1
|
Malacopol AT, Holst PJ. Cancer Vaccines: Recent Insights and Future Directions. Int J Mol Sci 2024; 25:11256. [PMID: 39457036 PMCID: PMC11508577 DOI: 10.3390/ijms252011256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The field of cancer immunotherapy has seen incredible advancements in the past decades. mRNA-based cancer vaccines generating de novo T cell responses, particularly against tumor-specific antigens (TSAs), have demonstrated promising clinical outcomes and overcome diverse challenges. Despite the high potential of neoantigens to provide personalized immunotherapies through their tumor specificity and immunogenicity, challenges related to the scarcity of immunogenic neoepitopes have prompted continuous research towards finding new tumor-associated antigens (TAAs) and broader therapeutic frameworks, which may now learn from the genuine successes obtained with neoantigens. As an example, human endogenous retroviruses (HERVs) have emerged as potential alternatives to tumor neoantigens due to their high tumoral expression and ability to elicit both T cell reactivity and B cell responses associated with the efficacy of existing immunotherapies. This review aims to assess the status and limitations of TSA-directed mRNA cancer vaccines and the lessons that can be derived from these and checkpoint inhibitor studies to guide TAA vaccine development. We expect that shared B cell, CD4 and CD8 T cell antigen presentation will be key to stimulate continuous T cell expansion and efficacy for tumors that do not contain pre-existing tertiary lymphoid structures. When these structures are present in highly mutated tumors, the current checkpoint-based immunotherapies show efficacy even in immune privileged sites, and vaccines may hold the key to broaden efficacy to more tumor types and stages.
Collapse
Affiliation(s)
- Aretia-Teodora Malacopol
- HERVOLUTION Therapeutics, Copenhagen Bio Science (COBIS), 215 Nordre Fasanvej, DK2200 Copenhagen, Denmark;
| | - Peter Johannes Holst
- HERVOLUTION Therapeutics, Copenhagen Bio Science (COBIS), 215 Nordre Fasanvej, DK2200 Copenhagen, Denmark;
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, DK2200 Copenhagen, Denmark
| |
Collapse
|
2
|
D’Alise AM, Nocchi L, Garzia I, Seclì L, Infante L, Troise F, Cotugno G, Allocca S, Romano G, Lahm A, Leoni G, Sasso E, Scarselli E, Nicosia A. Adenovirus Encoded Adjuvant (AdEnA) anti-CTLA-4, a novel strategy to improve Adenovirus based vaccines against infectious diseases and cancer. Front Immunol 2023; 14:1156714. [PMID: 37180141 PMCID: PMC10169702 DOI: 10.3389/fimmu.2023.1156714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Virus vectored genetic vaccines (Vvgv) represent a promising approach for eliciting immune protection against infectious diseases and cancer. However, at variance with classical vaccines to date, no adjuvant has been combined with clinically approved genetic vaccines, possibly due to the detrimental effect of the adjuvant-induced innate response on the expression driven by the genetic vaccine vector. We reasoned that a potential novel approach to develop adjuvants for genetic vaccines would be to "synchronize" in time and space the activity of the adjuvant with that of the vaccine. Methods To this aim, we generated an Adenovirus vector encoding a murine anti-CTLA-4 monoclonal antibody (Ad-9D9) as a genetic adjuvant for Adenovirus based vaccines. Results The co-delivery of Ad-9D9 with an Adeno-based COVID-19 vaccine encoding the Spike protein resulted in stronger cellular and humoral immune responses. In contrast, only a modest adjuvant effect was achieved when combining the vaccine with the same anti-CTLA-4 in its proteinaceous form. Importantly, the administration of the adjuvant vector at different sites of the vaccine vector abrogates the immunostimulatory effect. We showed that the adjuvant activity of Ad-α-CTLA-4 is independent from the vaccine antigen as it improved the immune response and efficacy of an Adenovirus based polyepitope vaccine encoding tumor neoantigens. Discussion Our study demonstrated that the combination of Adenovirus Encoded Adjuvant (AdEnA) with an Adeno-encoded antigen vaccine enhances immune responses to viral and tumor antigens, representing a potent approach to develop more effective genetic vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Luigia Infante
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | | | | | | | | | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Advanced Biotechnologies s.c. a.r.l., Naples, Italy
| | | | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Advanced Biotechnologies s.c. a.r.l., Naples, Italy
| |
Collapse
|
3
|
Hernandez A, Hartgerink JD, Young S. Self-assembling peptides as immunomodulatory biomaterials. Front Bioeng Biotechnol 2023; 11:1139782. [PMID: 36937769 PMCID: PMC10014862 DOI: 10.3389/fbioe.2023.1139782] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Self-assembling peptides are a type of biomaterial rapidly emerging in the fields of biomedicine and material sciences due to their promise in biocompatibility and effectiveness at controlled release. These self-assembling peptides can form diverse nanostructures in response to molecular interactions, making them versatile materials. Once assembled, the peptides can mimic biological functions and provide a combinatorial delivery of therapeutics such as cytokines and drugs. These self-assembling peptides are showing success in biomedical settings yet face unique challenges that must be addressed to be widely applied in the clinic. Herein, we describe self-assembling peptides' characteristics and current applications in immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Andrea Hernandez
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
- *Correspondence: Simon Young,
| |
Collapse
|
4
|
Yan J, Zhang Y, Du S, Hou X, Li W, Zeng C, Zhang C, Cheng J, Deng B, McComb DW, Zhao W, Xue Y, Kang DD, Cheng X, Dong Y. Nanomaterials-Mediated Co-Stimulation of Toll-Like Receptors and CD40 for Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207486. [PMID: 36121735 PMCID: PMC9691606 DOI: 10.1002/adma.202207486] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/1912] [Indexed: 05/15/2023]
Abstract
Toll-like receptors (TLRs) and CD40-related signaling pathways represent critical bridges between innate and adaptive immune responses. Here, an immunotherapy regimen that enables co-stimulation of TLR7/8- and CD40-mediated pathways is developed. TLR7/8 agonist resiquimod (R848) derived amino lipids, RAL1 and RAL2, are synthesized and formulated into RAL-derived lipid nanoparticles (RAL-LNPs). The RAL2-LNPs show efficient CD40 mRNA delivery to DCs both in vitro (90.8 ± 2.7%) and in vivo (61.3 ± 16.4%). When combined with agonistic anti-CD40 antibody, this approach can produce effective antitumor activities in mouse melanoma tumor models, thereby suppressing tumor growth, prolonging mouse survival, and establishing antitumor memory immunity. Overall, RAL2-LNPs provide a novel platform toward cancer immunotherapy by integrating innate and adaptive immunity.
