1
|
Johnson-Weaver BT, Choi HW, Yang H, Granek JA, Chan C, Abraham SN, Staats HF. Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Front Immunol 2021; 12:730346. [PMID: 34566991 PMCID: PMC8461742 DOI: 10.3389/fimmu.2021.730346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.
Collapse
Affiliation(s)
| | - Hae Woong Choi
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
| | - Hang Yang
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Josh A. Granek
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Cliburn Chan
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Soman N. Abraham
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Herman F. Staats
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| |
Collapse
|
2
|
Mahallawi WH, Aljeraisi TM. In vitro cell culture model of human nasal-associated lymphoid tissue (NALT) to evaluate the humoral immune response to SARS-CoV-2 spike proteins. Saudi J Biol Sci 2021; 28:4516-4521. [PMID: 33942008 PMCID: PMC8064899 DOI: 10.1016/j.sjbs.2021.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
To date, coronavirus disease 2019 (COVID-19) continues to be considered a pandemic worldwide, with a mild to severe disease presentation that is sometimes associated with serious complications that are concerning to global health authorities. Scientists are working hard to understand the pathogenicity of this novel virus, and a great deal of attention and effort has been focused on identifying therapeutics and vaccines to control this pandemic. Methods This study used tonsils removed from twelve patients who underwent an elective tonsillectomy in the ear, nose, and throat (ENT) department at Saudi Germany Hospital, Madinah, Saudi Arabia. Tonsillar mononuclear cells (MNCs) were separated and co-cultured in RPMI complete medium in the presence and absence of viral spike (S) proteins (the full-length S, S1 subunit, and S2 subunit proteins). Enzyme-linked immunosorbent assay (ELISA) was used to measure secreted antibody concentrations following stimulation. Results The in vitro human nasal-associated lymphoid tissue (NALT) cell culture model was successfully used to evaluate the humoral immune response against SARS-CoV-2- S protein. Significant (p < 0.0001, n = 12) levels of specific, anti-S IgG, IgM, and IgA antibody responses were detected in cells culture supernatanat folloeing stimulation with the full-length S protein compared with unstimulated cells. In contrast, S1 and S2 subunit proteins alone failed to induce a mucosal humoral immune response following tonsillar MNC stimulation. Conclusion We demonstrated a successful human NALT in vitro cell culture model that was used to study the mucosal humoral immune response to the SARS-CoV-2 S protein. This model could be advantageous for the in-depth study of cellular immune responses to the S protein and other viral antigens, such as nucleocapsid and matrix antigen. The S protein appears to be the important viral protein that may be able to mimic the natural infection process intranasally and should be studied as a component of a candidate vaccine.
Collapse
Affiliation(s)
- Waleed H Mahallawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Madinah 41541, Saudi Arabia
| | - Talal M Aljeraisi
- Otorhinolaryngology, Head& Neck Surgery Department, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
3
|
Ratnapriya S, Perez-Greene E, Schifanella L, Herschhorn A. Adjuvant-mediated enhancement of the immune response to HIV vaccines. FEBS J 2021; 289:3317-3334. [PMID: 33705608 DOI: 10.1111/febs.15814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Protection from human immunodeficiency virus (HIV) acquisition will likely require an effective vaccine that elicits antibodies against the HIV-1 envelope glycoproteins (Envs), which are the sole target of neutralizing antibodies and a main focus of vaccine development. Adjuvants have been widely used to augment the magnitude and longevity of the adaptive immune responses to immunizations with HIV-1 Envs and to guide the development of specific immune responses. Here, we review the adjuvants that have been used in combination with HIV-1 Envs in several preclinical and human clinical trials in recent years. We summarize the interactions between the HIV-1 Envs and adjuvants, and highlight the routes of vaccine administration for various formulations. We then discuss the use of combinations of different adjuvants, the potential effect of adjuvants on the elicitation of antibodies enriched in somatic hypermutation and containing long complementarity-determining region 3 of the antibody heavy chain, and the elicitation of non-neutralizing antibodies.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eva Perez-Greene
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA.,The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Maślanka T, Clapp B, Hoffman C, Robison A, Gregorczyk I, Pascual DW. Nasal vaccination of β7 integrin-deficient mice retains elevated IgA immunity. Immunol Cell Biol 2020; 98:667-681. [PMID: 32479679 PMCID: PMC9810040 DOI: 10.1111/imcb.12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Understanding the migration of lymphocytes to nonintestinal mucosal sites is fundamental to developing mucosal vaccination strategies. Studies have shown that nasal and oral immunization with cholera toxin (CT) stimulates, in addition to α4β7+ , the induction of αE (CD103)β7+ B cells. To determine the extent to which αE-associated β7 contributes to antigen (Ag)-specific immunoglobulin (Ig)A responses in the upper respiratory tract, nasal CT vaccination was performed in wild-type (wt) and β7-/- mice. At 16 days postprimary immunization, upper respiratory tract IgA responses were greater in β7-/- mice than in wt mice. IgA induction by distal β7-/- Peyer's patches, mesenteric lymph nodes and small intestinal lamina propria was minimal, in contrast to elevated gut IgA responses in wt mice. By 42 days postprimary immunization, β7-/- gut IgA responses were restored, and upper respiratory tract Ag-specific IgA responses were equivalent to those of wt mice. Examination of homing receptor expression and cell-sorting experiments revealed that β7-/- mice have increased usage of β1 and αE integrins by upper respiratory tract B cells, suggesting that alternative integrins can facilitate lymphocyte migration to the upper respiratory tract, especially in the absence of β7.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn 10-718, Poland
