of the donor bacterium's surface with enclosed periplasmic content may serve multiple purposes for their host bacterium. These include inter- and intraspecies cell-cell communication, effector delivery to target cells and bacterial adaptation strategies. This review provides a concise overview of potential medical applications to exploit outer membrane vesicles for therapeutic approaches. Due to the fact that outer membrane vesicles resemble the surface of their donor cells, they represent interesting nonliving candidates for vaccine development. Furthermore, bacterial donor species can be genetically engineered to display various proteins and glycans of interest on the outer membrane vesicle surface or in their lumen. Outer membrane vesicles also possess valuable bioreactor features as they have the natural capacity to protect, stabilize and enhance the activity of luminal enzymes. Along these features, outer membrane vesicles not only might be suitable for biotechnological applications but may also enable cell-specific delivery of designed therapeutics as they are efficiently internalized by nonprofessional phagocytes. Finally, outer membrane vesicles are potent modulators of our immune system with pro- and anti-inflammatory properties. A deeper understanding of immunoregulatory effects provoked by different outer membrane vesicles is the basis for their possible future applications ranging from inflammation and immune response modulation to anticancer therapy.
Collapse
Affiliation(s)
- Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Deborah R Leitner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Himadri B Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Micoli F, MacLennan CA. Outer membrane vesicle vaccines. Semin Immunol 2020; 50:101433. [PMID: 33309166 DOI: 10.1016/j.smim.2020.101433] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Outer Membrane Vesicles (OMV) have received increased attention in recent years as a vaccine platform against bacterial pathogens. OMV from Neisseria meningitidis serogroup B have been extensively explored. Following the success of the MeNZB OMV vaccine in controlling an outbreak of N. meningitidis B in New Zealand, additional research and development resulted in the licensure of the OMV-containing four-component 4CMenB vaccine, Bexsero. This provided broader protection against multiple meningococcal B strains. Advances in the field of genetic engineering have permitted further improvements in the platform resulting in increased yields, reduced endotoxicity and decoration with homologous and heterologous antigens to enhance immuno genicity and provide broader protection. The OMV vaccine platform has been extended to many other pathogens. In this review, we discuss progress in the development of the OMV vaccine delivery platform, highlighting successful applications, together with potential challenges and gaps.
Collapse
Affiliation(s)
| | - Calman A MacLennan
- Bill & Melinda Gates Foundation, 62 Buckingham Gate, London, United Kingdom; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Uddin MJ, Dawan J, Jeon G, Yu T, He X, Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020; 8:E670. [PMID: 32380740 PMCID: PMC7284617 DOI: 10.3390/microorganisms8050670] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
The rapid emergence and spread of antibiotic-resistant bacteria continues to be an issue difficult to deal with, especially in the clinical, animal husbandry, and food fields. The occurrence of multidrug-resistant bacteria renders treatment with antibiotics ineffective. Therefore, the development of new therapeutic methods is a worthwhile research endeavor in treating infections caused by antibiotic-resistant bacteria. Recently, bacterial membrane vesicles (BMVs) have been investigated as a possible approach to drug delivery and vaccine development. The BMVs are released by both pathogenic and non-pathogenic Gram-positive and Gram-negative bacteria, containing various components originating from the cytoplasm and the cell envelope. The BMVs are able to transform bacteria with genes that encode enzymes such as proteases, glycosidases, and peptidases, resulting in the enhanced antibiotic resistance in bacteria. The BMVs can increase the resistance of bacteria to antibiotics. However, the biogenesis and functions of BMVs are not fully understood in association with the bacterial pathogenesis. Therefore, this review aims to discuss BMV-associated antibiotic resistance and BMV-based therapeutic interventions.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Jirapat Dawan
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Gibeom Jeon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Tao Yu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272033, China;
| | - Xinlong He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| |
Collapse
|
11
|
Chemical and Immunological Characteristics of Aluminum-Based, Oil-Water Emulsion, and Bacterial-Origin Adjuvants. J Immunol Res 2019; 2019:3974127. [PMID: 31205956 PMCID: PMC6530223 DOI: 10.1155/2019/3974127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Adjuvants are a diverse family of substances whose main objective is to increase the strength, quality, and duration of the immune response caused by vaccines. The most commonly used adjuvants are aluminum-based, oil-water emulsion, and bacterial-origin adjuvants. In this paper, we will discuss how the election of adjuvants is important for the adjuvant-mediated induction of immunity for different types of vaccines. Aluminum-based adjuvants are the most commonly used, the safest, and have the best efficacy, due to the triggering of a strong humoral response, albeit generating a weak induction of cell-mediated immune response. Freund's adjuvant is the most widely used oil-water emulsion adjuvant in animal trials; it stimulates inflammation and causes aggregation and precipitation of soluble protein antigens that facilitate the uptake by antigen-presenting cells (APCs). Adjuvants of bacterial origin, such as flagellin, E. coli membranes, and monophosphoryl lipid A (MLA), are known to potentiate immune responses, but their safety and risks are the main concern of their clinical use. This minireview summarizes the mechanisms that classic and novel adjuvants produce to stimulate immune responses.