Collapse
Affiliation(s)
- Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Wenqing Li
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chunxi Zeng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jeffrey Cheng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Department of Radiation Oncology, Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Zhang Y, Wu X, Sharma A, Weiher H, Schmid M, Kristiansen G, Schmidt-Wolf IGH. Anti-CD40 predominates over anti-CTLA-4 to provide enhanced antitumor response of DC-CIK cells in renal cell carcinoma. Front Immunol 2022; 13:925633. [PMID: 36091050 PMCID: PMC9453234 DOI: 10.3389/fimmu.2022.925633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cytokine-induced killer cells (CIK) in combination with dendritic cells (DCs) have shown favorable outcomes in renal cell carcinoma (RCC), yet some patients exhibit recurrence or no response to this therapy. In a broader perspective, enhancing the antitumor response of DC-CIK cells may help to address this issue. Considering this, herein, we investigated the effect of anti-CD40 and anti-CTLA-4 antibodies on the antitumor response of DC-CIK cells against RCC cell lines. Our analysis showed that, a) anti-CD40 antibody (G28.5) increased the CD3+CD56+ effector cells of CIK cells by promoting the maturation and activation of DCs, b) G28.5 also increased CTLA-4 expression in CIK cells via DCs, but the increase could be hindered by the CTLA-4 inhibitor (ipilimumab), c) adding ipilimumab was also able to significantly increase the proportion of CD3+CD56+ cells in DC-CIK cells, d) anti-CD40 antibodies predominated over anti-CTLA-4 antibodies for cytotoxicity, apoptotic effect and IFN-γ secretion of DC-CIK cells against RCC cells, e) after ipilimumab treatment, the population of Tregs in CIK cells remained unaffected, but ipilimumab combined with G28.5 significantly reduced the expression of CD28 in CIK cells. Taken together, we suggest that the agonistic anti-CD40 antibody rather than CTLA-4 inhibitor may improve the antitumor response of DC-CIK cells, particularly in RCC. In addition, we pointed towards the yet to be known contribution of CD28 in the crosstalk between anti-CTLA-4 and CIK cells.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Xiaolong Wu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Computer Science and Epidemiology, University Hospital Bonn, Bonn, Germany
| | | | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
6
|
Hernandez R, Malek TR. Fueling Cancer Vaccines to Improve T Cell-Mediated Antitumor Immunity. Front Oncol 2022; 12:878377. [PMID: 35651800 PMCID: PMC9150178 DOI: 10.3389/fonc.2022.878377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer vaccines offer the potential to enhance T cell-mediated antitumor immunity by expanding and increasing the function of tumor-specific T cells and shaping the recall response against recurring tumors. While the use of cancer vaccines is not a new immunotherapeutic approach, the cancer vaccine field continues to evolve as new antigen types emerge and vaccine formulations and delivery strategies are developed. As monotherapies, cancer vaccines have not been very efficacious in part due to pre-existing peripheral- and tumor-mediated tolerance mechanisms that limit T cell function. Over the years, various agents including Toll-like receptor agonists, cytokines, and checkpoint inhibitors have been employed as vaccine adjuvants and immune modulators to increase antigen-mediated activation, expansion, memory formation, and T effector cell function. A renewed interest in this approach has emerged as better neoepitope discovery tools are being developed and our understanding of what constitutes an effective cancer vaccine is improved. In the coming years, cancer vaccines will likely be vital to enhance the response to current immunotherapies. In this review, we discuss the various types of therapeutic cancer vaccines, including types of antigens and approaches used to enhance cancer vaccine responses such as TLR agonists, recombinant interleukin-2 and interleukin-2 derivatives, and checkpoint inhibitors.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
7
|
A Comparative and Comprehensive Review of Antibody Applications in the Treatment of Lung Disease. Life (Basel) 2022; 12:life12010130. [PMID: 35054524 PMCID: PMC8778790 DOI: 10.3390/life12010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Antibodies are a type of protein produced by active B cells in response to antigen stimulation. A series of monoclonal antibodies and neutralizing antibodies have been invented and put into clinical use because of their high therapeutic effect and bright developing insight. Patients with cancer, infectious diseases, and autoimmune diseases can all benefit from antibody therapy. However, the targeting aspects and potential mechanisms for treating these diseases differ. In the treatment of patients with infectious diseases such as COVID-19, neutralizing antibodies have been proposed as reliable vaccines against COVID-19, which target the ACE2 protein by preventing virus entry into somatic cells. Monoclonal antibodies can target immune checkpoints (e.g., PD-L1 and CTLA-4), tyrosine kinase and subsequent signaling pathways (e.g., VEGF), and cytokines in cancer patients (e.g. IL-6 and IL-1β). It is debatable whether there is any connection between the use of antibodies in these diseases. It would be fantastic to discover the related points and explain the burden for the limitation of cross-use of these techniques. In this review, we provided a comprehensive overview of the use of antibodies in the treatment of infectious disease and cancer patients. There are also discussions of their mechanisms and history. In addition, we discussed our future outlook on the use of antibodies.
Collapse
|
8
|
CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cell Mol Immunol 2022; 19:14-22. [PMID: 34282297 PMCID: PMC8752810 DOI: 10.1038/s41423-021-00734-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial advances attained by checkpoint blockade immunotherapies have driven an expansion in the approaches used to promote T cell access to the tumor microenvironment to provide targets for checkpoint immunotherapy. Inherent in any T cell response to a tumor antigen is the capacity of dendritic cells to initiate and support such responses. Here, the rationale and early immunobiology of CD40 as a master regulator of dendritic cell activation is reviewed, with further contextualization and appreciation for the role of CD40 stimulation not only in cancer vaccines but also in other contemporary immune-oncology approaches.
Collapse
|
9
|
Abdou Y, Pandey M, Sarma M, Shah S, Baron J, Ernstoff MS. Mechanism-based treatment of cancer with immune checkpoint inhibitor therapies. Br J Clin Pharmacol 2020; 86:1690-1702. [PMID: 32323342 PMCID: PMC8176998 DOI: 10.1111/bcp.14316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/25/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoints are cell surface molecules that initiate regulatory pathways which have powerful control of CD8+ cytolytic T cell activity. Antagonistic and agonistic antibodies engaging these molecules have demonstrated profound impact on immune activation and have entered clinical use for the treatment of a variety of diseases. Over the past decade, antagonistic antibodies known as immune checkpoint inhibitors have become a new pillar of cancer treatment and have reshaped the therapeutic landscape in oncology. These agents differ in their mechanism of action and toxicity profiles compared to more traditional systemic cancer treatments such as chemo- and targeted therapies. This article reviews the pharmacology of this new class of agents.
Collapse
Affiliation(s)
- Yara Abdou
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Manu Pandey
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Maithreyi Sarma
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Shrunjal Shah
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Jeffrey Baron
- Department of PharmacyRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Marc S. Ernstoff
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| |
Collapse
|
10
|
Zhang Y, Liu Z. Oncolytic Virotherapy for Malignant Tumor: Current Clinical Status. Curr Pharm Des 2020; 25:4251-4263. [PMID: 31682207 DOI: 10.2174/1381612825666191104090544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses, as novel biological anti-tumor agents, provide anti-tumor therapeutic effects by different mechanisms including directly selective tumor cell lysis and secondary systemic anti-tumor immune responses. Some wide-type and genetically engineered oncolytic viruses have been applied in clinical trials. Among them, T-Vec has a significant therapeutic effect on melanoma patients and received the approval of the US Food and Drug Administration (FDA) as the first oncolytic virus to treat cancer in the US. However, the mechanisms of virus interaction with tumor and immune systems have not been clearly elucidated and there are still no "gold standards" for instructions of virotherapy in clinical trials. This Review collected the recent clinical trials data from 2005 to summarize the basic oncolytic viruses biology, describe the application in recent clinical trials, and discuss the challenges in the application of oncolytic viruses in clinical trials.
Collapse
Affiliation(s)
- Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Zhuoming Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
11
|
Huemer F, Leisch M, Geisberger R, Melchardt T, Rinnerthaler G, Zaborsky N, Greil R. Combination Strategies for Immune-Checkpoint Blockade and Response Prediction by Artificial Intelligence. Int J Mol Sci 2020; 21:E2856. [PMID: 32325898 PMCID: PMC7215892 DOI: 10.3390/ijms21082856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
The therapeutic concept of unleashing a pre-existing immune response against the tumor by the application of immune-checkpoint inhibitors (ICI) has resulted in long-term survival in advanced cancer patient subgroups. However, the majority of patients do not benefit from single-agent ICI and therefore new combination strategies are eagerly necessitated. In addition to conventional chemotherapy, kinase inhibitors as well as tumor-specific vaccinations are extensively investigated in combination with ICI to augment therapy responses. An unprecedented clinical outcome with chimeric antigen receptor (CAR-)T cell therapy has led to the approval for relapsed/refractory diffuse large B cell lymphoma and B cell acute lymphoblastic leukemia whereas response rates in solid tumors are unsatisfactory. Immune-checkpoints negatively impact CAR-T cell therapy in hematologic and solid malignancies and as a consequence provide a therapeutic target to overcome resistance. Established biomarkers such as programmed death ligand 1 (PD-L1) and tumor mutational burden (TMB) help to select patients who will benefit most from ICI, however, biomarker negativity does not exclude responses. Investigating alterations in the antigen presenting pathway as well as radiomics have the potential to determine tumor immunogenicity and response to ICI. Within this review we summarize the literature about specific combination partners for ICI and the applicability of artificial intelligence to predict ICI therapy responses.