| | - Beata Clapp
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Carol Hoffman
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Amanda Robison
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59715, USA
| | - Izabela Gregorczyk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn 10-718, Poland
| | - David W Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| |
Collapse
|
5
|
Enhancing the Immune Response of a Nicotine Vaccine with Synthetic Small "Non-Natural" Peptides. Molecules 2020; 25:molecules25061290. [PMID: 32178357 PMCID: PMC7143940 DOI: 10.3390/molecules25061290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] Open
Abstract
The addictive nature of nicotine is likely the most significant reason for the continued prevalence of tobacco smoking despite the widespread reports of its negative health effects. Nicotine vaccines are an alternative to the currently available smoking cessation treatments, which have limited efficacy. However, the nicotine hapten is non-immunogenic, and successful vaccine formulations to treat nicotine addiction require both effective adjuvants and delivery systems. The immunomodulatory properties of short, non-natural peptide sequences not found in human systems and their ability to improve vaccine efficacy continue to be reported. The aim of this study was to determine if small “non-natural peptides,” as part of a conjugate nicotine vaccine, could improve immune responses. Four peptides were synthesized via solid phase methodology, purified, and characterized. Ex vivo plasma stability studies using RP-HPLC confirmed that the peptides were not subject to proteolytic degradation. The peptides were formulated into conjugate nicotine vaccine candidates along with a bacterial derived adjuvant vaccine delivery system and chitosan as a stabilizing compound. Formulations were tested in vitro in a dendritic cell line to determine the combination that would elicit the greatest 1L-1β response using ELISAs. Three of the peptides were able to enhance the cytokine response above that induced by the adjuvant delivery system alone. In vivo vaccination studies in BALB/c mice demonstrated that the best immune response, as measured by nicotine-specific antibody levels, was elicited from the conjugate vaccine structure, which included the peptide, as well as the other components. Isotype analyses highlighted that the peptide was able to shift immune response toward being more humorally dominant. Overall, the results have implications for the use of non-natural peptides as adjuvants not only for the development of a nicotine vaccine but also for use with other addictive substances and conventional vaccination targets as well.
Collapse
|
6
|
Optimized Mucosal Modified Vaccinia Virus Ankara Prime/Soluble gp120 Boost HIV Vaccination Regimen Induces Antibody Responses Similar to Those of an Intramuscular Regimen. J Virol 2019; 93:JVI.00475-19. [PMID: 31068425 DOI: 10.1128/jvi.00475-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
The benefits of mucosal vaccines over injected vaccines are difficult to ascertain, since mucosally administered vaccines often induce serum antibody responses of lower magnitude than those induced by injected vaccines. This study aimed to determine if mucosal vaccination using a modified vaccinia virus Ankara expressing human immunodeficiency virus type 1 (HIV-1) gp120 (MVAgp120) prime and a HIV-1 gp120 protein boost could be optimized to induce serum antibody responses similar to those induced by an intramuscularly (i.m.) administered MVAgp120 prime/gp120 boost to allow comparison of an i.m. immunization regimen to a mucosal vaccination regimen for the ability to protect against a low-dose rectal simian-human immunodeficiency virus (SHIV) challenge. A 3-fold higher antigen dose was required for intranasal (i.n.) immunization with gp120 to induce serum anti-gp120 IgG responses not significantly different than those induced by i.m. immunization. gp120 fused to the adenovirus type 2 fiber binding domain (gp120-Ad2F), a mucosal targeting ligand, exhibited enhanced i.n. immunogenicity compared to gp120. MVAgp120 was more immunogenic after i.n. delivery than after gastric or rectal delivery. Using these optimized vaccines, an i.n. MVAgp120 prime/combined i.m. (gp120) and i.n. (gp120-Ad2F) boost regimen (i.n./i.m.-plus-i.n.) induced serum anti-gp120 antibody titers similar to those induced by the intramuscular prime/boost regimen (i.m./i.m.) in rabbits and nonhuman primates. Despite the induction of similar systemic anti-HIV-1 antibody responses, neither the i.m./i.m. nor the i.n./i.m.-plus-i.n. regimen protected against a repeated low-dose rectal SHIV challenge. These results demonstrate that immunization regimens utilizing the i.n. route are able to induce serum antigen-specific antibody responses similar to those induced by systemic immunization.IMPORTANCE Mucosal vaccination is proposed as a method of immunization able to induce protection against mucosal pathogens that is superior to protection provided by parenteral immunization. However, mucosal vaccination often induces serum antigen-specific immune responses of lower magnitude than those induced by parenteral immunization, making the comparison of mucosal and parenteral immunization difficult. We identified vaccine parameters that allowed an immunization regimen consisting of an i.n. prime followed by boosters administered by both i.n. and i.m. routes to induce serum antibody responses similar to those induced by i.m. prime/boost vaccination. Additional studies are needed to determine the potential benefit of mucosal immunization for HIV-1 and other mucosally transmitted pathogens.