Collapse
|
12
|
Grandi A, Fantappiè L, Irene C, Valensin S, Tomasi M, Stupia S, Corbellari R, Caproni E, Zanella I, Isaac SJ, Ganfini L, Frattini L, König E, Gagliardi A, Tavarini S, Sammicheli C, Parri M, Grandi G. Vaccination With a FAT1-Derived B Cell Epitope Combined With Tumor-Specific B and T Cell Epitopes Elicits Additive Protection in Cancer Mouse Models. Front Oncol 2018; 8:481. [PMID: 30416985 PMCID: PMC6212586 DOI: 10.3389/fonc.2018.00481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022] Open
Abstract
Human FAT1 is overexpressed on the surface of most colorectal cancers (CRCs) and in particular a 25 amino acid sequence (D8) present in one of the 34 cadherin extracellular repeats carries the epitope recognized by mAb198.3, a monoclonal antibody which partially protects mice from the challenge with human CRC cell lines in xenograft mouse models. Here we present data in immune competent mice demonstrating the potential of the D8-FAT1 epitope as CRC cancer vaccine. We first demonstrated that the mouse homolog of D8-FAT1 (mD8-FAT1) is also expressed on the surface of CT26 and B16F10 murine cell lines. We then engineered bacterial outer membranes vesicles (OMVs) with mD8-FAT1 and we showed that immunization of BALB/c and C57bl6 mice with engineered OMVs elicited anti-mD8-FAT1 antibodies and partially protected mice from the challenge against CT26 and EGFRvIII-B16F10 cell lines, respectively. We also show that when combined with OMVs decorated with the EGFRvIII B cell epitope or with OMVs carrying five tumor-specific CD4+ T cells neoepitopes, mD8-FAT1 OMVs conferred robust protection against tumor challenge in C57bl6 and BALB/c mice, respectively. Considering that FAT1 is overexpressed in both KRAS+ and KRAS− CRCs, these data support the development of anti-CRC cancer vaccines in which the D8-FAT1 epitope is used in combination with other CRC-specific antigens, including mutation-derived neoepitopes.
Collapse
|
13
|
Hays MP, Houben D, Yang Y, Luirink J, Hardwidge PR. Immunization With Skp Delivered on Outer Membrane Vesicles Protects Mice Against Enterotoxigenic Escherichia coli Challenge. Front Cell Infect Microbiol 2018; 8:132. [PMID: 29765911 PMCID: PMC5938412 DOI: 10.3389/fcimb.2018.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Outer membrane vesicles (OMVs) are promising vaccine components because they combine antigen and adjuvant in a single formulation. Detoxified Salmonella enterica strains that express penta-acylated lipid A retain OMV immunogenicity but with reduced reactogenicity. We have previously shown that a recombinant form of the enterotoxigenic Escherichia coli (ETEC) 17 kilodalton protein (Skp) protects mice in a pulmonary challenge model, when fused to the glutathione-S-transferase (GST) epitope and combined with cholera toxin. Here we compared directly the efficacy of expressing Skp in detoxified Salmonella OMVs to GST-Skp for their ability to protect mice against ETEC challenge. We observed that the display of Skp on OMVs, in the absence of exogenous adjuvant, protects the mice as well as the recombinant GST-Skp with adjuvant, showing that we can achieve protection when antigen and adjuvant are administered as a single formulation. Collectively, these data demonstrate the utility of using OMVs for the expression and display of antigens for use in vaccine development and validate previously published work demonstrating that immunization with Skp is efficacious in protecting mice against ETEC challenge.
Collapse
Affiliation(s)
- Michael P Hays
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Diane Houben
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, Netherlands
| | - Yang Yang
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, Netherlands.,Abera Bioscience AB, Stockholm, Sweden
| | - Philip R Hardwidge
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
Song X, Zhang H, Zhang D, Xie W, Zhao G. Bioinformatics analysis and epitope screening of a potential vaccine antigen TolB from Acinetobacter baumannii outer membrane protein. INFECTION GENETICS AND EVOLUTION 2018; 62:73-79. [PMID: 29673984 DOI: 10.1016/j.meegid.2018.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
The clinical isolation rate of multidrug-resistant or pan-resistant Acinetobacter baumannii (A. baumannii) is increasing, resulting that optional antibiotics are very limited in clinical practice. To deal with such a dilemma in treatment, the development of effective vaccines serves as a good strategy. Outer membrane proteins (Omp) often contain potential excellent vaccine antigens, and NCBI has published >300 Omp sequences of A. baumannii (including the duplicates). To accurately screen out the potential excellent antigen molecules from a large number of sequences, and avoid repetitive experimental processes is of great significance. In this study, we used the bioinformatics software to give extensive predictions of TolB protein. Results suggest it is a potential vaccine antigen. We then cloned the TolB gene fragments and confirmed it was highly conserved among the strains. Finally, we designed a good recombinant epitopes and conducted experimental verification. These findings provided grounds for animal immunology experiments in the future, and showed an orientation for the efficient development of A. baumannii vaccine.
