1
|
Gonçalves E, Combadière B. Prédire la réponse à la vaccination contre la grippe. Med Sci (Paris) 2020; 36:31-37. [DOI: 10.1051/medsci/2019266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
La vaccination est l’un des progrès majeurs de la médecine moderne. Mais afin d’améliorer l’efficacité des vaccins existants et d’en élaborer de nouveaux, nous devons mieux connaître les mécanismes d’action à l’origine de l’immunité protectrice et les stratégies vaccinales permettant d’induire une défense durable. La voie cutanée est une stratégie de vaccination importante, en raison de la richesse qu’elle présente en cellules de l’immunité innée qui ont un rôle clé dans la qualité, l’intensité et la persistance des réponses adaptatives qu’elles induisent. L’intégration des données biologiques obtenues au cours d’un essai clinique de vaccination antigrippale nous donne un aperçu de l’impact de la voie d’immunisation et de la signature innée sur la qualité des réponses immunitaires.
Collapse
|
2
|
Kawano M, Takagi R, Saika K, Matsui M, Matsushita S. Dopamine regulates cytokine secretion during innate and adaptive immune responses. Int Immunol 2019; 30:591-606. [PMID: 30165447 DOI: 10.1093/intimm/dxy057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Dopamine (DA) is synthesized by various immune cells. DA receptors (DARs), which comprise five isoforms, are expressed on the surface of these cells. Therefore, it is likely that DA plays a role in regulating innate and adaptive responses. However, the underlying molecular mechanism(s) is largely unknown. Here, we found that, during innate immune responses, DA suppressed secretion of IFN-γ, TNF-α and IL-1β, but promoted secretion of IL-10 and CXCL1 by lipopolysaccharide (LPS)-stimulated mouse splenocytes, suggesting that DA regulates cytokine secretion. Immune subset studies indicated that DA suppressed secretion of IFN-γ, TNF-α and IL-1β by NK cells, as well as secretion of TNF-α by neutrophils and monocytes; however, DA up-regulated IL-10 secretion by neutrophils, monocytes, B cells, macrophages (Mφs) and dendritic cells within the splenocyte population. In addition, DA up-regulated secretion of CXCL1 by LPS-stimulated NK cells and Mφs. Meanwhile, treatment with DAR agonists or antagonists suppressed secretion of inflammatory cytokines from LPS-stimulated splenocytes. Pre-treatment of LPS-stimulated splenocytes with the PI3K inhibitor wortmannin reversed DA-mediated suppression of IFN-γ secretion, indicating that DA regulates IFN-γ secretion via the inositol 1,4,5-trisphosphate signaling pathway in these cells. Administration of DA and LPS to mice immunized with chicken ovalbumin (OVA) increased secretion of IL-5 by mouse lung lymphocytes, suggesting that DA promotes OVA-specific Th2-mediated immune responses by these cells. Taken together, these findings indicate that DA regulates cytokine secretion during innate and adaptive immune responses.
