1
|
Su H, Imai K, Jia W, Li Z, DiCioccio RA, Serody JS, Poe JC, Chen BJ, Doan PL, Sarantopoulos S. Alphavirus Replicon Particle Vaccine Breaks B Cell Tolerance and Rapidly Induces IgG to Murine Hematolymphoid Tumor Associated Antigens. Front Immunol 2022; 13:865486. [PMID: 35686131 PMCID: PMC9171395 DOI: 10.3389/fimmu.2022.865486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
De novo immune responses to myeloid and other blood-borne tumors are notably limited and ineffective, making our ability to promote immune responses with vaccines a major challenge. While focus has been largely on cytotoxic cell-mediated tumor eradication, B-cells and the antibodies they produce also have roles in anti-tumor responses. Indeed, therapeutic antibody-mediated tumor cell killing is routinely employed in patients with hematolymphoid cancers, but whether endogenous antibody responses can be incited to blood-born tumors remains poorly studied. A major limitation of immunoglobulin therapies is that cell surface expression of tumor-associated antigen (TAA) targets is dynamic and varied, making promotion of polyclonal, endogenous B cell responses appealing. Since many TAAs are self-antigens, developing tumor vaccines that enable production of antibodies to non-polymorphic antigen targets remains a challenge. As B cell responses to RNA vaccines are known to occur, we employed the Viral Replicon Particles (VRP) which was constructed to encode mouse FLT3. The VRP-FLT3 vaccine provoked a rapid IgG B-cell response to this self-antigen in leukemia and lymphoma mouse models. In addition, IgGs to other TAAs were also produced. Our data suggest that vaccination with RNA viral particle vectors incites a loss of B-cell tolerance that enables production of anti-tumor antibodies. This proof of principle work provides impetus to employ such strategies that lead to a break in B-cell tolerance and enable production of broadly reactive anti-TAA antibodies as potential future therapeutic agents for patients with hematolymphoid cancers.
Collapse
Affiliation(s)
- Hsuan Su
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Kazuhiro Imai
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Wei Jia
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Zhiguo Li
- Biostatistics and Bioinformatics, Basic Science Department, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Rachel A DiCioccio
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan C Poe
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Benny J Chen
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Phuong L Doan
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University, Durham, NC, United States.,Department of Immunology, School of Medicine, Duke University , Durham, NC, United States
| |
Collapse
|
2
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
3
|
Ren S, Wei Q, Cai L, Yang X, Xing C, Tan F, Leavenworth JW, Liang S, Liu W. Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice. Front Microbiol 2018; 8:2662. [PMID: 29375526 PMCID: PMC5767729 DOI: 10.3389/fmicb.2017.02662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention.
Collapse
Affiliation(s)
- Shoufeng Ren
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Qimei Wei
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Liya Cai
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xuejing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuicui Xing
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Feng Tan
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shaohui Liang
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenquan Liu
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Bates JT, Pickens JA, Schuster JE, Johnson M, Tollefson SJ, Williams JV, Davis NL, Johnston RE, Schultz-Darken N, Slaughter JC, Smith-House F, Crowe JE. Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates. Vaccine 2016; 34:950-6. [PMID: 26772634 DOI: 10.1016/j.vaccine.2015.12.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
Abstract
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are major causes of illness among children, the elderly, and the immunocompromised. No vaccine has been licensed for protection against either of these viruses. We tested the ability of two Venezuelan equine encephalitis virus-based viral replicon particle (VEE-VRP) vaccines that express the hRSV or hMPV fusion (F) protein to confer protection against hRSV or hMPV in African green monkeys. Animals immunized with VEE-VRP vaccines developed RSV or MPV F-specific antibodies and serum neutralizing activity. Compared to control animals, immunized animals were better able to control viral load in the respiratory mucosa following challenge and had lower levels of viral genome in nasopharyngeal and bronchoalveolar lavage fluids. The high level of immunogenicity and protective efficacy induced by these vaccine candidates in nonhuman primates suggest that they hold promise for further development.