Collapse
Affiliation(s)
- Xiaojie Song
- Department of Respiratory, Qilu Hospital of Shandong University, Qingdao, Shandong Province 255036, People's Republic of China
| | - Hua Zhang
- Department of Geriatric, Qingdao Municipal Hospital, Qingdao, Shandong Province 266011, People's Republic of China
| | - Dongsheng Zhang
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong Province 266011, People's Republic of China
| | - Weifeng Xie
- Department of ICU, Qingdao Municipal Hospital, Qingdao, Shandong Province 266011, People's Republic of China
| | - Guanghui Zhao
- Clinical Laboratory Medicine Center, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, People's Republic of China.
| |
Collapse
|
15
|
Grandi A, Tomasi M, Zanella I, Ganfini L, Caproni E, Fantappiè L, Irene C, Frattini L, Isaac SJ, König E, Zerbini F, Tavarini S, Sammicheli C, Giusti F, Ferlenghi I, Parri M, Grandi G. Synergistic Protective Activity of Tumor-Specific Epitopes Engineered in Bacterial Outer Membrane Vesicles. Front Oncol 2017; 7:253. [PMID: 29164053 PMCID: PMC5681935 DOI: 10.3389/fonc.2017.00253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction Bacterial outer membrane vesicles (OMVs) are naturally produced by all Gram-negative bacteria and, thanks to their plasticity and unique adjuvanticity, are emerging as an attractive vaccine platform. To test the applicability of OMVs in cancer immunotherapy, we decorated them with either one or two protective epitopes present in the B16F10EGFRvIII cell line and tested the protective activity of OMV immunization in C57BL/6 mice challenged with B16F10EGFRvIII. Materials and methods The 14 amino acid B cell epitope of human epidermal growth factor receptor variant III (EGFRvIII) and the mutation-derived CD4+ T cell neo-epitope of kif18b gene (B16-M30) were used to decorate OMVs either alone or in combination. C57BL/6 were immunized with the OMVs and then challenged with B16F10EGFRvIII cells. Immunogenicity and protective activity was followed by measuring anti-EGFRvIII antibodies, M30-specific T cells, tumor-infiltrating cell population, and tumor growth. Results Immunization with engineered EGFRvIII-OMVs induced a strong inhibition of tumor growth after B16F10EGFRvIII challenge. Furthermore, mice immunized with engineered OMVs carrying both EGFRvIII and M30 epitopes were completely protected from tumor challenge. Immunization was accompanied by induction of high anti-EGFRvIII antibody titers, M30-specific T cells, and infiltration of CD4+ and CD8+ T cells at the tumor site. Conclusion OMVs can be decorated with tumor antigens and can elicit antigen-specific, protective antitumor responses in immunocompetent mice. The synergistic protective activity of multiple epitopes simultaneously administered with OMVs makes the OMV platform particularly attractive for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Michele Tomasi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ilaria Zanella
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luisa Ganfini
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Elena Caproni
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Laura Fantappiè
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Carmela Irene
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luca Frattini
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Samine J Isaac
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Enrico König
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesca Zerbini
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | | | | | | | - Matteo Parri
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Guido Grandi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
16
|
Gerritzen MJH, Martens DE, Wijffels RH, van der Pol L, Stork M. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol Adv 2017; 35:565-574. [PMID: 28522212 DOI: 10.1016/j.biotechadv.2017.05.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/24/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023]
Abstract
Outer membrane vesicles (OMVs) are naturally non-replicating, highly immunogenic spherical nanoparticles derived from Gram-negative bacteria. OMVs from pathogenic bacteria have been successfully used as vaccines against bacterial meningitis and sepsis among others and the composition of the vesicles can easily be engineered. OMVs can be used as a vaccine platform by engineering heterologous antigens to the vesicles. The major advantages of adding heterologous proteins to the OMV are that the antigens retain their native conformation, the ability of targeting specific immune responses, and a single production process suffices for many vaccines. Several promising vaccine platform concepts have been engineered based on decorating OMVs with heterologous antigens. This review discusses these vaccine concepts and reviews design considerations as the antigen location, the adjuvant function, physiochemical properties, and the immune response.