Collapse
|
7
|
Fraleigh NL, Boudreau J, Bhardwaj N, Eng NF, Murad Y, Lafrenie R, Acevedo R, Oliva R, Diaz-Mitoma F, Le HT. Evaluating the immunogenicity of an intranasal vaccine against nicotine in mice using the Adjuvant Finlay Proteoliposome (AFPL1). Heliyon 2016; 2:e00147. [PMID: 27622215 PMCID: PMC5008958 DOI: 10.1016/j.heliyon.2016.e00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/05/2022] Open
Abstract
Tobacco smoking is recognized as a global pandemic resulting in 6 million deaths per year. Despite a variety of anti-smoking products available to aid with tobacco cessation, the majority of people who attempt to quit smoking relapse within 6 months due to the addictive nature of nicotine. An immunotherapy approach could offer a promising treatment option by inducing a potent selective antibody response against nicotine in order to block its distribution to the brain and its addictive effects in the central nervous system. Our nicotine vaccine candidate was administered intranasally using the Neisseria meningitidis serogroup B Adjuvant Finlay Proteoliposome 1 (AFPL1) as a part of the delivery system. This system was designed to generate a robust immune response by stimulating IL-1β production through Toll-like receptor 4 (TLR4), a potent mechanism for mucosal immunity. The vaccine induced high antibody titers in mice sera in addition to inducing mucosal antibodies. The efficacy of our vaccine was demonstrated using in vivo challenge experiments with radioactive [3H]-nicotine, followed by an analysis of nicotine distribution in the lung, liver, blood and brain. Our results were encouraging as the nicotine concentration in the brain tissue of mice vaccinated with our candidate vaccine was four times lower than in non-vaccinated controls; suggesting that the anti-nicotine antibodies were able to block nicotine from crossing the blood brain barrier. In summary, we have developed a novel nicotine vaccine for the treatment of tobacco addiction by intranasal administration and also demonstrated that the AFPL1 can be used as a potential adjuvant for this vaccine design.
Collapse
Affiliation(s)
- Nya L. Fraleigh
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
| | - Justin Boudreau
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Nitin Bhardwaj
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
| | - Nelson F. Eng
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
| | - Yanal Murad
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
| | - Robert Lafrenie
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Reinaldo Acevedo
- Finlay Vaccine Institute, Ave. 27 No. 19805, La Habana, AP 16017, Cuba
| | - Reynaldo Oliva
- Finlay Vaccine Institute, Ave. 27 No. 19805, La Habana, AP 16017, Cuba
| | - Francisco Diaz-Mitoma
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
- Northern Ontario School of Medicine, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Corresponding author.
| |
Collapse
|
8
|
Palomo J, Mastelic-Gavillet B, Woldt E, Troccaz S, Rodriguez E, Palmer G, Siegrist CA, Gabay C. IL-36–Induced Toxicity in Neonatal Mice Involves TNF-α Production by Liver Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:2239-49. [DOI: 10.4049/jimmunol.1600700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
|
9
|
Modified Vaccinia Ankara Virus Vaccination Provides Long-Term Protection against Nasal Rabbitpox Virus Challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:648-51. [PMID: 27146001 DOI: 10.1128/cvi.00216-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 02/08/2023]
Abstract
Modified vaccinia Ankara virus (MVA) is a smallpox vaccine candidate. This study was performed to determine if MVA vaccination provides long-term protection against rabbitpox virus (RPXV) challenge, an animal model of smallpox. Two doses of MVA provided 100% protection against a lethal intranasal RPXV challenge administered 9 months after vaccination.