Collapse
Affiliation(s)
- Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
| | - Michael Leisch
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
| | - Roland Geisberger
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria; (R.G.); (N.Z.)
| | - Thomas Melchardt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
| | - Gabriel Rinnerthaler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria; (R.G.); (N.Z.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria; (R.G.); (N.Z.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
12
|
Liu F, Huang J, Liu X, Cheng Q, Luo C, Liu Z. CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int 2020; 20:7. [PMID: 31911758 PMCID: PMC6945521 DOI: 10.1186/s12935-019-1085-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background CTLA-4 is a well-studied immune checkpoint protein that negatively regulates T cell-mediated immune responses. However, the expression of CTLA-4 in glioma and the effects of CTLA-4 on prognosis in patients with glioma have not yet been examined. Methods We investigated the protein level of CTLA-4 in human glioma samples, extracted genetic and clinical data from 1024 glioma patients to characterize CTLA-4 expression and its relationship with immune functions in gliomas. R language was used for statistical analysis. Results Higher CTLA-4 expression was found in patients with higher grade, isocitrate dehydrogenase (IDH)-wild-type, and mesenchymal-molecular subtype gliomas than in patients with lower grade, IDH-mutant, and other molecular subtype gliomas. Further analysis showed that there was a strong positive correlation between CTLA-4 and the specific marker gene expression of immune cells, including CD8+ T cells, regulatory T cells, and macrophages in both databases, suggesting that higher CTLA-4 expression in the glioma microenvironment induced greater immune cell infiltration compared with that in gliomas with lower CTLA-4 expression. We further explored the associations between CTLA-4 and other immune-related molecules. Pearson correlation analysis showed that CTLA-4 was associated with PD-1, CD40, ICOS, CXCR3, CXCR6, CXCL12 and TIGIT. Patients with glioma with lower CTLA-4 expression exhibited significantly longer overall survival. Thus, these findings suggested that increased CTLA-4 expression conferred a worse outcome in glioma. Conclusions In summary, our findings revealed the expression patterns and clinical characteristics of CTLA-4 in glioma and may be helpful for expanding our understanding of antitumor immunotherapy in gliomas.
Collapse
Affiliation(s)
- Fangkun Liu
- 1Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), 87 Xiangya Rd, Changsha, 410008 Hunan China
| | - Jing Huang
- 2Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China.,3Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (Xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, 410011 Hunan China
| | - Xuming Liu
- Intensive Care Unit, Hunan Provincial Hospital of Traditional Chinese Medicine, Zhuzhou, China
| | - Quan Cheng
- 1Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), 87 Xiangya Rd, Changsha, 410008 Hunan China
| | - Chengke Luo
- 1Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), 87 Xiangya Rd, Changsha, 410008 Hunan China
| | - Zhixiong Liu
- 1Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), 87 Xiangya Rd, Changsha, 410008 Hunan China
| |
Collapse
|
13
|
The Hexavalent CD40 Agonist HERA-CD40L Induces T-Cell-mediated Antitumor Immune Response Through Activation of Antigen-presenting Cells. J Immunother 2019; 41:385-398. [PMID: 30273198 DOI: 10.1097/cji.0000000000000246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD40 ligand (TNFSF5/CD154/CD40L), a member of the tumor necrosis factor (TNF) superfamily is a key regulator of the immune system. The cognate receptor CD40 (TNFRSF5) is expressed broadly on antigen-presenting cells and many tumor types, and has emerged as an attractive target for immunologic cancer treatment. Most of the CD40 targeting drugs in clinical development are antibodies which display some disadvantages: their activity typically depends on Fcγ receptor-mediated crosslinking, and depletion of CD40-expressing immune cells by antibody-dependent cellular cytotoxicity compromises an efficient antitumor response. To overcome the inadequacies of antibodies, we have developed the hexavalent receptor agonist (HERA) Technology. HERA compounds are fusion proteins composed of 3 receptor binding domains in a single chain arrangement, linked to an Fc-silenced human IgG1 thereby generating a hexavalent molecule. HERA-CD40L provides efficient receptor agonism on CD40-expressing cells and, importantly, does not require FcγR-mediated crosslinking. Strong activation of NFκB signaling was observed upon treatment of B cells with HERA-CD40L. Monocyte treatment with HERA-CD40L promoted differentiation towards the M1 spectrum and repolarization of M2 spectrum macrophages towards the M1 spectrum phenotype. Treatment of in vitro co-cultures of T and B cells with HERA-CD40L-triggered robust antitumor activation of T cells, which depended upon direct interaction with B cells. In contrast, bivalent anti-CD40 antibodies and trivalent soluble CD40L displayed weak activity which critically depended on crosslinking. In vivo, a murine surrogate of HERA-CD40L-stimulated clonal expansion of OT-I-specific murine CD8 T cells and showed single agent antitumor activity in the CD40 syngeneic MC38-CEA mouse model of colorectal cancer, suggesting an involvement of the immune system in controlling tumor growth. We conclude that HERA-CD40L is able to establish robust antitumor immune responses both in vitro and in vivo.
Collapse
|
14
|
Richards DM, Sefrin JP, Gieffers C, Hill O, Merz C. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother 2019; 16:377-387. [PMID: 31403344 PMCID: PMC7062441 DOI: 10.1080/21645515.2019.1653744] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
TNF Receptor Superfamily (TNF-R-SF) signaling is a structurally well-defined event that requires proper receptor clustering and trimerization. While the TNF-SF ligands naturally exist as trivalent functional units, the receptors are usually separated on the cell surface. Critically, receptor assembly into functional trimeric signaling complexes occurs through binding of the natural ligand unit. TNF-R-SF members, including CD40, have been key immunotherapeutic targets for over 20 years. CD40, expressed by antigen-presenting cells, endothelial cells, and many tumors, plays a fundamental role in connecting innate and adaptive immunity. The multiple investigated strategies to induce CD40 signaling can be broadly grouped into antibody-based or CD40L-based approaches. Currently, seven different antibodies and one CD40L-based hexavalent fusion protein are in active clinical trials. In this review, we describe the biology and structural properties of CD40, requirements for agonistic signal transduction through CD40 and summarize current attempts to exploit the CD40 signaling pathway for the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Oliver Hill
- Research and Development, Apogenix AG, Heidelberg, Germany
| | - Christian Merz
- Research and Development, Apogenix AG, Heidelberg, Germany
| |
Collapse
|
15
|
Abstract
Immunomodulatory antibodies that directly trigger and reawaken suppressed T-cell effector function are termed 'checkpoint inhibitors'. CTLA-4 and PD-1/PD-L1 molecules are the most studied inhibitory immune check points against cancer and because of this therapeutic property have entered the clinic for treating a variety of tumor types. The results so far demonstrate a positive impact on cancer remission. Preclinical studies have demonstrated that targeting a number of other T-cell surface molecules including both positive and negative immune regulators, also possesses strong antitumor activity. Some of these molecules have already entered clinical trials. In this report, we briefly highlight the status of these immune checkpoint inhibitors and discuss their side effects and future directions for their use.
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy & Rheumatology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Byoung S Kwon
- Section of Clinical Immunology, Allergy & Rheumatology, School of Medicine, Tulane University, New Orleans, LA 70112, USA.,Eutilex Institute for Biomedical Research, Suite #1401 Daeryung Technotown 17, Gasan digital 1-ro 25, Geumcheon-gu, Seoul Korea
| |
Collapse
|
16
|
Recent success and limitations of immune checkpoint inhibitors for cancer: a lesson from melanoma. Virchows Arch 2019; 474:421-432. [PMID: 30747264 DOI: 10.1007/s00428-019-02538-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/20/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
Abstract
Several researches have been carried over the last few decades to understand of how cancer evades the immune system and thus to identify therapies that could directly act on patient's immune system in the way of restore or induce a response to cancer. As a consequence, "cancer immunotherapy" is conquering predominantly the modern scenario of the fight against cancer. The recent clinical success of immune checkpoint inhibitors (ICIs) has created an entire new class of anti-cancer drugs and restored interest in the field of immuno-oncology, leading to regulatory approvals of several agents for the treatment of a variety of malignancies. The first to be approved in 2011 was the anti-CTLA-4 antibody ipilimumab for the treatment of unresectable or metastatic melanoma. Subsequently, the anti-PD-1s, nivolumab and pembrolizumab, received regulatory approvals for the treatment of melanoma and several other cancers. More recently, three anti-PD-L1 antibodies have received approval: atezolizumab and durvalumab for locally advanced or metastatic urothelial carcinoma and metastatic non-small cell lung cancer (NSCLC) and avelumab for the treatment of locally advanced or metastatic urothelial carcinoma and metastatic Merkel cell carcinoma. This review, starting from the results of melanoma trials, highlights in turn different ICIs and data for different indications in several malignancies are included under each drug class.