Collapse
Affiliation(s)
- Matthias J H Gerritzen
- Institute for Translational Vaccinology (Intravacc), Process Development Bacterial Vaccines, P.O. Box 450, 3720 AL Bilthoven, The Netherlands; Wageningen University, Bioprocess Engineering, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Dirk E Martens
- Wageningen University, Bioprocess Engineering, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - René H Wijffels
- Wageningen University, Bioprocess Engineering, P.O. Box 16, 6700 AA Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, P.O. Box 1409, 8049 Bodø, Norway
| | - Leo van der Pol
- Institute for Translational Vaccinology (Intravacc), Molecular Biology and Immunology, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Michiel Stork
- Institute for Translational Vaccinology (Intravacc), Process Development Bacterial Vaccines, P.O. Box 450, 3720 AL Bilthoven, The Netherlands.
| |
Collapse
|
17
|
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Annu Rev Microbiol 2016; 70:255-78. [PMID: 27359214 DOI: 10.1146/annurev-micro-102215-095308] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Shawn M Zimmerman
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Lisa G Kuhns
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Carmen M Herrera
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
18
|
Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines. Sci Rep 2016; 6:24931. [PMID: 27103188 PMCID: PMC4840304 DOI: 10.1038/srep24931] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/05/2016] [Indexed: 12/18/2022] Open
Abstract
The World Health Organization has indicated that we are entering into a post-antibiotic era in which infections that were routinely and successfully treated with antibiotics can now be lethal due to the global dissemination of multidrug resistant strains. Conjugate vaccines are an effective way to create a long-lasting immune response against bacteria. However, these vaccines present many drawbacks such as slow development, high price, and batch-to-batch inconsistencies. Alternate approaches for vaccine development are urgently needed. Here we present a new vaccine consisting of glycoengineered outer membrane vesicles (geOMVs). This platform exploits the fact that the initial steps in the biosynthesis of most bacterial glycans are similar. Therefore, it is possible to easily engineer non-pathogenic Escherichia coli lab strains to produce geOMVs displaying the glycan of the pathogen of interest. In this work we demonstrate the versatility of this platform by showing the efficacy of geOMVs as vaccines against Streptococcus pneumoniae in mice, and against Campylobacter jejuni in chicken. This cost-effective platform could be employed to generate vaccines to prevent infections caused by a wide variety of microbial agents in human and animals.
Collapse
|
19
|
Salverda MLM, Meinderts SM, Hamstra HJ, Wagemakers A, Hovius JWR, van der Ark A, Stork M, van der Ley P. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 2016; 34:1025-33. [PMID: 26801064 DOI: 10.1016/j.vaccine.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Outer Membrane Vesicles (OMVs) are gaining attention as vaccine candidates. The successful expression of heterologous antigens in OMVs, with the OMV functioning both as adjuvant and delivery vehicle, has greatly enhanced their vaccine potential. Since there are indications that surface exposed antigens might induce a superior immune response, targeting of heterologous antigens to the OMV surface is of special interest. Several systems for surface display of heterologous antigens on OMVs have been developed. However, these systems have not been used to display lipidated membrane-associated proteins known as lipoproteins, which are emerging as key targets for protective immunity. We were therefore interested to see whether we could express a foreign lipoprotein on the outer surface of OMVs. When outer surface protein A (OspA), a borrelial surface-exposed lipoprotein, was expressed in meningococci, it was found that although OspA was present in OMVs, it was no longer surface-exposed. Therefore, a set of fusions of OspA to different regions of factor H binding protein (fHbp), a meningococcal surface-exposed lipoprotein, were designed and tested for their surface-exposure. An N-terminal part of fHbp was found to be necessary for the successful surface display of OspA on meningococcal OMVs. When mice were immunized with this set of OMVs, an OspA-specific antibody response was only elicited by OMVs with clearly surface-exposed OspA, strengthening the idea that the exact positioning of an antigen in the OMV affects the immune response. This method for the surface display of heterologous lipoproteins on OMVs is a step forward in the development of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Merijn L M Salverda
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Sanne M Meinderts
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Hendrik-Jan Hamstra
- Immunology of Infectious Diseases and Vaccines (IIV), National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Alex Wagemakers
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joppe W R Hovius
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arno van der Ark
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Michiel Stork
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
20
|
Abstract
Historically vaccines were produced using whole attenuated or killed pathogens and still a large proportion of current vaccines utilizes such procedure. However, for safety and quality reasons the development of novel vaccines is preferentially based on the selection and use of specific pathogen components which alone are capable of eliciting protective immune responses against the pathogens they derived from. The big challenge for vaccinologists is how to select the right antigens and to combine them with proper immune stimulatory components (adjuvants) in order to induce protective immunity. This Commentary outlines the authors' view on the current and future strategies for the efficient and rapid identification of the most effective protective antigens and adjuvants. Since efficacious subunit-based vaccines against recalcitrant pathogens are likely to require more than one antigen and/or immune stimulator, this poses the problem of how to make such vaccines economically acceptable. In this regard, the authors also present their view of how bacterial Outer Membrane Vesicles (OMVs) could become a promising platform for the development of future vaccines. The unique properties of OMVs might be exploited in the field of infectious diseases and oncology.
