1
|
Chen AC, Xu R, Wang T, Wei J, Yang XY, Liu CX, Lei G, Lyerly HK, Heiland T, Hartman ZC. HER2-LAMP vaccines effectively traffic to endolysosomal compartments and generate enhanced polyfunctional T cell responses that induce complete tumor regression. J Immunother Cancer 2020; 8:jitc-2019-000258. [PMID: 32532838 PMCID: PMC7295440 DOI: 10.1136/jitc-2019-000258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The advent of immune checkpoint blockade antibodies has demonstrated that effective mobilization of T cell responses can cause tumor regression of metastatic cancers, although these responses are heterogeneous and restricted to certain histologic types of cancer. To enhance these responses, there has been renewed emphasis in developing effective cancer-specific vaccines to stimulate and direct T cell immunity to important oncologic targets, such as the oncogene human epidermal growth factor receptor 2 (HER2), expressed in ~20% of breast cancers (BCs). METHODS In our study, we explored the use of alternative antigen trafficking through use of a lysosome-associated membrane protein 1 (LAMP) domain to enhance vaccine efficacy against HER2 and other model antigens in both in vitro and in vivo studies. RESULTS We found that inclusion of this domain in plasmid vaccines effectively trafficked antigens to endolysosomal compartments, resulting in enhanced major histocompatibility complex (MHC) class I and II presentation. Additionally, this augmented the expansion/activation of antigen-specific CD4+ and CD8+ T cells and also led to elevated levels of antigen-specific polyfunctional CD8+ T cells. Significantly, vaccination with HER2-LAMP produced tumor regression in ~30% of vaccinated mice with established tumors in an endogenous model of metastatic HER2+ BC, compared with 0% of HER2-WT vaccinated mice. This therapeutic benefit is associated with enhanced tumor infiltration of activated CD4+ and CD8+ T cells. CONCLUSIONS These data demonstrate the potential of using LAMP-based endolysosomal trafficking as a means to augment the generation of polyfunctional, antigen-specific T cells in order to improve antitumor therapeutic responses using cancer antigen vaccines.
Collapse
Affiliation(s)
- Alan Chen Chen
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Renhuan Xu
- Department of R&D, Immunomic Therapeutics, Rockville, Maryland, USA
| | - Tao Wang
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Junping Wei
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Gangjun Lei
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA.,Department of Pathology, Duke University, Durham, North Carolina, USA.,Department of Immunology, Duke University, Durham, NC, USA
| | - Teri Heiland
- Department of R&D, Immunomic Therapeutics, Rockville, Maryland, USA
| | - Zachary Conrad Hartman
- Department of Surgery, Duke University, Duke University, Durham, North Carolina, USA .,Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Petkov S, Starodubova E, Latanova A, Kilpeläinen A, Latyshev O, Svirskis S, Wahren B, Chiodi F, Gordeychuk I, Isaguliants M. DNA immunization site determines the level of gene expression and the magnitude, but not the type of the induced immune response. PLoS One 2018; 13:e0197902. [PMID: 29864114 PMCID: PMC5986124 DOI: 10.1371/journal.pone.0197902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Optimization of DNA vaccine delivery improves the potency of the immune response and is crucial to clinical success. Here, we inquired how such optimization impacts the magnitude of the response, its specificity and type. BALB/c mice were DNA-immunized with two model immunogens, HIV-1 protease and reverse transcriptase by intramuscular or intradermal injections with electroporation. DNA immunogens were co-delivered with DNA encoding luciferase. Delivery and expression were monitored by in vivo bioluminescence imaging (BLI). The endpoint immune responses were assessed by IFN-γ/IL-2 FluoroSpot, multiparametric flow cytometry and antibody ELISA. Expression and immunogenicity were compared in relation to the delivery route. Regardless of the route, protease generated mainly IFN-γ, and reverse transcriptase, IL-2 and antibody response. BLI of mice immunized with protease- or reverse transcriptase/reporter plasmid mixtures, demonstrated significant loss of luminescence over time. The rate of decline of luminescence strongly correlated with the magnitude of immunogen-specific response, and depended on the immunogenicity profile and the immunization route. In vitro and in vivo BLI-based assays demonstrated that intradermal delivery strongly improved the immunogenicity of protease, and to a lesser extent, of reverse transcriptase. Immune response polarization and epitope hierarchy were not affected. Thus, by changing delivery/immunogen expression sites, it is possible to modulate the magnitude, but not the type or fine specificity of the induced immune response.