Collapse
Affiliation(s)
- Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Rie Takagi
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kikue Saika
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Saitama, Japan.,Allergy Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
3
|
Immunogenicity and safety of a quadrivalent plant-derived virus like particle influenza vaccine candidate-Two randomized Phase II clinical trials in 18 to 49 and ≥50 years old adults. PLoS One 2019; 14:e0216533. [PMID: 31166987 PMCID: PMC6550445 DOI: 10.1371/journal.pone.0216533] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
Background New influenza vaccines eliciting more effective protection are needed, particularly for the elderly who paid a large and disproportional toll of hospitalization and dead during seasonal influenza epidemics. Low (≤15 μg/strain) doses of a new plant-derived virus-like-particle (VLP) vaccine candidate have been shown to induce humoral and cellular responses against both homologous and heterologous strains in healthy adults 18–64 years of age. The two clinical trials reported here addressed the safety and immunogenicity of higher doses (≥15 μg/strain) of quadrivalent VLP candidate vaccine on 18–49 years old and ≥50 years old subjects. We also investigated the impact of alum on the immunogenicity induced by lower doses of the vaccine candidate. Method In the first Phase II trial reported here (NCT02233816), 18–49 year old subjects received 15, 30 or 60 μg/strain of a hemagglutinin-bearing quadrivalent virus-like particle (QVLP) vaccine or placebo. In the second trial (NCT02236052), ≥50 years old subjects received QVLP as above or placebo with additional groups receiving 7.5 or 15 μg/strain with alum. Along with safety recording, the humoral and cell-mediated immune responses were analyzed. Results Local and systemic side-effects were similar to those reported previously. The QVLP vaccine induced significant homologous and heterologous antibody responses at the two higher doses, the addition of alum having little-to-no effect. Serologic outcomes tended to be lower in ≥50 years old subjects previously vaccinated. The candidate vaccine also consistently elicited both homologous and heterologous antigen-specific CD4+ T cells characterized by their production of interferon-gamma (IFN-γ), interleukine-2 (IL-2) and/or tumor-necrosis factor alpha (TNF-α) upon ex vivo antigenic restimulation. Conclusion Overall, the 30 μg dose produced the most consistent humoral and cellular responses in both 18–49 and ≥50 years old subjects, strongly supporting the clinical development of this candidate vaccine. That particular dose was chosen to test in the ongoing Phase III clinical trial.
Collapse
|
4
|
Pillet S, Aubin É, Trépanier S, Poulin JF, Yassine-Diab B, Ter Meulen J, Ward BJ, Landry N. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. NPJ Vaccines 2018; 3:3. [PMID: 29387473 PMCID: PMC5780465 DOI: 10.1038/s41541-017-0043-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
The hemagglutinination inhibition (HI) response remains the gold standard used for the licensure of influenza vaccines. However, cell-mediated immunity (CMI) deserves more attention, especially when evaluating H5N1 influenza vaccines that tend to induce poor HI response. In this study, we measured the humoral response (HI) and CMI (flow cytometry) during a Phase II dose-ranging clinical trial (NCT01991561). Subjects received two intramuscular doses, 21 days apart, of plant-derived virus-like particles (VLP) presenting the A/Indonesia/05/2005 H5N1 influenza hemagglutinin protein (H5) at the surface of the VLP (H5VLP). The vaccine was co-administrated with Alhydrogel® or with a glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE). We demonstrated that low doses (3.75 or 7.5 μg H5VLP) of GLA-SE-adjuvanted vaccines induced HI responses that met criteria for licensure at both antigen doses tested. Alhydrogel adjuvanted vaccines induced readily detectable HI response that however failed to meet licensure criteria at any of three doses (10, 15 and 20 μg) tested. The H5VLP also induced a sustained (up to 6 months) polyfunctional and cross-reactive HA-specific CD4+ T cell response in all vaccinated groups. Interestingly, the frequency of central memory Th1-primed precursor cells before the boost significantly correlated with HI titers 21 days after the boost. The ability of the low dose GLA-SE-adjuvanted H5VLP to elicit both humoral response and a sustained cross-reactive CMI in healthy adults is very attractive and could result in significant dose-sparing in a pandemic situation.