Collapse
Affiliation(s)
| | - Michele Tomasi
- b CIBIO, Centre for Integrative Biology, University of Trento ; Trento , Italy
| | - Guido Grandi
- b CIBIO, Centre for Integrative Biology, University of Trento ; Trento , Italy
| |
Collapse
|
21
|
Lusta KA. Bacterial outer membrane nanovesicles: Structure, biogenesis, functions, and application in biotechnology and medicine (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815040092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Gaillard ME, Bottero D, Moreno G, Rumbo M, Hozbor D. Strategies and new developments to control pertussis, an actual health problem. Pathog Dis 2015; 73:ftv059. [PMID: 26260328 DOI: 10.1093/femspd/ftv059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2015] [Indexed: 12/26/2022] Open
Abstract
The aim of this article is to describe the current epidemiological situation of pertussis, as well as different short-term strategies that have been implemented to alleviate this threat. The state of the art of the development of new vaccines that are expected to provide long-lasting immunity against pertussis was also included.
Collapse
Affiliation(s)
- María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| | - Griselda Moreno
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, UNLP 47 y 115 (1900) La Plata, Argentina
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, UNLP 47 y 115 (1900) La Plata, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, Calles 50 y 115, 1900, La Plata, Argentina
| |
Collapse
|
23
|
Turner L, Praszkier J, Hutton ML, Steer D, Ramm G, Kaparakis-Liaskos M, Ferrero RL. Increased Outer Membrane Vesicle Formation in a Helicobacter pylori tolB Mutant. Helicobacter 2015; 20:269-83. [PMID: 25669590 DOI: 10.1111/hel.12196] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Multiple studies have established the importance of the tol-pal gene cluster in bacterial cell membrane integrity and outer membrane vesicle (OMV) formation in Escherichia coli. In contrast, the functions of Tol-Pal proteins in pathogenic organisms, including those of the Epsilonproteobacteria, remain poorly if at all defined. The aim of this study was to characterize the roles of two key components of the Tol-Pal system, TolB and Pal, in OMV formation in the pathogenic bacterium, Helicobacter pylori. METHODS H. pylori ΔtolB, Δpal and ΔtolBpal mutants, as well as complemented strains, were generated and assessed for changes in morphology and OMV production by scanning electron microscopy and enzyme-linked immunoassay (ELISA), respectively. The protein content and pro-inflammatory properties of OMVs were determined by mass spectroscopy and interleukin-8 (IL-8) ELISA on culture supernatants from OMV-stimulated cells, respectively. RESULTS H. pylori ΔtolB and Δpal bacteria exhibited aberrant cell morphology and/or flagella biosynthesis. Importantly, the disruption of H. pylori tolB but not pal resulted in a significant increase in OMV production. The OMVs from H. pylori ΔtolB and Δpal bacteria harbored many of the major outer membrane and virulence proteins observed in wild-type (WT) OMVs. Interestingly, ΔtolB, Δpal and ΔtolBpal OMVs induced significantly higher levels of IL-8 production by host cells, compared with WT OMVs. CONCLUSIONS This work demonstrates that TolB and Pal are important for membrane integrity in H. pylori. Moreover, it shows how H. pylori tolB-pal genes may be manipulated to develop "hypervesiculating" strains for vaccine purposes.
Collapse
Affiliation(s)
- Lorinda Turner
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| | - Judyta Praszkier
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| | - Melanie L Hutton
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| | - David Steer
- Monash Biomedical Proteomics Facility, Monash University, Wellington Road, Clayton, (3800), Victoria, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, (3168), Victoria, Australia
| |
Collapse
|
24
|
Kuipers K, Daleke-Schermerhorn MH, Jong WSP, ten Hagen-Jongman CM, van Opzeeland F, Simonetti E, Luirink J, de Jonge MI. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine 2015; 33:2022-9. [PMID: 25776921 DOI: 10.1016/j.vaccine.2015.03.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/24/2015] [Accepted: 03/04/2015] [Indexed: 11/17/2022]
Abstract
Bacterial outer membrane vesicles (OMVs) are attractive vaccine formulations because they have intrinsic immunostimulatory properties. In principle, heterologous antigens incorporated into OMVs will elicit specific immune responses, especially if presented at the vesicle surface and thus optimally exposed to the immune system. In this study, we explored the feasibility of our recently developed autotransporter Hbp platform, designed to efficiently and simultaneously display multiple antigens at the surface of bacterial OMVs, for vaccine development. Using two Streptococcus pneumoniae proteins as model antigens, we showed that intranasally administered Salmonella OMVs displaying high levels of antigens at the surface induced strong protection in a murine model of pneumococcal colonization, without the need for a mucosal adjuvant. Importantly, reduction in bacterial recovery from the nasal cavity was correlated with local production of antigen-specific IL-17A. Furthermore, the protective efficacy and the production of antigen-specific IL-17A, and local and systemic IgGs, were all improved at increased concentrations of the displayed antigen. This discovery highlights the importance of an adequate antigen expression system for development of recombinant OMV vaccines. In conclusion, our findings demonstrate the suitability of the Hbp platform for development of a new generation of OMV vaccines, and illustrate the potential of using this approach to develop a broadly protective mucosal pneumococcal vaccine.