Collapse
Affiliation(s)
- Stefan Petkov
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Latanova
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Athina Kilpeläinen
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Oleg Latyshev
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | | - Britta Wahren
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Francesca Chiodi
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Isaguliants
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
- Riga Stradins University, Riga, Latvia
| |
Collapse
|
3
|
Codon optimization and improved delivery/immunization regimen enhance the immune response against wild-type and drug-resistant HIV-1 reverse transcriptase, preserving its Th2-polarity. Sci Rep 2018; 8:8078. [PMID: 29799015 PMCID: PMC5967322 DOI: 10.1038/s41598-018-26281-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines require a considerable enhancement of immunogenicity. Here, we optimized a prototype DNA vaccine against drug-resistant HIV-1 based on a weak Th2-immunogen, HIV-1 reverse transcriptase (RT). We designed expression-optimized genes encoding inactivated wild-type and drug-resistant RTs (RT-DNAs) and introduced them into mice by intradermal injections followed by electroporation. RT-DNAs were administered as single or double primes with or without cyclic-di-GMP, or as a prime followed by boost with RT-DNA mixed with a luciferase-encoding plasmid (“surrogate challenge”). Repeated primes improved cellular responses and broadened epitope specificity. Addition of cyclic-di-GMP induced a transient increase in IFN-γ production. The strongest anti-RT immune response was achieved in a prime-boost protocol with electroporation by short 100V pulses done using penetrating electrodes. The RT-specific response, dominated by CD4+ T-cells, targeted epitopes at aa 199–220 and aa 528–543. Drug-resistance mutations disrupted the epitope at aa 205–220, while the CTL epitope at aa 202–210 was not affected. Overall, multiparametric optimization of RT strengthened its Th2- performance. A rapid loss of RT/luciferase-expressing cells in the surrogate challenge experiment revealed a lytic potential of anti-RT response. Such lytic CD4+ response would be beneficial for an HIV vaccine due to its comparative insensitivity to immune escape.
Collapse
|
4
|
Baklaushev VP, Kilpeläinen A, Petkov S, Abakumov MA, Grinenko NF, Yusubalieva GM, Latanova AA, Gubskiy IL, Zabozlaev FG, Starodubova ES, Abakumova TO, Isaguliants MG, Chekhonin VP. Luciferase Expression Allows Bioluminescence Imaging But Imposes Limitations on the Orthotopic Mouse (4T1) Model of Breast Cancer. Sci Rep 2017; 7:7715. [PMID: 28798322 PMCID: PMC5552689 DOI: 10.1038/s41598-017-07851-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2017] [Indexed: 01/08/2023] Open
Abstract
Implantation of reporter-labeled tumor cells in an immunocompetent host involves a risk of their immune elimination. We have studied this effect in a mouse model of breast cancer after the orthotopic implantation of mammary gland adenocarcinoma 4T1 cells genetically labelled with luciferase (Luc). Mice were implanted with 4T1 cells and two derivative Luc-expressing clones 4T1luc2 and 4T1luc2D6 exhibiting equal in vitro growth rates. In vivo, the daughter 4T1luc2 clone exhibited nearly the same, and 4T1luc2D6, a lower growth rate than the parental cells. The metastatic potential of 4T1 variants was assessed by magnetic resonance, bioluminescent imaging, micro-computed tomography, and densitometry which detected 100-μm metastases in multiple organs and bones at the early stage of their development. After 3-4 weeks, 4T1 generated 11.4 ± 2.1, 4T1luc2D6, 4.5 ± 0.6; and 4T1luc2, <1 metastases per mouse, locations restricted to lungs and regional lymph nodes. Mice bearing Luc-expressing tumors developed IFN-γ response to the dominant CTL epitope of Luc. Induced by intradermal DNA-immunization, such response protected mice from the establishment of 4T1luc2-tumors. Our data show that natural or induced cellular response against the reporter restricts growth and metastatic activity of the reporter-labelled tumor cells. Such cells represent a powerful instrument for improving immunization technique for cancer vaccine applications.