Collapse
Affiliation(s)
- John T Bates
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer A Pickens
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer E Schuster
- The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Monika Johnson
- The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sharon J Tollefson
- The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John V Williams
- The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nancy L Davis
- The Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - James C Slaughter
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Department of Biostatistics of Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frances Smith-House
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Department of Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Rivas-Aravena A, Fuentes Y, Cartagena J, Brito T, Poggio V, La Torre J, Mendoza H, Gonzalez-Nilo F, Sandino AM, Spencer E. Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. FISH & SHELLFISH IMMUNOLOGY 2015; 45:157-66. [PMID: 25862072 DOI: 10.1016/j.fsi.2015.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 05/19/2023]
Abstract
Adjuvants used in vaccine aquaculture are frequently harmful for the fish, causing melanosis, granulomas and kidney damage. Along with that, vaccines are mostly administered by injection, causing pain and stress to the fish. We used the DNA coding for the replicase of alphavirus as adjuvant (Ad) of a vaccine against ISAV. The Ad and an inactivated ISAV (V) were loaded in chitosan nanoparticles (NPs) to be administered orally to Atlantic salmon. NP-Ad was able to deliver the DNA ex vivo and in vivo. Oral administration of the NPs stimulated the expression of immune molecules, but did not stimulate the humoral response. Although the vaccination with NP-V results in a modest protection of fish against ISAV, NP-V administered together with NP-Ad caused a protection of 77%. Therefore, the DNA coding for the replicase of alphavirus could be administered orally and can potentiate the immuneprotection of a virine against infection.
Collapse
Affiliation(s)
- Andrea Rivas-Aravena
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile; Comisión Chilena de Energía Nuclear, Departamento de Aplicaciones Nucleares, Santiago, Chile.
| | - Yazmin Fuentes
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| | - Julio Cartagena
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| | - Tania Brito
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| | - Verónica Poggio
- Centro Milstein, Buenos Aires, Argentina; Tecnovax, Buenos Aires, Argentina
| | - José La Torre
- Centro Milstein, Buenos Aires, Argentina; Tecnovax, Buenos Aires, Argentina
| | - Hegaly Mendoza
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology (CBIB), Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology (CBIB), Santiago, Chile
| | - Ana María Sandino
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| | - Eugenio Spencer
- Universidad de Santiago, Laboratorio de Virología, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Santiago, Chile
| |
Collapse
|
6
|
Alexander-Miller MA. Vaccines against respiratory viral pathogens for use in neonates: opportunities and challenges. THE JOURNAL OF IMMUNOLOGY 2015; 193:5363-9. [PMID: 25411431 DOI: 10.4049/jimmunol.1401410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first six months of life reflect a time of high susceptibility to severe disease following respiratory virus infection. Although this could be improved significantly by immunization, current vaccines are not approved for use in these very young individuals. This is the result of the combined effects of poor immune responsiveness and safety concerns regarding the use of live attenuated vaccines or potent adjuvants in this population. Vaccines to effectively combat respiratory viral infection ideally would result in robust CD4(+) and CD8(+) T cell responses, as well as high-affinity Ab. Inclusion of TLR agonists or single-cycle viruses is an attractive approach for provision of signals that can act as potent stimulators of dendritic cell maturation, as well as direct activators of T and/or B cells. In this article, I discuss the challenges associated with generation of a robust immune response in neonates and the potential for adjuvants to overcome these obstacles.
Collapse
|
7
|
Okayasu H, Sutter RW, Jafari HS, Takane M, Aylward RB. Affordable inactivated poliovirus vaccine: strategies and progress. J Infect Dis 2014; 210 Suppl 1:S459-64. [PMID: 25316868 DOI: 10.1093/infdis/jiu128] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After polio eradication is achieved, the use of live-attenuated oral poliovirus vaccine (OPV) must be discontinued because of the inherent risk of the Sabin strains to revert to neurovirulence and reacquire greater transmissibility that could potentially result in the reestablishment of polio transmission. In 2008, the World Health Assembly mandated that the World Health Organization establish a strategy for developing more-affordable inactivated poliovirus vaccine (IPV) options for low-income countries. In 2012, the Strategic Advisory Group of Experts (SAGE) on Immunization recommended universal IPV introduction as a risk-mitigation strategy before the phased cessation of OPV (starting with Sabin type 2) and emphasized the need for affordable IPV options. In 2013, SAGE reiterated the importance of attaining the long-term target price of IPV at approximately $0.5 per immunizing dose and encouraged accelerated efforts to develop lower-cost IPV options. This article outlines the 4-pronged approach that is being pursued to develop affordable options and provides an update on the current status and plans to make IPV affordable for developing-country use.