Collapse
|
17
|
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019; 4:7. [PMID: 30774998 PMCID: PMC6368616 DOI: 10.1038/s41541-019-0103-y] [Citation(s) in RCA: 440] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in several areas are rekindling interest and enabling progress in the development of therapeutic cancer vaccines. These advances have been made in target selection, vaccine technology, and methods for reversing the immunosuppressive mechanisms exploited by cancers. Studies testing different tumor antigens have revealed target properties that yield high tumor versus normal cell specificity and adequate immunogenicity to affect clinical efficacy. A few tumor-associated antigens, normal host proteins that are abnormally expressed in cancer cells, have been demonstrated to serve as good targets for immunotherapies, although many do not possess the needed specificity or immunogenicity. Neoantigens, which arise from mutated proteins in cancer cells, are truly cancer-specific and can be highly immunogenic, though the vast majority are unique to each patient's cancer and thus require development of personalized therapies. Lessons from previous cancer vaccine expeditions are teaching us the type and magnitude of immune responses needed, as well as vaccine technologies that can achieve these responses. For example, we are learning which vaccine approaches elicit the potent, balanced, and durable CD4 plus CD8 T cell expansion necessary for clinical efficacy. Exploration of interactions between the immune system and cancer has elucidated the adaptations that enable cancer cells to suppress and evade immune attack. This has led to breakthroughs in the development of new drugs, and, subsequently, to opportunities to combine these with cancer vaccines and dramatically increase patient responses. Here we review this recent progress, highlighting key steps that are bringing the promise of therapeutic cancer vaccines within reach.
Collapse
Affiliation(s)
| | - Kathrin Jansen
- Vaccines Research and Development, Pfizer, Pearl River, NY 10965 USA
| |
Collapse
|
18
|
Novel Immunotherapeutic Approaches for Neuroblastoma and Malignant Melanoma. J Immunol Res 2018; 2018:8097398. [PMID: 30510968 PMCID: PMC6232800 DOI: 10.1155/2018/8097398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023] Open
Abstract
Neuroblastoma (NB) and malignant melanoma (MM), tumors of pediatric age and adulthood, respectively, share a common origin, both of them deriving from the neural crest cells. Although NB and MM have a different behavior, in respect to age of onset, primary tissue involvement and metastatic spread, the prognosis for high stage-affected patients is still poor, in spite of aggressive treatment strategies and the huge amount of new discovered biological knowledge. For these reasons researchers are continuously attempting to find out new treatment options, which in a near future could be translated to the clinical practice. In the last two decades, a strong effort has been spent in the field of translational research of immunotherapy which led to satisfactory results. Indeed, several immunotherapeutic clinical trials have been performed and some of them also resulted beneficial. Here, we summarize preclinical studies based on immunotherapeutic approaches applied in models of both NB and MM.
Collapse
|
19
|
Tran T, Blanc C, Granier C, Saldmann A, Tanchot C, Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol 2018; 41:69-85. [PMID: 29978248 DOI: 10.1007/s00281-018-0691-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Anti-cancer vaccines have raised many hopes from the start of immunotherapy but have not yet been clinically successful. The few positive results of anti-cancer vaccines have been observed in clinical situations of low tumor burden or preneoplastic lesions. Several new concepts and new results reposition this therapeutic approach in the field of immunotherapy. Indeed, cancers that respond to anti-PD-1/PD-L1 (20-30%) are those that are infiltrated by anti-tumor T cells with an inflammatory infiltrate. However, 70% of cancers do not appear to have an anti-tumor immune reaction in the tumor microenvironment. To induce this anti-tumor immunity, therapeutic combinations between vaccines and anti-PD-1/PD-L1 are being evaluated. In addition, the identification of neoepitopes against which the immune system is less tolerated is giving rise to a new enthusiasm by the first clinical results of the vaccine including these neoepitopes in humans. The ability of anti-cancer vaccines to induce a population of anti-tumor T cells called memory resident T cells that play an important role in immunosurveillance is also a new criterion to consider in the design of therapeutic vaccines.
Collapse
Affiliation(s)
- T Tran
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Blanc
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Granier
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Saldmann
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Tanchot
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
- Hôpital Européen Georges Pompidou, Laboratory of Immunology, Assistance Publique des Hôpitaux de Paris, Paris, France.
- Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
| |
Collapse
|
20
|
de Graaf JF, de Vor L, Fouchier RAM, van den Hoogen BG. Armed oncolytic viruses: A kick-start for anti-tumor immunity. Cytokine Growth Factor Rev 2018; 41:28-39. [PMID: 29576283 PMCID: PMC7108398 DOI: 10.1016/j.cytogfr.2018.03.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022]
Abstract
Oncolytic viruses (OVs), viruses that specifically result in killing tumor cells, represent a promising class of cancer therapy. Recently, the focus in the OV therapy field has shifted from their direct oncolytic effect to their immune stimulatory effect. OV therapy can function as a "kick start" for the antitumor immune response by releasing tumor associated antigens and release of inflammatory signals. Combining OVs with immune modulators could enhance the efficacy of both immune and OV therapies. Additionally, genetic engineering of OVs allows local expression of immune therapeutics, thereby reducing related toxicities. Different options to modify the tumor microenvironment in combination with OV therapy have been explored. The possibilities and obstacles of these combinations will be discussed in this review.
Collapse
Affiliation(s)
- J F de Graaf
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| | - L de Vor
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| | - R A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| | | |
Collapse
|
21
|
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol 2018; 8:86. [PMID: 29644214 PMCID: PMC5883082 DOI: 10.3389/fonc.2018.00086] [Citation(s) in RCA: 887] [Impact Index Per Article: 147.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
Melanoma, a skin cancer associated with high mortality rates, is highly radio- and chemotherapy resistant but can also be very immunogenic. These circumstances have led to a recent surge in research into therapies aiming to boost anti-tumor immune responses in cancer patients. Among these immunotherapies, neutralizing antibodies targeting the immune checkpoints T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are being hailed as particularly successful. These antibodies have resulted in dramatic improvements in disease outcome and are now clinically approved in many countries. However, the majority of advanced stage melanoma patients do not respond or will relapse, and the hunt for the “magic bullet” to treat the disease continues. This review examines the mechanisms of action and the limitations of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies which are the two types of checkpoint inhibitors currently available to patients and further explores the future avenues of their use in melanoma and other cancers.