Collapse
Affiliation(s)
- Kirsten Kuipers
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria H Daleke-Schermerhorn
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Wouter S P Jong
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Corinne M ten Hagen-Jongman
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Fred van Opzeeland
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elles Simonetti
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden.
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Jong WSP, Daleke-Schermerhorn MH, Vikström D, Ten Hagen-Jongman CM, de Punder K, van der Wel NN, van de Sandt CE, Rimmelzwaan GF, Follmann F, Agger EM, Andersen P, de Gier JW, Luirink J. An autotransporter display platform for the development of multivalent recombinant bacterial vector vaccines. Microb Cell Fact 2014; 13:162. [PMID: 25421093 PMCID: PMC4252983 DOI: 10.1186/s12934-014-0162-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/02/2014] [Indexed: 01/02/2023] Open
Abstract
Background The Autotransporter pathway, ubiquitous in Gram-negative bacteria, allows the efficient secretion of large passenger proteins via a relatively simple mechanism. Capitalizing on its crystal structure, we have engineered the Escherichia coli autotransporter Hemoglobin protease (Hbp) into a versatile platform for secretion and surface display of multiple heterologous proteins in one carrier molecule. Results As proof-of-concept, we demonstrate efficient secretion and high-density display of the sizeable Mycobacterium tuberculosis antigens ESAT6, Ag85B and Rv2660c in E. coli simultaneously. Furthermore, we show stable multivalent display of these antigens in an attenuated Salmonella Typhimurium strain upon chromosomal integration. To emphasize the versatility of the Hbp platform, we also demonstrate efficient expression of multiple sizeable antigenic fragments from Chlamydia trachomatis and the influenza A virus at the Salmonella cell surface. Conclusions The successful efficient cell surface display of multiple antigens from various pathogenic organisms highlights the potential of Hbp as a universal platform for the development of multivalent recombinant bacterial vector vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wouter S P Jong
- Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands. .,Abera Bioscience AB, SE-111 45, Stockholm, Sweden.
| | - Maria H Daleke-Schermerhorn
- Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands. .,Abera Bioscience AB, SE-111 45, Stockholm, Sweden.
| | - David Vikström
- Xbrane Bioscience AB, SE-111 45, Stockholm, Sweden. .,Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Corinne M Ten Hagen-Jongman
- Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands. .,Abera Bioscience AB, SE-111 45, Stockholm, Sweden.
| | - Karin de Punder
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066, CX, Amsterdam, The Netherlands. .,Present Address: Institute for Medical Psychology, Charité Universitätsmedizin, 10117, Berlin, Germany.
| | - Nicole N van der Wel
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066, CX, Amsterdam, The Netherlands. .,Present Address: Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1105, AZ, Amsterdam, The Netherlands.
| | | | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, 3015, GE, Rotterdam, The Netherlands.
| | - Frank Follmann
- Department of Infectious Disease & Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Else Marie Agger
- Department of Infectious Disease & Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Peter Andersen
- Department of Infectious Disease & Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Jan-Willem de Gier
- Xbrane Bioscience AB, SE-111 45, Stockholm, Sweden. .,Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Joen Luirink
- Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands. .,Abera Bioscience AB, SE-111 45, Stockholm, Sweden.
| |
Collapse
|
26
|
Fantappiè L, de Santis M, Chiarot E, Carboni F, Bensi G, Jousson O, Margarit I, Grandi G. Antibody-mediated immunity induced by engineered Escherichia coli OMVs carrying heterologous antigens in their lumen. J Extracell Vesicles 2014; 3:24015. [PMID: 25147647 PMCID: PMC4131003 DOI: 10.3402/jev.v3.24015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022] Open
Abstract
Background Outer membrane vesicles (OMVs) from Gram-negative bacteria are gaining increasing attention as vaccine platform for their built-in adjuvanticity and for their potential use as carriers of heterologous antigens. These 2 properties offer the opportunity to make highly effective, easy to produce multi-valent vaccines. OMVs can be loaded with foreign antigens by targeting protein expression either to the outer membrane or to the periplasm of the OMV-producing strain. Periplasmic expression is simple and relatively efficient but leads to the accumulation of recombinant antigens in the lumen of OMVs and the ability of OMVs carrying internalized antigens to induce antigen-specific antibody responses has been only marginally investigated and is considered to be sub-optimal. Methods We have systematically analyzed in qualitative and quantitative terms antibody responses induced by OMVs carrying different heterologous antigens in their lumen. Group A Streptococcus (GAS) Slo, SpyCEP, Spy0269 and Group B Streptococcus (GBS) SAM_1372 were fused to the OmpA leader sequence for secretion and expressed in Escherichia coli. OMVs from the recombinant strains were purified and tested for immunogenicity and protective activity. Results All proteins were incorporated into the OMVs lumen in their native conformation. Upon mice immunization, OMVs induced high functional antibody titers against the recombinant proteins. Furthermore, immunization with Slo-OMVs and SpyCEP-OMVs protected mice against GAS lethal challenge. Conclusions The efficiency of antigen delivery to the vesicular lumen via periplasmic expression, and the surprisingly high immunogenicity and protective activity of OMVs carrying internalized recombinant antigens further strengthens the potential of OMVs as vaccine platform.