Collapse
Affiliation(s)
- Hiromasa Okayasu
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | - Roland W Sutter
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | - Hamid S Jafari
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | - Marina Takane
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | - R Bruce Aylward
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| |
Collapse
|
8
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
9
|
An alphavirus-based adjuvant enhances serum and mucosal antibodies, T cells, and protective immunity to influenza virus in neonatal mice. J Virol 2014; 88:9182-96. [PMID: 24899195 DOI: 10.1128/jvi.00327-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Neonatal immune responses to infection and vaccination are biased toward TH2 at the cost of proinflammatory TH1 responses needed to combat intracellular pathogens. However, upon appropriate stimulation, the neonatal immune system can induce adult-like TH1 responses. Here we report that a new class of vaccine adjuvant is especially well suited to enhance early life immunity. The GVI3000 adjuvant is a safe, nonpropagating, truncated derivative of Venezuelan equine encephalitis virus that targets dendritic cells (DCs) in the draining lymph node (DLN) and produces intracellular viral RNA without propagating to other cells. RNA synthesis strongly activates the innate immune response so that in adult animals, codelivery of soluble protein antigens induces robust humoral, cellular, and mucosal responses. The adjuvant properties of GVI3000 were tested in a neonatal BALB/c mouse model using inactivated influenza virus (iFlu). After a single immunization, mice immunized with iFlu with the GVI3000 adjuvant (GVI3000-adjuvanted iFlu) had significantly higher and sustained influenza virus-specific IgG antibodies, mainly IgG2a (TH1), compared to the mice immunized with antigen only. GVI3000 significantly increased antigen-specific CD4(+) and CD8(+) T cells, primed mucosal immune responses, and enhanced protection from lethal challenge. As seen in adult mice, the GVI3000 adjuvant increased the DC population in the DLNs, caused activation and maturation of DCs, and induced proinflammatory cytokines and chemokines in the DLNs soon after immunization, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), and interleukin 6 (IL-6). In summary, the GVI3000 adjuvant induced an adult-like adjuvant effect with an influenza vaccine and has the potential to improve the immunogenicity and protective efficacy of new and existing neonatal vaccines. IMPORTANCE The suboptimal immune responses in early life constitute a significant challenge for vaccine design. Here we report that a new class of adjuvant is safe and effective for early life immunization and demonstrate its ability to significantly improve the protective efficacy of an inactivated influenza virus vaccine in a neonatal mouse model. The GVI3000 adjuvant delivers a truncated, self-replicating viral RNA into dendritic cells in the draining lymph node. Intracellular RNA replication activates a strong innate immune response that significantly enhances adaptive antibody and cellular immune responses to codelivered antigens. A significant increase in protection results from a single immunization. Importantly, this adjuvant also primed a mucosal IgA response, which is likely to be critical for protection during many early life infections.
Collapse
|
10
|
Bergmann-Leitner ES, Leitner WW. Adjuvants in the Driver's Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators. Vaccines (Basel) 2014; 2:252-96. [PMID: 26344620 PMCID: PMC4494256 DOI: 10.3390/vaccines2020252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This "depot" was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- US Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Ave, 3W65, Silver Spring, MD 20910, USA.
| | - Wolfgang W Leitner
- Division on Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Steil BP, Jorquera P, Westdijk J, Bakker WAM, Johnston RE, Barro M. A mucosal adjuvant for the inactivated poliovirus vaccine. Vaccine 2013; 32:558-63. [PMID: 24333345 DOI: 10.1016/j.vaccine.2013.11.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022]
Abstract
The eradication of poliovirus from the majority of the world has been achieved through the use of two vaccines: the inactivated poliovirus vaccine (IPV) and the live-attenuated oral poliovirus vaccine (OPV). Both vaccines are effective at preventing paralytic poliomyelitis, however, they also have significant differences. Most importantly for this work is the risk of revertant virus from OPV, the greater cost of IPV, and the low mucosal immunity induced by IPV. We and others have previously described the use of an alphavirus-based adjuvant that can induce a mucosal immune response to a co-administered antigen even when delivered at a non-mucosal site. In this report, we describe the use of an alphavirus-based adjuvant (GVI3000) with IPV. The IPV-GVI3000 vaccine significantly increased systemic IgG, mucosal IgG and mucosal IgA antibody responses to all three poliovirus serotypes in mice even when administered intramuscularly. Furthermore, GVI3000 significantly increased the potency of IPV in rat potency tests as measured by poliovirus neutralizing antibodies in serum. Thus, an IPV-GVI3000 vaccine would reduce the dose of IPV needed and provide significantly improved mucosal immunity. This vaccine could be an effective tool to use in the poliovirus eradication campaign without risking the re-introduction of revertant poliovirus derived from OPV.