Collapse
Affiliation(s)
- V P Baklaushev
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Biomedical Agency of the Russian Federation, Moscow, Russia.
| | - A Kilpeläinen
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - S Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M A Abakumov
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N F Grinenko
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G M Yusubalieva
- Department of Fundamental and Applied Neurobiology, Serbsky National Research Center for Social and Forensic Psychiatry, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations, Moscow, Russia
| | - I L Gubskiy
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - F G Zabozlaev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Biomedical Agency of the Russian Federation, Moscow, Russia
| | - E S Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations, Moscow, Russia
| | - T O Abakumova
- Department of Fundamental and Applied Neurobiology, Serbsky National Research Center for Social and Forensic Psychiatry, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M G Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations, Moscow, Russia.
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia.
- Riga Stradins University, Riga, Latvia.
| | - V P Chekhonin
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky National Research Center for Social and Forensic Psychiatry, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Fusion to Flaviviral Leader Peptide Targets HIV-1 Reverse Transcriptase for Secretion and Reduces Its Enzymatic Activity and Ability to Induce Oxidative Stress but Has No Major Effects on Its Immunogenic Performance in DNA-Immunized Mice. J Immunol Res 2017; 2017:7407136. [PMID: 28717654 PMCID: PMC5498913 DOI: 10.1155/2017/7407136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/13/2017] [Indexed: 01/10/2023] Open
Abstract
Reverse transcriptase (RT) is a key enzyme in viral replication and susceptibility to ART and a crucial target of immunotherapy against drug-resistant HIV-1. RT induces oxidative stress which undermines the attempts to make it immunogenic. We hypothesized that artificial secretion may reduce the stress and make RT more immunogenic. Inactivated multidrug-resistant RT (RT1.14opt-in) was N-terminally fused to the signal providing secretion of NS1 protein of TBEV (Ld) generating optimized inactivated Ld-carrying enzyme RT1.14oil. Promotion of secretion prohibited proteasomal degradation increasing the half-life and content of RT1.14oil in cells and cell culture medium, drastically reduced the residual polymerase activity, and downmodulated oxidative stress. BALB/c mice were DNA-immunized with RT1.14opt-in or parental RT1.14oil by intradermal injections with electroporation. Fluorospot and ELISA tests revealed that RT1.14opt-in and RT1.14oil induced IFN-γ/IL-2, RT1.14opt-in induced granzyme B, and RT1.14oil induced perforin production. Perforin secretion correlated with coproduction of IFN-γ and IL-2 (R = 0,97). Both DNA immunogens induced strong anti-RT antibody response. Ld peptide was not immunogenic. Thus, Ld-driven secretion inferred little change to RT performance in DNA immunization. Positive outcome was the abrogation of polymerase activity increasing safety of RT-based DNA vaccines. Identification of the molecular determinants of low cellular immunogenicity of RT requires further studies.
Collapse
|
6
|
Abstract
Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections.
Collapse
Affiliation(s)
- Catherine Laughlin
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Amanda Schleif
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Carole A Heilman
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
7
|
Hallengärd D, Wahren B, Bråve A. A truncated plasmid-encoded HIV-1 reverse transcriptase displays strong immunogenicity. Viral Immunol 2013; 26:163-6. [PMID: 23573980 DOI: 10.1089/vim.2012.0083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Besides being an important target in the antiretroviral therapy against the human immunodeficiency virus type 1 (HIV-1), the HIV-1 reverse transcriptase (RT) enzyme has potential as a vaccine antigen. In this study, we explored the ability of plasmid-encoded RT to induce cell-mediated immune responses. The strategy for increasing the immunogenicity of the protein was to delete non- or low-immunogenic parts in order to focus the immune responses to known immunogenic regions. Expression and immunogenicity of the truncated RT was compared to a clinically evaluated full-length RT construct, and the truncated RT displayed enhanced in vitro expression and cell-mediated immune responses in BALB/c and HLA-A0201 transgenic C57BL/6 mice. The strong immune responses were retained also when the truncated RT was delivered as a part of a multigene HIV-1 vaccine. Linking the RT gene to a highly expressed HIV-1 protease gene did not increase the immunogenicity of RT. This optimization strategy could be used to enhance the immunogenicity of other RT-encoding DNA vaccines.