Collapse
Affiliation(s)
- Laura Fantappiè
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | | | | | | | | | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | | | - Guido Grandi
- Centre for Integrative Biology, University of Trento, Trento, Italy ; Novartis Vaccines and Diagnostics, Siena, Italy
| |
Collapse
|
27
|
Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach. Appl Environ Microbiol 2014; 80:5854-65. [PMID: 25038093 DOI: 10.1128/aem.01941-14] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.
Collapse
|
28
|
Baker JL, Chen L, Rosenthal JA, Putnam D, DeLisa MP. Microbial biosynthesis of designer outer membrane vesicles. Curr Opin Biotechnol 2014; 29:76-84. [PMID: 24667098 DOI: 10.1016/j.copbio.2014.02.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
Abstract
Outer membrane vesicles (OMVs) are nanoscale proteoliposomes that are ubiquitously secreted by Gram-negative bacteria. Interest in these bioparticles has escalated over the years, leading to discoveries regarding their composition, production, and vaccine potential. Given that many steps in vesicle biogenesis are 'engineerable,' it is now possible to tailor OMVs for specific applications. Such tailoring involves modifying the OMV-producing bacterium through protein, pathway, or genome engineering in a manner that specifically alters the final OMV product. For example, targeted deletion or upregulation of genes associated with the cell envelope can modulate vesicle production or remodel the composition of vesicle components such as lipopolysaccharide. Likewise, bacteria can be reprogrammed to incorporate heterologously expressed proteins into either the membrane or lumenal compartment of OMVs. We anticipate that further research in the field of OMV engineering will enable continued design and biosynthesis of specialized vesicles for numerous biotechnological purposes ranging from the delivery of vaccines to the deconstruction of cellulosic substrates.
Collapse
Affiliation(s)
- Jenny L Baker
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Linxiao Chen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joseph A Rosenthal
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David Putnam
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
29
|
Bartolini E, Ianni E, Frigimelica E, Petracca R, Galli G, Berlanda Scorza F, Norais N, Laera D, Giusti F, Pierleoni A, Donati M, Cevenini R, Finco O, Grandi G, Grifantini R. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J Extracell Vesicles 2013; 2:20181. [PMID: 24009891 PMCID: PMC3760637 DOI: 10.3402/jev.v2i0.20181] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/01/2013] [Accepted: 03/12/2013] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. METHODS Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. RESULTS CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. CONCLUSIONS When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform.
Collapse
|
30
|
Unnikrishnan M, Rappuoli R, Serruto D. Recombinant bacterial vaccines. Curr Opin Immunol 2012; 24:337-42. [PMID: 22541723 DOI: 10.1016/j.coi.2012.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/19/2012] [Indexed: 01/09/2023]
Abstract
Vaccines are currently available for many infectious diseases caused by several microbes and the prevention of disease and death by vaccination has profoundly improved public health globally. However, vaccines are not yet licensed for use against many other infectious diseases and new or improved vaccines are needed to replace suboptimal vaccines, and against newly emerging pathogens. Most of the vaccines currently licensed for human use include live attenuated and inactivated or killed microorganisms. Only a small subset is based on purified components and even fewer are recombinantly produced. Novel approaches in recombinant DNA technology, genomics and structural biology have revolutionized the way vaccine candidates are developed and will make a significant impact in the generation of safer and more effective vaccines.