Collapse
Affiliation(s)
- Judith A Seidel
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Singapore Immunology Network (SIgN), Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| |
Collapse
|
22
|
Ragonnaud E, Pedersen AG, Holst PJ. Breadth of T Cell Responses After Immunization with Adenovirus Vectors Encoding Ancestral Antigens or Polyvalent Papillomavirus Antigens. Scand J Immunol 2017; 85:182-190. [DOI: 10.1111/sji.12522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/13/2017] [Indexed: 12/28/2022]
Affiliation(s)
- E. Ragonnaud
- Department of International Health Immunology and Microbiology; Center for Medical Parasitology; Copenhagen Denmark
| | - A. G. Pedersen
- Department of Systems Biology; Technical University of Denmark; Lyngby Denmark
| | - P. J. Holst
- Department of International Health Immunology and Microbiology; Center for Medical Parasitology; Copenhagen Denmark
| |
Collapse
|
23
|
Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 2017; 15:1. [PMID: 28073373 PMCID: PMC5225559 DOI: 10.1186/s12964-016-0160-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
Collapse
Affiliation(s)
- Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Eckhard Klieser
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Daniel Neureiter
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria. .,Salzburg Cancer Research Institute, Salzburg, Austria.
| |
Collapse
|
24
|
Is There Still Room for Cancer Vaccines at the Era of Checkpoint Inhibitors. Vaccines (Basel) 2016; 4:vaccines4040037. [PMID: 27827885 PMCID: PMC5192357 DOI: 10.3390/vaccines4040037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitor (CPI) blockade is considered to be a revolution in cancer therapy, although most patients (70%–80%) remain resistant to this therapy. It has been hypothesized that only tumors with high mutation rates generate a natural antitumor T cell response, which could be revigorated by this therapy. In patients with no pre-existing antitumor T cells, a vaccine-induced T cell response is a rational option to counteract clinical resistance. This hypothesis has been validated in preclinical models using various cancer vaccines combined with inhibitory pathway blockade (PD-1-PDL1-2, CTLA-4-CD80-CD86). Enhanced T cell infiltration of various tumors has been demonstrated following this combination therapy. The timing of this combination appears to be critical to the success of this therapy and multiple combinations of immunomodulating antibodies (CPI antagonists or costimulatory pathway agonists) have reinforced the synergy with cancer vaccines. Only limited results are available in humans and this combined approach has yet to be validated. Comprehensive monitoring of the regulation of CPI and costimulatory molecules after administration of immunomodulatory antibodies (anti-PD1/PD-L1, anti-CTLA-4, anti-OX40, etc.) and cancer vaccines should help to guide the selection of the best combination and timing of this therapy.
Collapse
|
25
|
Ragonnaud E, Andersson AMC, Pedersen AE, Laursen H, Holst PJ. An adenoviral cancer vaccine co-encoding a tumor associated antigen together with secreted 4-1BBL leads to delayed tumor progression. Vaccine 2016; 34:2147-56. [PMID: 27004934 DOI: 10.1016/j.vaccine.2015.06.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 06/22/2015] [Indexed: 01/24/2023]
Abstract
Previous studies have shown promising results when using an agonistic anti-4-1BB antibody treatment against established tumors. While this is promising, this type of treatment can induce severe side effects. Therefore, we decided to incorporate the membrane form of 4-1BB ligand (4-1BBL) in a replicative deficient adenovirus vaccine expressing the invariant chain (Ii) adjuvant fused to a tumor associated antigen (TAA). The Ii adjuvant increases and prolongs TAA specific CD8+ T cells as previously shown and local expression of 4-1BBL was chosen to avoid the toxicity associated with systemic antibody administration. Furthermore, adenovirus encoded 4-1BBL expression has previously been successfully used to enhance responses toward Plasmodium falciparum and Influenza A antigens. We showed that the incorporation of 4-1BBL in the adenovirus vector led to surface expression of 4-1BBL on antigen presenting cells, but it did not enhance T cell responses in mice towards the Ii linked antigen. In tumor-bearing mice, our vaccine was found to decrease the frequency of TAA specific CD8+ T cells, but this difference did not alter the therapeutic efficacy. In order to reconcile our findings with the previous reports of increased anti-cancer efficacy using systemically delivered 4-1BB agonists, we incorporated a secreted version of 4-1BBL (Fc-4-1BBL) in our vaccine and co-expressed it with the Ii linked to TAA. In tumor bearing mice, this vaccine initially delayed tumor growth and slightly increased survival compared to the vaccine expressing the membrane form of 4-1BBL. Accordingly, secreted 4-1BBL co-encoded with the Ii linked antigen may offer a simplification compared to administration of drug and vaccine separately.
Collapse
Affiliation(s)
- Emeline Ragonnaud
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anne-Marie C Andersson
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anders Elm Pedersen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henriette Laursen
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter J Holst
- Center for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
26
|
Morse MA, Lyerly HK. Checkpoint blockade in combination with cancer vaccines. Vaccine 2015; 33:7377-7385. [DOI: 10.1016/j.vaccine.2015.10.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023]
|
27
|
Defining the effects of age and gender on immune response and outcomes to melanoma vaccination: a retrospective analysis of a single-institution clinical trials' experience. Cancer Immunol Immunother 2015; 64:1531-9. [PMID: 26392296 DOI: 10.1007/s00262-015-1758-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The impacts of patient age and gender on immune response (IR) and clinical outcome after cancer vaccines are not known. We hypothesized younger and female patients would have higher IR rates and better survival. METHODS Patients with resected stage IIB-IV melanoma in three clinical trials (Mel43, Mel44, Mel48) were vaccinated with 12 melanoma-associated peptides restricted by class I MHC. The cumulative incidence rate of CD8(+) T cell responses (direct interferon-gamma ELIspot assay) by week 7 was compared by age and gender. Overall survival (OS) and disease-free survival (DFS) landmark analyses were compared by Kaplan-Meier estimates and in multivariate analyses. RESULTS T cell responses were evaluated in 327 patients and detected in 50 % of males and 48 % of females, with no difference in IR by gender or menopausal status. Males had trends toward longer DFS (p = 0.12) and OS (p = 0.09). Cumulative incidence of IR was higher in patients <64 years of age versus older patients (p = 0.03). OS and DFS were similar by age group (p > 0.50). In multivariate modeling, younger age was associated with better IR (OR 0.40, p value 0.003), without an impact of age or gender on clinical outcomes. CONCLUSION These data support the hypothesis that older patients are less likely to develop T cell responses to a cancer vaccine. Nonetheless, significant proportions of older patients mount immune responses with comparable survival outcomes. Thus, these data support including older patients in cancer vaccine trials, but suggest value in stratifying patients by age </>64 years.
Collapse
|
28
|
Combination Therapy With Reovirus and Anti-PD-1 Blockade Controls Tumor Growth Through Innate and Adaptive Immune Responses. Mol Ther 2015; 24:166-74. [PMID: 26310630 DOI: 10.1038/mt.2015.156] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/23/2015] [Indexed: 12/21/2022] Open
Abstract
Oncolytic reovirus can be delivered both systemically and intratumorally, in both preclinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and antitumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive antitumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (P < 0.01) or anti-PD-1 therapy alone. In vitro immune analysis demonstrated that checkpoint inhibition improved the ability of NK cells to kill reovirus-infected tumor cells, reduced T(reg) activity, and increased the adaptive CD8(+) T-cell-dependent antitumor T-cell response. PD-1 blockade also enhanced the antiviral immune response but through effector mechanisms which overlapped with but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus viroimmunotherapy.
