1
|
Chen G, Han Q, Li WX, Hai R, Ding SW. Live-attenuated virus vaccine defective in RNAi suppression induces rapid protection in neonatal and adult mice lacking mature B and T cells. Proc Natl Acad Sci U S A 2024; 121:e2321170121. [PMID: 38630724 PMCID: PMC11046691 DOI: 10.1073/pnas.2321170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Global control of infectious diseases depends on the continuous development and deployment of diverse vaccination strategies. Currently available live-attenuated and killed virus vaccines typically take a week or longer to activate specific protection by the adaptive immunity. The mosquito-transmitted Nodamura virus (NoV) is attenuated in mice by mutations that prevent expression of the B2 viral suppressor of RNA interference (VSR) and consequently, drastically enhance in vivo production of the virus-targeting small-interfering RNAs. We reported recently that 2 d after immunization with live-attenuated VSR-disabled NoV (NoVΔB2), neonatal mice become fully protected against lethal NoV challenge and develop no detectable infection. Using Rag1-/- mice that produce no mature B and T lymphocytes as a model, here we examined the hypothesis that adaptive immunity is dispensable for the RNAi-based protective immunity activated by NoVΔB2 immunization. We show that immunization of both neonatal and adult Rag1-/- mice with live but not killed NoVΔB2 induces full protection against NoV challenge at 2 or 14 d postimmunization. Moreover, NoVΔB2-induced protective antiviral immunity is virus-specific and remains effective in adult Rag1-/- mice 42 and 90 d after a single-shot immunization. We conclude that immunization with the live-attenuated VSR-disabled RNA virus vaccine activates rapid and long-lasting protective immunity against lethal challenges by a distinct mechanism independent of the adaptive immunity mediated by B and T cells. Future studies are warranted to determine whether additional animal and human viruses attenuated by VSR inactivation induce similar protective immunity in healthy and adaptive immunity-compromised individuals.
Collapse
Affiliation(s)
- Gang Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| |
Collapse
|
2
|
Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Sci Rep 2021; 11:12432. [PMID: 34127684 PMCID: PMC8203608 DOI: 10.1038/s41598-021-90434-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Coxsackievirus B3 (CVB3), is commonly implicated in myocarditis, which can lead to dilated cardiomyopathy, in addition to causing acute pancreatitis and meningitis. Yet, no vaccines are currently available to prevent this infection. Here, we describe the derivation of a live attenuated vaccine virus, termed mutant (Mt) 10, encoding a single amino acid substitution H790A within the viral protein 1, that prevents CVB3 infection in mice and protects from both myocarditis and pancreatitis in challenge studies. We noted that animals vaccinated with Mt 10 developed virus-neutralizing antibodies, predominantly containing IgG2a and IgG2b, and to a lesser extent IgG3 and IgG1. Furthermore, by using major histocompatibility complex class II dextramers and tetramers, we demonstrated that Mt 10 induces antigen-specific T cell responses that preferentially produce interferon-γ. Finally, neither vaccine recipients nor those challenged with the wild-type virus revealed evidence of autoimmunity or cardiac injury as determined by T cell response to cardiac myosin and measurement of circulating cardiac troponin I levels, respectively. Together, our data suggest that Mt 10 is a vaccine candidate that prevents CVB3 infection through the induction of neutralizing antibodies and antigen-specific T cell responses, the two critical components needed for complete protection against virus infections in vaccine studies.
Collapse
|
3
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
4
|
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016; 8:57. [PMID: 26907330 PMCID: PMC4810247 DOI: 10.3390/v8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.
Collapse
Affiliation(s)
- Jani Ylä-Pelto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Lav Tripathi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
- Biomaterials and Diagnostics Group, Turku University of Applied Sciences, 20520 Turku, Finland.
| |
Collapse
|
5
|
Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, Rappuoli R, Bertholet S, Grandi G, Bagnoli F. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev 2015; 39:750-63. [PMID: 25994610 DOI: 10.1093/femsre/fuv024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 01/14/2023] Open
Abstract
Lack of known mechanisms of protection against Staphylococcus aureus in humans is hindering development of efficacious vaccines. Preclinical as well as clinical data suggest that antibodies play an important role against S. aureus. For instance, certain hypogammaglobulinaemic patients are at increased risk of staphylococcal infections. However, development of effective humoral response may be dampened by converging immune-evasion mechanisms of S. aureus. We hypothesize that B-cell proliferation induced by staphylococcal protein A (SpA) and continuous antigen exposure, without the proper T-cell help and cytokine stimuli, leads to antigen-activated B-cell deletion and anergy. Recent findings suggest an important role of type I neutrophils (PMN-I) and conventionally activated macrophages (M1) against S. aureus, while alternatively activated macrophages (M2) favour biofilm persistence and sepsis. In addition, neutrophil-macrophage cooperation promotes extravasation and activation of neutrophils as well as clearance of bacteria ensnared in neutrophil extracellular traps. Activation of these processes is modulated by cytokines and T cells. Indeed, low CD4(+) T-cell counts represent an important risk factor for skin infections and bacteraemia in patients. Altogether, these observations could lead to the identification of predictive correlates of protection and ways for shifting the balance of the response to the benefit of the host through vaccination.