Collapse
Affiliation(s)
- Benjamin P Steil
- Global Vaccines, Inc., P.O. Box 14827, Research Triangle Park, NC 27709, USA.
| | - Patricia Jorquera
- Global Vaccines, Inc., P.O. Box 14827, Research Triangle Park, NC 27709, USA
| | - Janny Westdijk
- Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720AL Bilthoven, The Netherlands
| | - Wilfried A M Bakker
- Institute for Translational Vaccinology (Intravacc), P.O. Box 450, 3720AL Bilthoven, The Netherlands
| | - Robert E Johnston
- Global Vaccines, Inc., P.O. Box 14827, Research Triangle Park, NC 27709, USA
| | - Mario Barro
- Global Vaccines, Inc., P.O. Box 14827, Research Triangle Park, NC 27709, USA
| |
Collapse
|
12
|
Dalmia N, Ramsay AJ. Prime-boost approaches to tuberculosis vaccine development. Expert Rev Vaccines 2013; 11:1221-33. [PMID: 23176655 DOI: 10.1586/erv.12.94] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Four individuals die from active TB disease each minute, while at least 2 billion are latently infected and at risk for disease reactivation. BCG, the only licensed TB vaccine, is effective in preventing childhood forms of TB; however its poor efficacy in adults, emerging drug-resistant TB strains and tedious chemotherapy regimes, warrant the development of novel prophylactic measures. Designing safe and effective vaccines against TB will require novel approaches on several levels, including the administration of rationally selected mycobacterial antigens in efficient delivery vehicles via optimal immunization routes. Given the primary site of disease manifestation in the lungs, development of mucosal immunization strategies to generate protective immune responses both locally, and in the circulation, may be important for effective TB prophylaxis. This review focuses on prime-boost immunization strategies currently under investigation and highlights the potential of mucosal delivery and rational vaccine design based on systems biology.
Collapse
Affiliation(s)
- Neha Dalmia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
13
|
White LJ, Sariol CA, Mattocks MD, Wahala M P B W, Yingsiwaphat V, Collier ML, Whitley J, Mikkelsen R, Rodriguez IV, Martinez MI, de Silva A, Johnston RE. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection. J Virol 2013; 87:3409-24. [PMID: 23302884 PMCID: PMC3592161 DOI: 10.1128/jvi.02298-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/03/2013] [Indexed: 11/20/2022] Open
Abstract
Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.
Collapse
Affiliation(s)
- Laura J White
- Global Vaccines Inc., Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Westdijk J, Koedam P, Barro M, Steil BP, Collin N, Vedvick TS, Bakker WAM, van der Ley P, Kersten G. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains. Vaccine 2013; 31:1298-304. [PMID: 23313617 DOI: 10.1016/j.vaccine.2012.12.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/05/2012] [Accepted: 12/24/2012] [Indexed: 12/17/2022]
Abstract
Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titres (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotypes 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7-20-27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants.
Collapse
Affiliation(s)
- Janny Westdijk
- Institute for Translational Vaccinology, Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lack of interference with immunogenicity of a chimeric alphavirus replicon particle-based influenza vaccine by preexisting antivector immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:991-8. [PMID: 22623651 DOI: 10.1128/cvi.00031-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antivector immunity has been recognized as a potential caveat of using virus-based vaccines. In the present study, an alphavirus-based replicon particle vaccine platform, which has demonstrated robust immunogenicity in animal models, was tested for effects of antivector immunity on immunogenicity against hemagglutinin of influenza virus as a target antigen and efficacy for protection against lethal challenge with the virus. Chimeric alphavirus-based replicon particles, comprising Venezuelan equine encephalitis virus nonstructural and Sindbis virus structural components, induced efficient protective antibody responses, which were not adversely influenced after multiple immunizations with the same vector expressing various antigens.