Collapse
Affiliation(s)
- Stéphane Pillet
- 1Medicago Inc., Québec, G1V 3V9 QC Canada.,2Research Institute of the McGill University Health Centre, Montreal, H4A 3J1 QC Canada
| | - Éric Aubin
- 1Medicago Inc., Québec, G1V 3V9 QC Canada
| | | | | | | | - Jan Ter Meulen
- Immune Design, Seattle, WA 98102 USA.,Immune Design, San Francisco, CA 94080-7006 USA
| | - Brian J Ward
- 2Research Institute of the McGill University Health Centre, Montreal, H4A 3J1 QC Canada
| | | |
Collapse
|
5
|
Ward BJ, Pillet S, Charland N, Trepanier S, Couillard J, Landry N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum Vaccin Immunother 2018; 14:647-656. [PMID: 29252098 PMCID: PMC5861778 DOI: 10.1080/21645515.2017.1413518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The search for a test that can predict vaccine efficacy is an important part of any vaccine development program. Although regulators hesitate to acknowledge any test as a true ‘correlate of protection’, there are many precedents for defining ‘surrogate’ assays. Surrogates can be powerful tools for vaccine optimization, licensure, comparisons between products and development of improved products. When such tests achieve ‘reference’ status however, they can inadvertently become barriers to new technologies that do not work the same way as existing vaccines. This is particularly true when these tests are based upon circularly-defined ‘reference’ or, even worse, proprietary reagents. The situation with inactivated influenza vaccines is a good example of this phenomenon. The most frequently used tests to define vaccine-induced immunity are all serologic assays: hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization (MN). The first two, and particularly the HI assay, have achieved reference status and criteria have been established in many jurisdictions for their use in licensing new vaccines and to compare the performance of different vaccines. However, all of these assays are based on biological reagents that are notoriously difficult to standardize and can vary substantially by geography, by chance (i.e. developing reagents in eggs that may not antigenitically match wild-type viruses) and by intention (ie: choosing reagents that yield the most favorable results). This review describes attempts to standardize these assays to improve their performance as surrogates, the dangers of over-reliance on ‘reference’ serologic assays, the ways that manufacturers can exploit the existing regulatory framework to make their products ‘look good’ and the implications of this long-established system for the introduction of novel influenza vaccines.
Collapse
Affiliation(s)
- Brian J Ward
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | - Stephane Pillet
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | | | | | | | | |
Collapse
|
6
|
Ricklin ME, Python S, Vielle NJ, Brechbühl D, Zumkehr B, Posthaus H, Zimmer G, Ruggli N, Summerfield A. Virus replicon particle vaccines expressing nucleoprotein of influenza A virus mediate enhanced inflammatory responses in pigs. Sci Rep 2017; 7:16379. [PMID: 29180817 PMCID: PMC5703990 DOI: 10.1038/s41598-017-16419-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/10/2017] [Indexed: 11/22/2022] Open
Abstract
Studies in the mouse model indicate that the nucleoprotein of influenza A virus represents an interesting vaccine antigen being well conserved across subtypes of influenza virus but still able to induce protective immune responses. Here we show that immunizations of pigs with vesicular stomatitis virus- and classical swine fever virus-derived replicon (VRP) particles expressing the nucleoprotein (NP) of H1N1 A/swine/Belzig/2/01 induced potent antibody and T-cell responses against influenza A virus. In contrast to a conventional whole inactivated virus vaccine, the VRP vaccines induced both NP-specific CD4 and CD8 T cells responses, including interferon-γ and tumor-necrosis-factor dual-secreting cell. Although T-cells and antibody responses were cross-reactive with the heterologous H1N2 A/swine/Bakum/R757/2010 challenge virus, they did not provide protection against infection. Surprisingly, vaccinated pigs showed enhanced virus shedding, lung inflammation and increased levels of systemic and lung interferon-α as well as elevated lung interleukin-6. In conclusion, our study shows that NP, although efficacious in the mouse model, appears not to be a promising stand-alone vaccine antigen for pigs.
Collapse
Affiliation(s)
- Meret E Ricklin
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Sylvie Python
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Nathalie J Vielle
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Daniel Brechbühl
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Beatrice Zumkehr
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Horst Posthaus
- Institute for Animal Pathology, Vetsuisse Faculty, University of Bern, Länggasstrasse 122, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggasstrasse 122, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern, Switzerland. .,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggasstrasse 122, Bern, Switzerland.