Collapse
|
29
|
Zamarin D, Wolchok JD. Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14004. [PMID: 27119094 PMCID: PMC4782939 DOI: 10.1038/mto.2014.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 02/07/2023]
Abstract
Identification of the immune suppressive mechanisms active within the tumor microenvironment led to development of immunotherapeutic strategies aiming to reverse the immunosuppression and to enhance the function of tumor-infiltrating lymphocytes. Of those, cancer therapy with antibodies targeting the immune costimulatory and coinhibitory receptors has demonstrated significant promise in the recent years, with multiple antibodies entering clinical testing. The responses to these agents, however, have not been universal and have not been observed in all cancer types, calling for identification of appropriate predictive biomarkers and development of combinatorial strategies. Pre-existing immune infiltration in tumors has been demonstrated to have a strong association with response to immunotherapies, with the type I interferon (IFN) pathway emerging as a key player in tumor innate immune recognition and activation of adaptive immunity. These findings provide a rationale for evaluation of strategies targeting the type I IFN pathway as a means to enhance tumor immune recognition and infiltration, which could potentially make them susceptible to therapeutics targeting the cosignaling receptors. To this end in particular, oncolytic viruses (OVs) have been demonstrated to enhance tumor recognition by the immune system through multiple mechanisms, which include upregulation of major histocompatibility complex and costimulatory molecules on cancer cells, immunogenic cell death and antigen release, and activation of the type I IFN pathway. Evidence is now emerging that combination therapies using OVs and agents targeting immune cosignaling receptors such as 4-1BB, PD-1, and CTLA-4 may work in concert to enhance antitumor immunity and therapeutic efficacy. Our evolving understanding of the interplay between OVs and the immune system demonstrates that the virus-induced antitumor immune responses can be harnessed to drive the efficacy of the agents targeting cosignaling receptors and provides a strong rationale for integration of such therapies in clinic.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA; Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| | - Jedd D Wolchok
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA; Department of Medicine, Melanoma and Immunotherapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| |
Collapse
|
30
|
Larsen HL, Andersen MH, Wandall HH, Madsen CB, Christensen RE, Petersen TR, Pedersen AE. Induction of Bcl-xL-specific cytotoxic T lymphocytes in mice. Scand J Immunol 2014; 80:111-20. [PMID: 24846184 DOI: 10.1111/sji.12192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/10/2014] [Indexed: 11/30/2022]
Abstract
The induction of active immunity against tumour-associated antigens to prevent relapse of cancer is a promising approach but has so far shown only low efficacy. This low efficacy may in part be due to clonal escape of tumour cell variants by the downregulation of antigen expression or inflammation-induced dedifferentiation. Identification of novel tumour-associated antigens that at the same time are essential for continued tumour cell survival is thus critical for the development of active cancer vaccinations. At the same time, identification of novel endogenous murine tumour antigens will help improve preclinical development of cancer immunotherapy. The anti-apoptotic protein Bcl-xL has been suggested to be such an essential tumour antigen, but the lack of well-defined murine epitopes have delayed preclinical studies of Bcl-xL-targeting cancer vaccines. Here, we report the identification of two novel murine tumour-associated epitopes TAYQSFEQV and AFFSFGGAL derived from mouse Bcl-xL. Dendritic cell (DC)-based vaccination induced CD8(+) T cells capable of producing IFN-γ upon restimulation with these epitopes. Thus, our data may benefit the design of future immunotherapy strategies by providing a preclinical model for cancer vaccination with an endogenous tumour antigen that can be combined with other cancer treatments.
Collapse
Affiliation(s)
- H L Larsen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
31
|
Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination. Mol Ther 2014; 22:2107-2117. [PMID: 25023330 DOI: 10.1038/mt.2014.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/22/2014] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8(+) T-cell response. Here we describe a new adenoviral vaccine vector approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8(+) T-cell response. Furthermore, in a melanoma model we observed significantly prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following vaccination with the IL-2 expressing construct, these mice were able to raise a delayed but substantial CD8(+) T-cell response, and to control melanoma growth nearly as efficaciously as similarly vaccinated WT mice. Taken together, these results demonstrate that current vaccine vectors can be improved and even tailored to meet specific demands: in the context of therapeutic vaccination, the capacity to promote an augmented effector T-cell response.
Collapse
|
32
|
Yano H, Thakur A, Tomaszewski EN, Choi M, Deol A, Lum LG. Ipilimumab augments antitumor activity of bispecific antibody-armed T cells. J Transl Med 2014; 12:191. [PMID: 25008236 PMCID: PMC4105782 DOI: 10.1186/1479-5876-12-191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 06/05/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ipilimumab is an antagonistic monoclonal antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) that enhances antitumor immunity by inhibiting immunosuppressive activity of regulatory T cells (Treg). In this study, we investigated whether inhibiting Treg activity with ipilimumab during ex vivo T cell expansion could augment anti-CD3-driven T cell proliferation and enhance bispecific antibody (BiAb)-redirected antitumor cytotoxicity of activated T cells (ATC). METHODS PBMC from healthy individuals were stimulated with anti-CD3 monoclonal antibody with or without ipilimumab and expanded for 10-14 days. ATC were harvested and armed with anti-CD3 x anti-EGFR BiAb (EGFRBi) or anti-CD3 x anti-CD20 BiAb (CD20Bi) to test for redirected cytotoxicity against COLO356/FG pancreatic cancer cell line or Burkitt's lymphoma cell line (Daudi). RESULTS In PBMC from healthy individuals, the addition of ipilimumab at the initiation of culture significantly enhanced T cell proliferation (p = 0.0029). ATC grown in the presence of ipilimumab showed significantly increased mean tumor-specific cytotoxicity at effector:target (E:T) ratio of 25:1 directed at COLO356/FG and Daudi by 37.71% (p < 0.0004) and 27.5% (p < 0.0004), respectively, and increased the secretion of chemokines (CCL2, CCL3, CCL4,CCL5, CXCL9, and granulocyte-macrophage colony stimulating factor(GM-CSF)) and cytokines (IFN-γ, IL-2R, IL-12, and IL-13), while reducing IL-10 secretion. CONCLUSIONS Expansion of ATC in the presence of ipilimumab significantly improves not only the T cell proliferation but it also enhances cytokine secretion and the specific cytotoxicity of T cells armed with bispecific antibodies.
Collapse
Affiliation(s)
- Hiroshi Yano
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Archana Thakur
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Elyse N Tomaszewski
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Minsig Choi
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Abhinav Deol
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
| | - Lawrence G Lum
- Departments of Oncology, Wayne State University and Barbara Ann Karmanos Cancer Institute, 740.1 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA
- Medicine, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA
- Immunology and Microbiology, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
33
|
The human-specific invariant chain isoform Iip35 modulates Iip33 trafficking and function. Immunol Cell Biol 2014; 92:791-8. [PMID: 24983457 DOI: 10.1038/icb.2014.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/12/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
The invariant chain (Ii) is a multifunctional protein, which has an essential role in the assembly and transport of major histocompatibility complex class II (MHC II) molecules. From a single gene, Ii is synthesized as four different isoforms: Iip33, Iip35, Iip41 and Iip43. Iip35 and Iip43 are specific to humans, and are formed due to an upstream alternative translation site, resulting in an N-terminal extension of 16 amino acids. This extension harbors a strong endoplasmic reticulum (ER) retention motif. Consequently, Iip35 or Iip43 expressed alone are retained in the ER, whereas Iip33 and Iip41 rapidly traffic to the endosomal pathway. Endogenously expressed, the four isoforms form mixed heterotrimers in the ER; however, mainly due to the absence of the Iip35/p43 isoforms in mice, little is known about how they influence general Ii function. In this study, we have co-expressed Iip33 and Iip35 in human cells with and without MHC II to gain a better understanding of how Iip35 isoform influences the cellular properties of Iip33. We find that Iip35 significantly affects the properties of Iip33. In the presence of Iip35, the transport of Iip33 out of the ER is delayed, its half-life is dramatically prolonged and its ability to induce enlarged endosomes and delayed endosomal maturation is abrogated.
Collapse
|
34
|
Lines JL, Sempere LF, Broughton T, Wang L, Noelle R. VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res 2014; 2:510-7. [PMID: 24894088 PMCID: PMC4085258 DOI: 10.1158/2326-6066.cir-14-0072] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past few years, the field of cancer immunotherapy has made great progress and is finally starting to change the way cancer is treated. We are now learning that multiple negative checkpoint regulators (NCR) restrict the ability of T-cell responses to effectively attack tumors. Releasing these brakes through antibody blockade, first with anti-CTLA4 and now followed by anti-PD1 and anti-PDL1, has emerged as an exciting strategy for cancer treatment. More recently, a new NCR has surfaced called V-domain immunoglobulin (Ig)-containing suppressor of T-cell activation (VISTA). This NCR is predominantly expressed on hematopoietic cells, and in multiple murine cancer models is found at particularly high levels on myeloid cells that infiltrated the tumors. Preclinical studies with VISTA blockade have shown promising improvement in antitumor T-cell responses, leading to impeded tumor growth and improved survival. Clinical trials support combined anti-PD1 and anti-CTLA4 as safe and effective against late-stage melanoma. In the future, treatment may involve combination therapy to target the multiple cell types and stages at which NCRs, including VISTA, act during adaptive immune responses.