Collapse
|
16
|
Tonkin DR, Whitmore A, Johnston RE, Barro M. Infected dendritic cells are sufficient to mediate the adjuvant activity generated by Venezuelan equine encephalitis virus replicon particles. Vaccine 2012; 30:4532-42. [PMID: 22531556 DOI: 10.1016/j.vaccine.2012.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 03/09/2012] [Accepted: 04/09/2012] [Indexed: 01/09/2023]
Abstract
Replicon particles derived from Venezuelan equine encephalitis virus (VEE) are infectious non-propagating particles which act as a safe and potent systemic, mucosal, and cellular adjuvant when delivered with antigen. VEE and VEE replicon particles (VRP) can target multiple cell types including dendritic cells (DCs). The role of these cell types in VRP adjuvant activity has not been previously evaluated, and for these studies we focused on the contribution of DCs to the response to VRP. By analysis of VRP targeting in the draining lymph node, we found that VRP induced rapid recruitment of TNF-secreting monocyte-derived inflammatory dendritic cells. VRP preferentially infected these inflammatory DCs as well as classical DCs and macrophages, with less efficient infection of other cell types. DC depletion suggested that the interaction of VRP with classical DCs was required for recruitment of inflammatory DCs, induction of high levels of many cytokines, and for stable transport of VRP to the draining lymph node. Additionally, in vitro-infected DCs enhanced antigen-specific responses by CD4 and CD8 T cells. By transfer of VRP-infected DCs into mice we showed that these DCs generated an inflammatory state in the draining lymph node similar to that achieved by VRP injection. Most importantly, VRP-infected DCs were sufficient to establish robust adjuvant activity in mice comparable to that produced by VRP injection. These findings indicate that VRP infect, recruit and activate both classical and inflammatory DCs, and those DCs become mediators of the VRP adjuvant activity.
Collapse
Affiliation(s)
- Daniel R Tonkin
- Global Vaccines Inc, 7020 Kit Creek Rd, Ste. 240, PO Box 14827, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
17
|
Mucosal immunity and poliovirus vaccines: Impact on wild poliovirus infection and transmission. Vaccine 2011; 29:8205-14. [DOI: 10.1016/j.vaccine.2011.08.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/21/2011] [Accepted: 08/01/2011] [Indexed: 01/03/2023]
|
18
|
Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci U S A 2011; 108:16026-31. [PMID: 21896745 DOI: 10.1073/pnas.1110617108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Alphavirus genus of the family Togaviridae contains mosquito-vectored viruses that primarily cause either arthritogenic disease or acute encephalitis. North American eastern equine encephalitis virus (NA-EEEV) is uniquely neurovirulent among encephalitic alphaviruses, causing mortality in a majority of symptomatic cases and neurological sequelae in many survivors. Unlike many alphaviruses, NA-EEEV infection of mice yields limited signs of febrile illness typically associated with lymphoid tissue replication. Rather, signs of brain infection, including seizures, are prominent. Use of heparan sulfate (HS) as an attachment receptor increases the neurovirulence of cell culture-adapted strains of Sindbis virus, an arthritogenic alphavirus. However, this receptor is not known to be used by naturally circulating alphaviruses. We demonstrate that wild-type NA-EEEV strain FL91-4679 uses HS as an attachment receptor and that the amino acid sequence of its E2 attachment protein is identical to those of natural isolates sequenced by RT-PCR amplification of field samples. This finding unequivocally confirms the use of HS receptors by naturally circulating NA-EEEV strains. Inactivation of the major HS binding domain in NA-EEEV E2 demonstrated that the HS binding increased brain replication and neurologic disease but reduced lymphoid tissue replication, febrile illness signs, and cytokine/chemokine induction in mice. We propose that HS binding by natural NA-EEEV strains alters tropism in vivo to antagonize/evade immune responses, and the extreme neurovirulence of wild-type NA-EEEV may be a consequence. Therefore, reinvestigation of HS binding by this and other arboviruses is warranted.
Collapse
|
19
|
Abstract
Viral respiratory infections cause significant morbidity and mortality in infants and young children as well as in at-risk adults and the elderly. Although many viral pathogens are capable of causing respiratory disease, vaccine development has to focus on a limited number of pathogens, such as those that commonly cause serious lower respiratory illness (LRI). Whereas influenza virus vaccines have been available for some time (see the review by Clark and Lynch in this issue), vaccines against other medically important viruses such as respiratory syncytial virus (RSV), the parainfluenza viruses (PIVs), and metapneumovirus (MPVs) are not available. This review aims to provide a brief update on investigational vaccines against RSV, the PIVs, and MPV that have been evaluated in clinical trials or are currently in clinical development.