| |
Collapse
|
7
|
Pillet S, Aubin É, Trépanier S, Bussière D, Dargis M, Poulin JF, Yassine-Diab B, Ward BJ, Landry N. A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clin Immunol 2016; 168:72-87. [PMID: 26987887 DOI: 10.1016/j.clim.2016.03.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 01/09/2023]
Abstract
Recent issues regarding efficacy of influenza vaccines have re-emphasized the need of new approaches to face this major public health issue. In a phase 1-2 clinical trial, healthy adults received one intramuscular dose of a seasonal influenza plant-based quadrivalent virus-like particle (QVLP) vaccine or placebo. The hemagglutination inhibition (HI) titers met all the European licensure criteria for the type A influenza strains at the 3μg/strain dose and for all four strains at the higher dosages 21days after immunization. High HI titers were maintained for most of the strains 6months after vaccination. QVLP vaccine induced a substantial and sustained increase of hemagglutinin-specific polyfunctional CD4 T cells, mainly transitional memory and TEMRA effector IFN-γ(+) CD4 T cells. A T cells cross-reactive response was also observed against A/Hong-Kong/1/1968 H3N2 and B/Massachusetts/2/2012. Plant-based QVLP offers an attractive alternative manufacturing method for producing effective and HA-strain matching seasonal influenza vaccines.
Collapse
Affiliation(s)
- Stéphane Pillet
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9; Research Institute of the McGill University Health Centre, 2155 Guy Street, 5th Floor, Montreal, QC, Canada, H3H 2R9
| | - Éric Aubin
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9
| | - Diane Bussière
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9
| | - Michèle Dargis
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9
| | | | - Bader Yassine-Diab
- ImmuneCarta, 201 Avenue du Président-Kennedy, Montreal, QC, Canada, H2X 3Y7
| | - Brian J Ward
- Research Institute of the McGill University Health Centre, 2155 Guy Street, 5th Floor, Montreal, QC, Canada, H3H 2R9
| | - Nathalie Landry
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada, G1V 3V9.
| |
Collapse
|
8
|
Holbrook BC, Kim JR, Blevins LK, Jorgensen MJ, Kock ND, D'Agostino RB, Aycock ST, Hadimani MB, King SB, Parks GD, Alexander-Miller MA. A Novel R848-Conjugated Inactivated Influenza Virus Vaccine Is Efficacious and Safe in a Neonate Nonhuman Primate Model. THE JOURNAL OF IMMUNOLOGY 2016; 197:555-64. [PMID: 27279374 DOI: 10.4049/jimmunol.1600497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/15/2016] [Indexed: 11/19/2022]
Abstract
Influenza virus infection of neonates poses a major health concern, often resulting in severe disease and hospitalization. At present, vaccines for this at-risk population are lacking. Thus, development of an effective vaccine is an urgent need. In this study, we have used an innovative nonhuman primate neonate challenge model to test the efficacy of a novel TLR 7/8 agonist R848-conjugated influenza virus vaccine. The use of the intact virus represents a step forward in conjugate vaccine design because it provides multiple antigenic targets allowing for elicitation of a broad immune response. Our results show that this vaccine induces high-level virus-specific Ab- and cell-mediated responses in neonates that result in increased virus clearance and reduced lung pathology postchallenge compared with the nonadjuvanted virus vaccine. Surprisingly, the addition of a second TLR agonist (flagellin) did not enhance vaccine protection, suggesting that combinations of TLR that provide increased efficacy must be determined empirically. These data support further exploration of this new conjugate influenza vaccine approach as a platform for use in the at-risk neonate population.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Jong R Kim
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Lance K Blevins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | - Matthew J Jorgensen
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Nancy D Kock
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - S Tyler Aycock
- Animal Resources Program, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | | | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109
| | - Griffith D Parks
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | | |
Collapse
|
9
|
Sridhar S. Heterosubtypic T-Cell Immunity to Influenza in Humans: Challenges for Universal T-Cell Influenza Vaccines. Front Immunol 2016; 7:195. [PMID: 27242800 PMCID: PMC4871858 DOI: 10.3389/fimmu.2016.00195] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Influenza A virus (IAV) remains a significant global health issue causing annual epidemics, pandemics, and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza, although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the twenty-first century underlined the urgent need to develop new vaccines capable of protecting against a broad range of influenza strains. Such “universal” influenza vaccines are based on the idea of heterosubtypic immunity, wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognizing conserved antigens are a key contributor in reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell-inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.