Collapse
Affiliation(s)
- Clarissa Pozzi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Giuseppe Lofano
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Mancini
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | | | - Pietro Speziale
- Department of Molecular Medicine, Institute of Biochemistry, 27100 Pavia, Italy
| | - Ennio De Gregorio
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Sylvie Bertholet
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Guido Grandi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Fabio Bagnoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
6
|
Ma X, Li P, Sun P, Bai X, Bao H, Lu Z, Fu Y, Cao Y, Li D, Chen Y, Qiao Z, Liu Z. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus. INFECTION GENETICS AND EVOLUTION 2015; 31:17-24. [PMID: 25584768 DOI: 10.1016/j.meegid.2015.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/03/2014] [Accepted: 01/02/2015] [Indexed: 11/18/2022]
Abstract
Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein.
Collapse
Affiliation(s)
- Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China
| | - Zilin Qiao
- Animal Cell Engineering & Technology Research Center of Gansu, Northwest University for Nationalities, No. 1 Xibeixincun, Lanzhou 730030, China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Lanzhou 730046, Gansu, China.
| |
Collapse
|
7
|
Souii A, Ben M'hadheb-Gharbi M, Gharbi J. Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol Biotechnol 2014; 55:179-202. [PMID: 23881360 DOI: 10.1007/s12033-013-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5' untranslated region (5'UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA-protein and RNA-RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5' and 3'UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir-Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | | | | |
Collapse
|
8
|
Shim SH, Kim DS, Cho W, Nam JH. Coxsackievirus B3 regulates T-cell infiltration into the heart by lymphocyte function-associated antigen-1 activation via the cAMP/Rap1 axis. J Gen Virol 2014; 95:2010-2018. [PMID: 24920725 DOI: 10.1099/vir.0.065755-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coxsackievirus B3 (CVB3) infection can trigger myocarditis and can ultimately lead to dilated cardiomyopathy. It is known that CVB3-induced T-cell infiltration into cardiac tissues is one of the pathological factors causing cardiomyocyte injury by inflammation. However, the underlying mechanism for this remains unclear. We investigated the mechanism of T-cell infiltration by two types of CVB3: the H3 WT strain and the YYFF attenuated strain. T-cell activation was confirmed by changes in the distribution of lymphocyte function-associated antigen-1 (LFA-1). Finally, we identified which viral gene was responsible for LFA-1 activation. CVB3 could infect and activate T-cells in vivo and in vitro, and activated T-cells were detected in CVB3-infected mouse hearts. LFA-1 expressed on the surface of these T-cells had been activated through the cAMP/Rap1 pathway. Recombinant lentiviruses expressing VP2 of CVB3 could also induce LFA-1 activation via an increase in cAMP, whilst VP2 of YYFF did not. These results indicated that CVB3 infection increased cAMP levels and then activated Rap1 in T-cells. In particular, VP2, among the CVB3 proteins, might be critical for this activation. This VP2-cAMP-Rap1-LFA-1 axis could be a potential therapeutic target for treating CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Seung-Hyun Shim
- Department of Biotechnology, Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Dae-Sun Kim
- Department of Biotechnology, Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Whajung Cho
- Department of Biotechnology, Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| |
Collapse
|
9
|
Inoculation of the attenuated Coxsackievirus B3 Sabin3-like strain induces a protection against virulent CVB3 Nancy and CVB4 E2 strains in Swiss mice by both oral and intraperitoneal routes. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Li P, Bai X, Cao Y, Han C, Lu Z, Sun P, Yin H, Liu Z. Expression and stability of foreign epitopes introduced into 3A nonstructural protein of foot-and-mouth disease virus. PLoS One 2012; 7:e41486. [PMID: 22848509 PMCID: PMC3407237 DOI: 10.1371/journal.pone.0041486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa) HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags.
Collapse
Affiliation(s)
- Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Chenghao Han
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail: (HY); (ZXL)
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail: (HY); (ZXL)
| |
Collapse
|
11
|
Abstract
Current gene therapies are predominantly based on a handful of viral vectors. The limited choice of delivery vectors has been one of the stumbling blocks to the advancement of gene therapy. Therefore, the development of novel recombinant vectors should facilitate the application of gene therapies. In this study, we examined coxsackievirus B3 (CVB3) as a novel recombinant vector for the delivery and expression of a foreign gene in vitro and in vivo. A recombinant CVB3 complementary DNA was constructed by inserting a gene encoding human fibroblast growth factor 2 (FGF2). The recombinant virus (CVB3-FGF2) efficiently expressed FGF2 in HeLa cells and human cardiomyocytes in vitro and in mouse hindlimbs in vivo. The injection of the recombinant virus into mice with ischemic hindlimbs protected the hindlimbs from ischemic necrosis. CVB3-FGF2 injection significantly improved the blood flow in the ischemic limbs for over 3 weeks compared with that in the phosphate-buffered saline- or CVB3-injected controls, suggesting that FGF2 expressed from CVB3-FGF2 is functional and therapeutically effective. The virulence of CVB3 was also drastically attenuated in the recombinant virus. Thus, CVB3 can be modified to express a functional foreign protein, supporting its use as a novel viral vector for gene therapy.
Collapse
|
12
|
Shim SH, Kim YJ, Kim DS, Nam JH. Development of a Gene Therapy Method for Cervical Cancer Using Attenuated Coxsackievirus B3 as a Vector System. ACTA ACUST UNITED AC 2011. [DOI: 10.4167/jbv.2011.41.2.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seung-Hyun Shim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Yeon-Jung Kim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Dae-Sun Kim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| |
Collapse
|