Collapse
Affiliation(s)
- Alexander C Schmidt
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 10001, USA.
| |
Collapse
|
20
|
Zhu W, Chen CJ, Thomas CE, Anderson JE, Jerse AE, Sparling PF. Vaccines for gonorrhea: can we rise to the challenge? Front Microbiol 2011; 2:124. [PMID: 21687431 PMCID: PMC3109613 DOI: 10.3389/fmicb.2011.00124] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022] Open
Abstract
Immune responses to the gonococcus after natural infection ordinarily result in little immunity to reinfection, due to antigenic variation of the gonococcus, and redirection or suppression of immune responses. Brinton and colleagues demonstrated that parenteral immunization of male human volunteers with a purified pilus vaccine gave partial protection against infection by the homologous strain. However, the vaccine failed in a clinical trial. Recent vaccine development efforts have focused on the female mouse model of genital gonococcal infection. Here we discuss the state of the field, including our unpublished data regarding efficacy in the mouse model of either viral replicon particle (VRP) vaccines, or outer membrane vesicle (OMV) vaccines. The OMV vaccines failed, despite excellent serum and mucosal antibody responses. Protection after a regimen consisting of a PorB-VRP prime plus recombinant PorB boost was correlated with apparent Th1, but not with antibody, responses. Protection probably was due to powerful adjuvant effects of the VRP vector. New tools including novel transgenic mice expressing human genes required for gonococcal infection should enable future research. Surrogates for immunity are needed. Increasing antimicrobial resistance trends among gonococci makes development of a vaccine more urgent.
Collapse
Affiliation(s)
- Weiyan Zhu
- Department of Medicine, University of North Carolina Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
21
|
Design of chimeric alphaviruses with a programmed, attenuated, cell type-restricted phenotype. J Virol 2011; 85:4363-76. [PMID: 21345954 DOI: 10.1128/jvi.00065-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Alphavirus genus in the Togaviridae family contains a number of human and animal pathogens. The importance of alphaviruses has been strongly underappreciated; however, epidemics of chikungunya virus (CHIKV), causing millions of cases of severe and often persistent arthritis in the Indian subcontinent, have raised their profile in recent years. In spite of a continuous public health threat, to date no licensed vaccines have been developed for alphavirus infections. In this study, we have applied an accumulated knowledge about the mechanism of alphavirus replication and protein function in virus-host interactions to introduce a new approach in designing attenuated alphaviruses. These variants were constructed from genes derived from different, geographically isolated viruses. The resulting viable variants encoded CHIKV envelope and, in contrast to naturally circulating viruses, lacked the important contributors to viral pathogenesis: genes encoding proteins functioning in inhibition of cellular transcription and downregulation of the cellular antiviral response. To make these viruses incapable of transmission by mosquito vectors and to differentially regulate expression of viral structural proteins, their replication was made dependent on the internal ribosome entry sites, derived from other positive-polarity RNA (RNA(+)) viruses. The rational design of the genomes was complemented by selection procedures, which adapted viruses to replication in tissue culture and produced variants which (i) demonstrated different levels of replication and production of the individual structural proteins, (ii) efficiently induced the antiviral response in infected cells, (iii) were incapable of replication in cells of mosquito origin, and (iv) efficiently replicated in Vero cells. This modular approach to genome design is applicable for the construction of other alphaviruses with a programmed, irreversibly attenuated phenotype.
Collapse
|
22
|
|
23
|
Suter R, Summerfield A, Thomann-Harwood LJ, McCullough KC, Tratschin JD, Ruggli N. Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-α/β and carry foreign genes. Vaccine 2010; 29:1491-503. [PMID: 21184857 DOI: 10.1016/j.vaccine.2010.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Virus replicon particles (VRP) are genetically engineered infectious virions incapable of generating progeny virus due to partial or complete deletion of at least one structural gene. VRP fulfil the criteria of a safe vaccine and gene delivery system. With VRP derived from classical swine fever virus (CSF-VRP), a single intradermal vaccination protects from disease. Spreading of the challenge virus in the host is however not completely abolished. Parameters that are critical for immunogenicity of CSF-VRP are not well characterized. Considering the importance of type I interferon (IFN-α/β) to immune defence development, we generated IFN-α/β-inducing VRP to determine how this would influence vaccine efficacy. We also evaluated the effect of co-expressing granulocyte macrophage colony-stimulating factor (GM-CSF) in the vaccine context. The VRP were capable of long-term replication in cell culture despite the presence of IFN-α/β. In vivo, RNA replication was essential for the induction of an immune response. IFN-α/β-inducing and GM-CSF-expressing CSF-VRP were similar to unmodified VRP in terms of antibody and peripheral T-cell responses, and in reducing the blood levels of challenge virus RNA. Importantly, the IFN-α/β-inducing VRP did show increased efficacy over the unmodified VRP in terms of B-cell and T-cell responses, when tested with secondary immune responses by in vitro restimulation assay.
Collapse
Affiliation(s)
- Rolf Suter
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| | | | | | | | | | | |
Collapse
|