Collapse
|
10
|
Pillet S, Racine T, Nfon C, Di Lenardo TZ, Babiuk S, Ward BJ, Kobinger GP, Landry N. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine 2015; 33:6282-9. [PMID: 26432915 DOI: 10.1016/j.vaccine.2015.09.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 12/23/2022]
Abstract
In March 2013, the Chinese Centre for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A H7N9 virus. Infection with this virus often caused severe pneumonia and acute respiratory distress syndrome resulting in a case fatality rate >35%. The risk of pandemic highlighted, once again, the need for a more rapid and scalable vaccine response capability. Here, we describe the rapid (19 days) development of a plant-derived VLP vaccine based on the hemagglutinin sequence of influenza H7N9 A/Hangzhou/1/2013. The immunogenicity of the H7 VLP vaccine was assessed in mice and ferrets after one or two intramuscular dose(s) with and without adjuvant (alum or GLA-SE™). In ferrets, we also measured H7-specific cell-mediated immunity. The mice and ferrets were then challenged with H7N9 A/Anhui/1/2013 influenza virus. A single immunization with the adjuvanted vaccine elicited a strong humoral response and protected mice against an otherwise lethal challenge. Two doses of unadjuvanted vaccine significantly increased humoral response and resulted in 100% protection with significant reduction of clinical signs leading to nearly asymptomatic infections. In ferrets, a single immunization with the alum-adjuvanted H7 VLP vaccine induced strong humoral and CMI responses with antigen-specific activation of CD3(+) T cells. Compared to animals injected with placebo, ferrets vaccinated with alum-adjuvanted vaccine displayed no weight loss during the challenge. Moreover, the vaccination significantly reduced the viral load in lungs and nasal washes 3 days after the infection. This candidate plant-made H7 vaccine therefore induced protective responses after either one adjuvanted or two unadjuvanted doses. Studies are currently ongoing to better characterize the immune response elicited by the plant-derived VLP vaccines. Regardless, these data are very promising for the rapid production of an immunogenic and protective vaccine against this potentially pandemic virus.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/blood
- Body Weight
- Disease Models, Animal
- Female
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunization Schedule
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Injections, Intramuscular
- Lung/virology
- Male
- Mice, Inbred BALB C
- Nasal Cavity/virology
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/prevention & control
- Placebos/administration & dosage
- Plants, Genetically Modified
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Survival Analysis
- Nicotiana
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/isolation & purification
- Viral Load
Collapse
Affiliation(s)
- S Pillet
- Medicago Inc., 1020 Route de l'Église, Bureau 600, Québec, QC, Canada; Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - T Racine
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - C Nfon
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - T Z Di Lenardo
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - S Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, MB, Canada
| | - B J Ward
- Medicago Inc., 1020 Route de l'Église, Bureau 600, Québec, QC, Canada
| | - G P Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, MB, Canada; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - N Landry
- Medicago Inc., 1020 Route de l'Église, Bureau 600, Québec, QC, Canada.
| |
Collapse
|
11
|
Kwon JS, Yoon J, Kim YJ, Kang K, Woo S, Jung DI, Song MK, Kim EH, Kwon HI, Choi YK, Kim J, Lee J, Yoon Y, Shin EC, Youn JW. Vaccinia-based influenza vaccine overcomes previously induced immunodominance hierarchy for heterosubtypic protection. Eur J Immunol 2014; 44:2360-9. [PMID: 24825439 DOI: 10.1002/eji.201344005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 03/21/2014] [Accepted: 05/07/2014] [Indexed: 12/27/2022]
Abstract
Growing concerns about unpredictable influenza pandemics require a broadly protective vaccine against diverse influenza strains. One of the promising approaches was a T cell-based vaccine, but the narrow breadth of T-cell immunity due to the immunodominance hierarchy established by previous influenza infection and efficacy against only mild challenge condition are important hurdles to overcome. To model T-cell immunodominance hierarchy in humans in an experimental setting, influenza-primed C57BL/6 mice were chosen and boosted with a mixture of vaccinia recombinants, individually expressing consensus sequences from avian, swine, and human isolates of influenza internal proteins. As determined by IFN-γ ELISPOT and polyfunctional cytokine secretion, the vaccinia recombinants of influenza expanded the breadth of T-cell responses to include subdominant and even minor epitopes. Vaccine groups were successfully protected against 100 LD50 challenges with PR/8/34 and highly pathogenic avian influenza H5N1, which contained the identical dominant NP366 epitope. Interestingly, in challenge with pandemic A/Cal/04/2009 containing mutations in the dominant epitope, only the group vaccinated with rVV-NP + PA showed improved protection. Taken together, a vaccinia-based influenza vaccine expressing conserved internal proteins improved the breadth of influenza-specific T-cell immunity and provided heterosubtypic protection against immunologically close as well as distant influenza strains.