Collapse
Affiliation(s)
- Meera Unnikrishnan
- Novartis Vaccines and Diagnostics, Via Fiorentina 1, 53100, Siena, Italy
| | | | | |
Collapse
|
31
|
Schroeder J, Brown N, Kaye P, Aebischer T. Single dose novel Salmonella vaccine enhances resistance against visceralizing L. major and L. donovani infection in susceptible BALB/c mice. PLoS Negl Trop Dis 2011; 5:e1406. [PMID: 22216363 PMCID: PMC3246433 DOI: 10.1371/journal.pntd.0001406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis is a major neglected tropical disease, with an estimated 500,000 new cases and more than 50,000 deaths attributable to this disease every year. Drug therapy is available but costly and resistance against several drug classes has evolved. Despite all efforts, no commercial, let alone affordable, vaccine is available to date. Thus, the development of cost effective, needle-independent vaccines is a high priority. Here, we have continued efforts to develop live vaccine carriers based on recombinant Salmonella. We used an in silico approach to select novel Leishmania parasite antigens from proteomic data sets, with selection criteria based on protein abundance, conservation across Leishmania species and low homology to host species. Five chosen antigens were differentially expressed on the surface or in the cytosol of Salmonella typhimurium SL3261. A two-step procedure was developed to select optimal Salmonella vaccine strains for each antigen, based on bacterial fitness and antigen expression levels. We show that vaccine strains of Salmonella expressing the novel Leishmania antigens LinJ08.1190 and LinJ23.0410 significantly reduced visceralisation of L. major and enhanced systemic resistance against L. donovani in susceptible BALB/c mice. The results show that Salmonella are valid vaccine carriers for inducing resistance against visceral leishmaniasis but that their use may not be suitable for all antigens.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Disease Models, Animal
- Drug Carriers/administration & dosage
- Female
- Genetic Vectors
- Leishmania donovani/genetics
- Leishmania donovani/immunology
- Leishmania major/genetics
- Leishmania major/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/genetics
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Mice
- Mice, Inbred BALB C
- Salmonella typhimurium/genetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Juliane Schroeder
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Najmeeyah Brown
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Paul Kaye
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Toni Aebischer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
32
|
Basto AP, Piedade J, Ramalho R, Alves S, Soares H, Cornelis P, Martins C, Leitão A. A new cloning system based on the OprI lipoprotein for the production of recombinant bacterial cell wall-derived immunogenic formulations. J Biotechnol 2011; 157:50-63. [PMID: 22115954 DOI: 10.1016/j.jbiotec.2011.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 02/06/2023]
Abstract
The conjugation of antigens with ligands of pattern recognition receptors (PRR) is emerging as a promising strategy for the modulation of specific immunity. Here, we describe a new Escherichia coli system for the cloning and expression of heterologous antigens in fusion with the OprI lipoprotein, a TLR ligand from the Pseudomonas aeruginosa outer membrane (OM). Analysis of the OprI expressed by this system reveals a triacylated lipid moiety mainly composed by palmitic acid residues. By offering a tight regulation of expression and allowing for antigen purification by metal affinity chromatography, the new system circumvents the major drawbacks of former versions. In addition, the anchoring of OprI to the OM of the host cell is further explored for the production of novel recombinant bacterial cell wall-derived formulations (OM fragments and OM vesicles) with distinct potential for PRR activation. As an example, the African swine fever virus ORF A104R was cloned and the recombinant antigen was obtained in the three formulations. Overall, our results validate a new system suitable for the production of immunogenic formulations that can be used for the development of experimental vaccines and for studies on the modulation of acquired immunity.
Collapse
Affiliation(s)
- Afonso P Basto
- Laboratório de Doenças Infecciosas, CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Immunization with Salmonella enterica serovar Typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect Immun 2010; 79:887-94. [PMID: 21115718 DOI: 10.1128/iai.00950-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that serve a variety of functions related to survival and pathogenicity. Periplasmic and outer membrane proteins are naturally captured during vesicle formation. This property has been exploited as a method to derive immunogenic vesicle preparations for use as vaccines. In this work, we constructed a Salmonella enterica serovar Typhimurium strain that synthesized a derivative of the pneumococcal protein PspA engineered to be secreted into the periplasmic space. Vesicles isolated from this strain contained PspA in the lumen. Mice intranasally immunized with the vesicle preparation developed serum antibody responses against vesicle components that included PspA and Salmonella-derived lipopolysaccharide and outer membrane proteins, while no detectable responses developed in mice immunized with an equivalent dose of purified PspA. Mucosal IgA responses developed against the Salmonella components, while the response to PspA was less apparent in most mice. Mice immunized with the vesicle preparation were completely protected against a 10× 50% lethal dose (LD₅₀) challenge of Streptococcus pneumoniae and significantly protected against a 200× LD₅₀ challenge, while control mice immunized with purified PspA or empty vesicles were not protected. These results establish that vesicles can be used to mucosally deliver an antigen from a Gram-positive organism and induce a protective immune response.
Collapse
|
34
|
Abstract
Helicobacter pylori represents the major etiologic agent of gastritis, gastric, and duodenal ulcer disease and can cause gastric cancer and mucosa-associated lymphoid tissue B-cell lymphoma. It is clear that the consequences of infection reflect diverse outcomes of the interaction of bacteria and host immune system. The hope is that by deciphering the deterministic rules--if any--of this interplay, we will eventually be able to predict, treat, and ultimately prevent disease. Over the past year, research on the immunology of this infection started to probe the role of small noncoding RNAs, a novel class of immune response regulators. Furthermore, we learned new details on how infection is detected by innate pattern recognition receptors. Induction of effective cell-mediated immunity will be key for the development of a vaccine, and new work published analyzed the relevance and contribution of CD4 T helper cell subsets to the immune reaction. Th17 cells, which are also induced during natural infection, were shown to be particularly important for vaccination. Cost-efficiency of vaccination was re-assessed and confirmed. Thus, induction and shaping of the effector roles of such protective Th populations will be a target of the newly described vaccine antigens, formulations, and modes of application that we also review here.
Collapse
|