Collapse
Affiliation(s)
- J Louise Lines
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lorenzo F Sempere
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Thomas Broughton
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Li Wang
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Randolph Noelle
- Authors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Council Centre of Transplantation, Guy's Hospital; Department of Immune Regulation and Intervention, King's College, King's Health Partners, London, United Kingdom; Van Andel Research Institute, Grand Rapids, Michigan; Departments of Medicine and Microbiology and Immunology, and Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire; and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WisconsinAuthors' Affiliations: Medical Research Coun
| |
Collapse
|
35
|
Ragonnaud E, Holst P. The rationale of vectored gene-fusion vaccines against cancer: evolving strategies and latest evidence. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:33-47. [PMID: 24757514 DOI: 10.1177/2051013613480446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of vaccines that target tumor antigens in cancer has proven difficult. A major reason for this is that T cells specific for tumor self-antigens and neoantigens are eliminated or inactivated through mechanisms of tolerance. Antigen fusion strategies which increase the ability of vaccines to stimulate T cells that have escaped tolerance mechanisms, may have a particular potential as immunotherapies. This review highlights antigen fusion strategies that have been successful in stimulating the induction of T-cell immunity against cancer and counteracting tumor-associated tolerance. In preclinical studies, these strategies have shown to improve the potency of vectored vaccines through fusion of tumor antigen to proteins or protein domains that increase CD4+ T-cell help, CD8+ T-cell responses or both the CD4+ and CD8+ T-cell responses. However, in clinical trials such strategies seem to be less efficient when provided as a DNA vaccine. The first clinical trial using a viral vectored fusion-gene vaccine is expected to be tested as a partner in a heterologous prime-boost regimen directed against cervical cancer.
Collapse
Affiliation(s)
| | - Peter Holst
- ISIM - Center for Medical Parasitology, Copenhagen, Denmark
| |
Collapse
|
36
|
Wälchli S, Kumari S, Fallang LE, Sand KMK, Yang W, Landsverk OJB, Bakke O, Olweus J, Gregers TF. Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytotoxic T-cell activation. Eur J Immunol 2013; 44:774-84. [PMID: 24293164 DOI: 10.1002/eji.201343671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/13/2013] [Accepted: 11/25/2013] [Indexed: 11/09/2022]
Abstract
Protective T-cell responses depend on efficient presentation of antigen (Ag) in the context of major histocompatibility complex class I (MHCI) and class II (MHCII) molecules. Invariant chain (Ii) serves as a chaperone for MHCII molecules and mediates trafficking to the endosomal pathway. The genetic exchange of the class II-associated Ii peptide (CLIP) with antigenic peptides has proven efficient for loading of MHCII and activation of specific CD4(+) T cells. Here, we investigated if Ii could similarly activate human CD8(+) T cells when used as a vehicle for cytotoxic T-cell (CTL) epitopes. The results show that wild type Ii, and Ii in which CLIP was replaced by known CTL epitopes from the cancer targets MART-1 or CD20, coprecipitated with HLA-A*02:01 and mediated colocalization in the endosomal pathway. Furthermore, HLA-A*02:01-positive cells expressing CLIP-replaced Ii efficiently activated Ag-specific CD8(+) T cells in a TAP- and proteasome-independent manner. Finally, dendritic cells transfected with mRNA encoding IiMART-1 or IiCD20 primed naïve CD8(+) T cells. The results show that Ii carrying antigenic peptides in the CLIP region can promote efficient presentation of the epitopes to CTLs independently of the classical MHCI peptide loading machinery, facilitating novel vaccination strategies against cancer.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Pedersen SR, Sørensen MR, Buus S, Christensen JP, Thomsen AR. Comparison of vaccine-induced effector CD8 T cell responses directed against self- and non-self-tumor antigens: implications for cancer immunotherapy. THE JOURNAL OF IMMUNOLOGY 2013; 191:3955-67. [PMID: 24018273 DOI: 10.4049/jimmunol.1300555] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is generally accepted that CD8 T cells play a major role in tumor control, yet vaccination aimed at eliciting potent CD8 T cell responses are rarely efficient in clinical trials. To try and understand why this is so, we have generated potent adenoviral vectors encoding the endogenous tumor Ags (TA) tyrosinase-related protein-2 (TRP-2) and glycoprotein 100 (GP100) tethered to the invariant chain (Ii). Using these vectors, we sought to characterize the self-TA-specific CD8 T cell response and compare it to that induced against non-self-Ags expressed from a similar vector platform. Prophylactic vaccination with adenoviral vectors expressing either TRP-2 (Ad-Ii-TRP-2) or GP100 (Ad-Ii-GP100) had little or no effect on the growth of s.c. B16 melanomas, and only Ad-Ii-TRP-2 was able to induce a marginal reduction of B16 lung metastasis. In contrast, vaccination with a similar vector construct expressing a foreign (viral) TA induced efficient tumor control. Analyzing the self-TA-specific CD8 T cells, we observed that these could be activated to produce IFN-γ and TNF-α. In addition, surface expression of phenotypic markers and inhibitory receptors, as well as in vivo cytotoxicity and degranulation capacity matched that of non-self-Ag-specific CD8 T cells. However, the CD8 T cells specific for self-TAs had a lower functional avidity, and this impacted on their in vivo performance. On the basis of these results and a low expression of the targeted TA epitopes on the tumor cells, we suggest that low avidity of the self-TA-specific CD8 T cells may represent a major obstacle for efficient immunotherapy of cancer.
Collapse
Affiliation(s)
- Sara R Pedersen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen North, Denmark
| | | | | | | | | |
Collapse
|
39
|
Jensen BAH, Pedersen SR, Christensen JP, Thomsen AR. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4-1BB antibodies. PLoS One 2013; 8:e66081. [PMID: 23785471 PMCID: PMC3681965 DOI: 10.1371/journal.pone.0066081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/01/2013] [Indexed: 02/03/2023] Open
Abstract
It has previously been found that combination therapy with anti-CTLA-4 and anti-4-1BB antibodies may enhance tumor immunity. However, this treatment is not efficient against all tumors, and it has been suggested that variations in tumor control may reflect differences in the immunogenicity of different tumors. In the present report, we have formally tested this hypothesis. Comparing the efficiency of combination antibody therapy against two antigenically distinct variants of the B16.F10 melanoma cell line, we observed that antibody therapy delayed the growth of a variant expressing an exogenous antigen (P<0.0001), while this treatment failed to protect against the non-transfected parental line (P = 0.1850) consistent with published observations. As both cell lines are poorly immunogenic in wild type mice, these observations suggested that the magnitude of the tumor targeting T-cell repertoire plays a major role in deciding the efficiency of this antibody treatment. To directly test this assumption, we made use of mice expressing the exogenous antigen as a self-antigen and therefore carrying a severely purged T-cell repertoire directed against the major tumor antigen. Notably, combination therapy completely failed to inhibit tumor growth in the latter mice (P = 0.8584). These results underscore the importance of a functionally intact T-cell population as a precondition for the efficiency of treatment with immunomodulatory antibodies. Clinically, the implication is that this type of antibody therapy should be attempted as an early form of tumor-specific immunotherapy before extensive exhaustion of the tumor-specific T-cell repertoire has occurred.