Collapse
Affiliation(s)
- David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
8
|
Isaguliants M, Smirnova O, Ivanov AV, Kilpelainen A, Kuzmenko Y, Petkov S, Latanova A, Krotova O, Engström G, Karpov V, Kochetkov S, Wahren B, Starodubova E. Oxidative stress induced by HIV-1 reverse transcriptase modulates the enzyme's performance in gene immunization. Hum Vaccin Immunother 2013; 9:2111-9. [PMID: 23881028 DOI: 10.4161/hv.25813] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED HIV-1 infection induces chronic oxidative stress. The resultant neurotoxicity has been associated with Tat protein. Here, we for the first time describe the induction of oxidative stress by another HIV-1 protein, reverse transcriptase (RT). Expression of HIV-1 RT in human embryonic kidney cells generated potent production of the reactive oxygen species (ROS), detected by the fluorescence-based probes. Quantitative RT-PCR demonstrated that expression of RT in HEK293 cells induced a 10- to 15-fold increased transcription of the phase II detoxifying enzymes human NAD(P)H quinone oxidoreductase (Nqo1) and heme oxygenase 1 (HO-1), indicating the induction of oxidative stress response. The capacity to induce oxidative stress and stress response appeared to be an intrinsic property of a vast variety of RTs: enzymatically active and inactivated, bearing mutations of drug resistance, following different routes of processing and presentation, expressed from viral or synthetic expression-optimized genes. The total ROS production induced by RT genes of the viral origin was found to be lower than that induced by the synthetic/expression-optimized or chimeric RT genes. However, the viral RT genes induced higher levels of ROS production and higher levels of HO-1 mRNA than the synthetic genes per unit of protein in the expressing cell. The capacity of RT genes to induce the oxidative stress and stress response was then correlated with their immunogenic performance. For this, RT genes were administered into BALB/c mice by intradermal injections followed by electroporation. Splenocytes of immunized mice were stimulated with the RT-derived and control antigens and antigen-specific proliferation was assessed by IFN-γ/IL-2 Fluorospot. RT variants generating high total ROS levels induced significantly stronger IFN-γ responses than the variants inducing lower total ROS, while high levels of ROS normalized per unit of protein in expressing cell were associated with a weak IFN-γ response. Poor gene immunogenicity was also associated with a high (per unit of protein) transcription of antioxidant response element (ARE) dependent phase II detoxifying enzyme genes, specifically HO-1. Thus, we have revealed a direct link between the propensity of the microbial proteins to induce oxidative stress and their immunogenicity.
Collapse
Affiliation(s)
- Maria Isaguliants
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden; DI Ivanovsky Institute of Virology; Moscow, Russia
| | - Olga Smirnova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Athina Kilpelainen
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Yulia Kuzmenko
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Stefan Petkov
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Anastasia Latanova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Olga Krotova
- DI Ivanovsky Institute of Virology; Moscow, Russia; Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Gunnel Engström
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Britta Wahren
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Elizaveta Starodubova
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden; Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
9
|
Starodubova E, Krotova O, Hallengärd D, Kuzmenko Y, Engström G, Legzdina D, Latyshev O, Eliseeva O, Maltais AK, Tunitskaya V, Karpov V, Bråve A, Isaguliants M. Cellular Immunogenicity of Novel Gene Immunogens in Mice Monitored by in Vivo Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elizaveta Starodubova
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Olga Krotova
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - David Hallengärd
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Yulia Kuzmenko
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Gunnel Engström
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Diana Legzdina
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Oleg Latyshev
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Olesja Eliseeva
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Anna Karin Maltais
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Vera Tunitskaya
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Vadim Karpov
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Andreas Bråve
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Maria Isaguliants
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| |
Collapse
|