Collapse
Affiliation(s)
- Ji-Sun Kwon
- Vaccine II, Mogam Biotechnology Research Institute, Yongin Si, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
13
|
|
14
|
Abstract
The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.
Collapse
|
15
|
Dicks MDJ, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, Hill AVS, Cottingham MG. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One 2012; 7:e40385. [PMID: 22808149 PMCID: PMC3396660 DOI: 10.1371/journal.pone.0040385] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/05/2012] [Indexed: 12/23/2022] Open
Abstract
Recombinant adenoviruses are among the most promising tools for vaccine antigen delivery. Recently, the development of new vectors has focused on serotypes to which the human population is less exposed in order to circumvent pre-existing anti vector immunity. This study describes the derivation of a new vaccine vector based on a chimpanzee adenovirus, Y25, together with a comparative assessment of its potential to elicit transgene product specific immune responses in mice. The vector was constructed in a bacterial artificial chromosome to facilitate genetic manipulation of genomic clones. In order to conduct a fair head-to-head immunological comparison of multiple adenoviral vectors, we optimised a method for accurate determination of infectious titre, since this parameter exhibits profound natural variability and can confound immunogenicity studies when doses are based on viral particle estimation. Cellular immunogenicity of recombinant E1 E3-deleted vector ChAdY25 was comparable to that of other species E derived chimpanzee adenovirus vectors including ChAd63, the first simian adenovirus vector to enter clinical trials in humans. Furthermore, the prevalence of virus neutralizing antibodies (titre >1:200) against ChAdY25 in serum samples collected from two human populations in the UK and Gambia was particularly low compared to published data for other chimpanzee adenoviruses. These findings support the continued development of new chimpanzee adenovirus vectors, including ChAdY25, for clinical use.
Collapse
Affiliation(s)
| | | | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Göran Wadell
- Department of Clinical Microbiology, University of Umeå, Umeå, Sweden
| | - Kalifa Bojang
- Medical Research Council Laboratories, Fajara, The Gambia
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
16
|
Active evasion of CTL mediated killing and low quality responding CD8+ T cells contribute to persistence of brucellosis. PLoS One 2012; 7:e34925. [PMID: 22558103 PMCID: PMC3338818 DOI: 10.1371/journal.pone.0034925] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/09/2012] [Indexed: 02/02/2023] Open
Abstract
Brucellosis is a common zoonotic disease that remains endemic in many parts of the world. Dissecting the host immune response during this disease provides insight as to why brucellosis is often difficult to resolve. We used a Brucella epitope specific in vivo killing assay to investigate the ability of CD8+ T cells to kill targets treated with purified pathogenic protein. Importantly, we found the pathogenic protein TcpB to be a novel effector of adaptive immune evasion by inhibiting CD8+ T cell killing of Brucella epitope specific target cells in mice. Further, BALB/c mice show active Brucella melitensis infection beyond one year, many with previously unreported focal infection of the urogenital area. A fraction of CD8+ T cells show a CD8+ Tmem phenotype of LFA-1hi, CD127hi, KLRG-1lo during the course of chronic brucellosis, while the CD8+ T cell pool as a whole had a very weak polyfunctional cytokine response with diminished co-expression of IFN-γ with TNFα and/or IL-2, a hallmark of exhaustion. When investigating the expression of these 3 cytokines individually, we observed significant IFN-γ expression at 90 and 180 days post-infection. TNFα expression did not significantly exceed or fall below background levels at any time. IL-2 expression did not significantly exceeded background, but, interestingly, did fall significantly below that of uninfected mice at 180 days post-infection. Brucella melitensis evades and blunts adaptive immunity during acute infection and our findings provide potential mechanisms for the deficit observed in responding CD8+ T cells during chronic brucellosis.