Collapse
Affiliation(s)
- Benjamin A. H. Jensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of International Health, Immunology and Microbiology, Blegdamsvej 3C, Copenhagen, Denmark
| | - Sara R. Pedersen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of International Health, Immunology and Microbiology, Blegdamsvej 3C, Copenhagen, Denmark
| | - Jan P. Christensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of International Health, Immunology and Microbiology, Blegdamsvej 3C, Copenhagen, Denmark
| | - Allan R. Thomsen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of International Health, Immunology and Microbiology, Blegdamsvej 3C, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
40
|
Mocellin S, Nitti D. CTLA-4 blockade and the renaissance of cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2013; 1836:187-96. [PMID: 23748107 DOI: 10.1016/j.bbcan.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022]
Abstract
Cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) plays a key role in restraining the adaptive immune response of T-cells towards a variety of antigens including tumor associated antigens (TAAs). The blockade of this immune checkpoint elicits an effective anticancer immune response in a range of preclinical models, suggesting that naturally occurring (or therapeutically induced) TAA specific lymphocytes need to be "unleashed" in order to properly fight against malignant cells. Therefore, investigators have tested this therapeutic hypothesis also in humans: the favorable results obtained with this strategy in patients with advanced cutaneous melanoma are revolutionizing the management of this highly aggressive disease and are fueling new enthusiasm on cancer immunotherapy in general. Here we summarize the biology of CTLA-4, overview the experimental data supporting the rational for targeting CTLA-4 to treat cancer and review the main clinical findings on this novel anticancer approach. Moreover, we critically discuss the current challenges and potential developments of this promising field of cancer immunotherapy.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy.
| | | |
Collapse
|
41
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
42
|
Mocellin S, Benna C, Pilati P. Coinhibitory molecules in cancer biology and therapy. Cytokine Growth Factor Rev 2013; 24:147-61. [PMID: 23380546 DOI: 10.1016/j.cytogfr.2013.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/09/2013] [Indexed: 12/31/2022]
Abstract
The adaptive immune response is controlled by checkpoints represented by coinhibitory molecules, which are crucial for maintaining self-tolerance and minimizing collateral tissue damage under physiological conditions. A growing body of preclinical evidence supports the hypothesis that unleashing this immunological break might be therapeutically beneficial in the fight against cancer, as it would elicit an effective antitumor immune response. Remarkably, recent clinical trials have demonstrated that this novel strategy can be highly effective in the treatment of patients with cancer, as shown by the paradigmatic case of ipilimumab (a monoclonal antibody blocking the coinhibitory molecule cytotoxic T lymphocyte associated antigen-4 [CTLA4]) that is opening a new era in the therapeutic approach to a chemoresistant tumor such as cutaneous melanoma. In this review we summarize the biology of coinhibitory molecules, overview the experimental and clinical attempts to interfere with these immune checkpoints to treat cancer and critically discuss the challenges posed by such a promising antitumor modality.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | | | | |
Collapse
|
43
|
Abstract
The advent of immunotherapies for cancer has resulted in robust clinical responses and confirmed that the immune system can significantly inhibit tumor progression. The recent success of adoptive cell therapy against melanoma suggests that endogenous T-cell responses have the potential to control cancer. However, the lack of responses in some patients receiving such therapy indicates a need for a better understanding of the host immune response to solid tumors. In this review, we summarize the current knowledge on the characteristics of adoptively transferred T cells associated with successful anti-melanoma immune responses in humans.
Collapse
Affiliation(s)
- Agnes Fermin Lee
- Dirks/Dougherty Laboratory for Cancer Research; Department of Translational Immunology; John Wayne Cancer Institute at Saint John’s Health Center; Santa Monica, CA USA
| | - Peter A. Sieling
- Dirks/Dougherty Laboratory for Cancer Research; Department of Translational Immunology; John Wayne Cancer Institute at Saint John’s Health Center; Santa Monica, CA USA
| | - Delphine J. Lee
- Dirks/Dougherty Laboratory for Cancer Research; Department of Translational Immunology; John Wayne Cancer Institute at Saint John’s Health Center; Santa Monica, CA USA
| |
Collapse
|
44
|
Khong A, Nelson DJ, Nowak AK, Lake RA, Robinson BWS. The use of agonistic anti-CD40 therapy in treatments for cancer. Int Rev Immunol 2012; 31:246-66. [PMID: 22804570 DOI: 10.3109/08830185.2012.698338] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Agonistic anti-CD40 antibody is a potent stimulator of anti-tumor immune responses due to its action on both immune and tumor cells. It has the ability to "precondition" dendritic cells, allowing them to prime effective cytotoxic T-cell responses. Thus, anti-CD40 antibody provides an ideal therapy for combination with traditional cancer treatments (i.e., chemotherapy, surgery) in order to elicit immune-mediated anti-tumor effects. This review summarizes the mechanisms of action of agonistic anti-CD40, the use of mouse models to investigate its effects and combinations with other therapies in vivo, and current clinical trials combining humanized anti-CD40 antibody with chemotherapy and/or other immunotherapies.
Collapse
Affiliation(s)
- Andrea Khong
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
45
|
Abstract
Cancer vaccines have shown success in curing tumors in preclinical models. Accumulating evidence also supports their ability to induce immune responses in patients. In many cases, these responses correlate with improved clinical outcomes. However, cancer vaccines have not yet demonstrated their true potential in clinical trials. This is likely due to the difficulty in mounting a significant anti-tumor response in patients with advanced disease because of pre-existing tolerance mechanisms that are actively turning off immune recognition in cancer patients. This review will examine the recent progress being made in the design and implementation of whole cell cancer vaccines, one vaccine approach that simultaneously targets multiple tumor antigens to activate the immune response. These vaccines have been shown to induce antigen-specific T-cell responses. Preclinical studies evaluating these vaccines given in sequence with other agents and cancer treatment modalities support the use of immunomodulating doses of chemotherapy and radiation, as well as immune-modulating pathway-targeted monoclonal antibodies, to enhance the efficacy of cancer vaccines. Based on emerging preclinical data, clinical trials are currently exploring the use of combinatorial immune-based therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Bridget P Keenan
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
46
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|
47
|
Wang XY, Zuo D, Sarkar D, Fisher PB. Blockade of cytotoxic T-lymphocyte antigen-4 as a new therapeutic approach for advanced melanoma. Expert Opin Pharmacother 2011; 12:2695-706. [PMID: 22077831 PMCID: PMC3711751 DOI: 10.1517/14656566.2011.629187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The incidence of melanoma continues to rise, and prognosis in patients with metastatic melanoma remains poor. The cytotoxic T-lymphocyte antigen-4 (CTLA-4) serves as one of the primary immune check points and downregulates T-cell activation pathways. Enhancing T-cell activation by antibody blockade of CTLA-4 provides a new approach to overcome tumor-induced immune tolerance. Recently, anti-CTLA-4 therapy demonstrated significant clinical benefits in patients with metastatic melanoma, which led to the approval of ipilimumab by the FDA in early 2011. AREAS COVERED The fundamental concepts underlying CTLA-4 blockade-potentiated immune activation are presented in this paper, along with the scientific rationale for and the preclinical evidence supporting CTLA-4-targeted cancer immunotherapy. It also provides an update on clinical trials with anti-CTLA-4 inhibitors and discusses the associated autoimmune toxicity. EXPERT OPINION Given that overall survival is the only validated end point for anti-CTLA-4 therapy, the clinical implications of the antigen or tumor-specific immunity in patients remain to be clarified. Additional research is necessary to elucidate the prognostic significance of immune-related side effects and significantly optimize the treatment regimens. An improved understanding of the mechanisms of action of CTLA-4 antibodies may also culminate in wide-ranging clinical applications of this new therapy for other tumor types.
Collapse
Affiliation(s)
- Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
| | - Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
| |
Collapse
|
48
|
Navarrete AM, Delignat S, Teillaud JL, Kaveri SV, Lacroix-Desmazes S, Bayry J. CD4+CD25+ regulatory T cell-mediated changes in the expression of endocytic receptors and endocytosis process of human dendritic cells. Vaccine 2011; 29:2649-52. [PMID: 21316501 DOI: 10.1016/j.vaccine.2011.01.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/21/2011] [Accepted: 01/27/2011] [Indexed: 11/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are known to inhibit immune responses to antigens. Since, the process of antigen uptake by dendritic cells (DC) is central to induction of immune responses, we analyzed the effect of Tregs on the expression of endocytic receptors on DC and its repercussion on antigen uptake. Our results demonstrate that Tregs down-regulate the expression and uptake of antigens via C-type lectin-like receptors CD206 and DC-SIGN, restrain the pinocytosis process of DC and augment the expression of FcγRIIB, an inhibitory Fcγ receptor the engagement of which by IgG-bound antigens leads to inhibition of DC activation. Our results thus provide an additional insight on the pertinence of strategies aimed at blocking Treg functions towards improved vaccination protocols.
Collapse
Affiliation(s)
- Ana-Maria Navarrete
- Institut National de la Santé et de la Recherche Médicale, Unité 872, Paris F-75006, France
| | | | | | | | | | | |
Collapse
|