Collapse
|
17
|
Fang Y, Banner D, Kelvin AA, Huang SSH, Paige CJ, Corfe SA, Kane KP, Bleackley RC, Rowe T, Leon AJ, Kelvin DJ. Seasonal H1N1 influenza virus infection induces cross-protective pandemic H1N1 virus immunity through a CD8-independent, B cell-dependent mechanism. J Virol 2012; 86:2229-38. [PMID: 22130540 PMCID: PMC3302411 DOI: 10.1128/jvi.05540-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/22/2011] [Indexed: 02/05/2023] Open
Abstract
During the 2009 H1N1 influenza virus pandemic (pdmH1N1) outbreak, it was found that most individuals lacked antibodies against the new pdmH1N1 virus, and only the elderly showed anti-hemagglutinin (anti-HA) antibodies that were cross-reactive with the new strains. Different studies have demonstrated that prior contact with the virus can confer protection against strains with some degree of dissimilarity; however, this has not been sufficiently explored within the context of a pdmH1N1 virus infection. In this study, we have found that a first infection with the A/Brisbane/59/2007 virus strain confers heterologous protection in ferrets and mice against a subsequent pdmH1N1 (A/Mexico/4108/2009) virus infection through a cross-reactive but non-neutralizing antibody mechanism. Heterologous immunity is abrogated in B cell-deficient mice but maintained in CD8(-/-) and perforin-1(-/-) mice. We identified cross-reactive antibodies from A/Brisbane/59/2007 sera that recognize non-HA epitopes in pdmH1N1 virus. Passive serum transfer showed that cross-reactive sH1N1-induced antibodies conferred protection in naive recipient mice during pdmH1N1 virus challenge. The presence or absence of anti-HA antibodies, therefore, is not the sole indicator of the effectiveness of protective cross-reactive antibody immunity. Measurement of additional antibody repertoires targeting the non-HA antigens of influenza virus should be taken into consideration in assessing protection and immunization strategies. We propose that preexisting cross-protective non-HA antibody immunity may have had an overall protective effect during the 2009 pdmH1N1 outbreak, thereby reducing disease severity in human infections.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Banner
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alyson A. Kelvin
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Stephen S. H. Huang
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Steven A. Corfe
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Kevin P. Kane
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - R. Chris Bleackley
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Rowe
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alberto J. Leon
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy
| |
Collapse
|
18
|
Sutherland RM, Londrigan SL, Brady JL, Azher H, Carrington EM, Zhan Y, Vega-Ramos J, Villadangos JA, Lew AM. Shutdown of immunological priming and presentation after in vivo administration of adenovirus. Gene Ther 2011; 19:1095-100. [DOI: 10.1038/gt.2011.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Suda T, Kawano M, Nogi Y, Ohno N, Akatsuka T, Matsui M. The route of immunization with adenoviral vaccine influences the recruitment of cytotoxic T lymphocytes in the lung that provide potent protection from influenza A virus. Antiviral Res 2011; 91:252-8. [DOI: 10.1016/j.antiviral.2011.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/07/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
20
|
Pillet S, Kobasa D, Meunier I, Gray M, Laddy D, Weiner DB, von Messling V, Kobinger GP. Cellular immune response in the presence of protective antibody levels correlates with protection against 1918 influenza in ferrets. Vaccine 2011; 29:6793-801. [DOI: 10.1016/j.vaccine.2010.12.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|