Collapse
|
10
|
Structure and function of chicken interleukin-1 beta mutants: uncoupling of receptor binding and in vivo biological activity. Sci Rep 2016; 6:27729. [PMID: 27278931 PMCID: PMC4899739 DOI: 10.1038/srep27729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/24/2016] [Indexed: 01/02/2023] Open
Abstract
Receptor-binding and subsequent signal-activation of interleukin-1 beta (IL-1β) are essential to immune and proinflammatory responses. We mutated 12 residues to identify sites important for biological activity and/or receptor binding. Four of these mutants with mutations in loop 9 (T117A, E118K, E118A, E118R) displayed significantly reduced biological activity. Neither T117A nor E118K mutants substantially affected receptor binding, whereas both mutants lack the IL-1β signaling in vitro but can antagonize wild-type (WT) IL-1β. Crystal structures of T117A, E118A, and E118K revealed that the secondary structure or surface charge of loop 9 is dramatically altered compared with that of wild-type chicken IL-1β. Molecular dynamics simulations of IL-1β bound to its receptor (IL-1RI) and receptor accessory protein (IL-1RAcP) revealed that loop 9 lies in a pocket that is formed at the IL-1RI/IL-1RAcP interface. This pocket is also observed in the human ternary structure. The conformations of above mutants in loop 9 may disrupt structural packing and therefore the stability in a chicken IL-1β/IL-1RI/IL-1RAcP signaling complex. We identify the hot spots in IL-1β that are essential to immune responses and elucidate a mechanism by which IL-1β activity can be inhibited. These findings should aid in the development of new therapeutics that neutralize IL-1 activity.
Collapse
|
11
|
Srivastava A, Gowda DV, Madhunapantula SV, Shinde CG, Iyer M. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles. APMIS 2015; 123:275-88. [PMID: 25630573 DOI: 10.1111/apm.12351] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/05/2014] [Indexed: 12/25/2022]
Abstract
Mucosal immune responses are the first-line defensive mechanisms against a variety of infections. Therefore, immunizations of mucosal surfaces from which majority of infectious agents make their entry, helps to protect the body against infections. Hence, vaccinization of mucosal surfaces by using mucosal vaccines provides the basis for generating protective immunity both in the mucosal and systemic immune compartments. Mucosal vaccines offer several advantages over parenteral immunization. For example, (i) ease of administration; (ii) non-invasiveness; (iii) high-patient compliance; and (iv) suitability for mass vaccination. Despite these benefits, to date, only very few mucosal vaccines have been developed using whole microorganisms and approved for use in humans. This is due to various challenges associated with the development of an effective mucosal vaccine that can work against a variety of infections, and various problems concerned with the safe delivery of developed vaccine. For instance, protein antigen alone is not just sufficient enough for the optimal delivery of antigen(s) mucosally. Hence, efforts have been made to develop better prophylactic and therapeutic vaccines for improved mucosal Th1 and Th2 immune responses using an efficient and safe immunostimulatory molecule and novel delivery carriers. Therefore, in this review, we have made an attempt to cover the recent advancements in the development of adjuvants and delivery carriers for safe and effective mucosal vaccine production.
Collapse
Affiliation(s)
- Atul Srivastava
- Department of Pharmaceutics, JSS College of Pharmacy, JSS University, Mysore, India
| | | | | | | | | |
Collapse
|
12
|
Wang X, Meng D. Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell 2014; 6:170-84. [PMID: 25503634 PMCID: PMC4348248 DOI: 10.1007/s13238-014-0125-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/18/2014] [Indexed: 12/01/2022] Open
Abstract
Vaccination is an effective strategy to prevent infectious or immune related diseases, which has made remarkable contribution in human history. Recently increasing attentions have been paid to mucosal vaccination due to its multiple advantages over conventional ways. Subunit or peptide antigens are more reasonable immunogens for mucosal vaccination than live or attenuated pathogens, however adjuvants are required to augment the immune responses. Many mucosal adjuvants have been developed to prime desirable immune responses to different etiologies. Compared with pathogen derived adjuvants, innate endogenous molecules incorporated into mucosal vaccines demonstrate prominent adjuvanticity and safety. Nowadays, cytokines are broadly used as mucosal adjuvants for participation of signal transduction of immune responses, activation of innate immunity and polarization of adaptive immunity. Desired immune responses are promptly and efficaciously primed on basis of specific interactions between cytokines and corresponding receptors. In addition, some other innate molecules are also identified as potent mucosal adjuvants. This review focuses on innate endogenous mucosal adjuvants, hoping to shed light on the development of mucosal vaccines.
Collapse
Affiliation(s)
- Xiaoguang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,
| | | |
Collapse
|
13
|
Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci Rep 2014; 4:5128. [PMID: 24894817 PMCID: PMC4044635 DOI: 10.1038/srep05128] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/14/2014] [Indexed: 01/02/2023] Open
Abstract
Direct in vivo administration of messenger RNA (mRNA) delivered in both naked and nanoparticle formats are actively investigated because the use of dendritic cells transfected ex vivo with mRNA for cancer therapy is expensive and needs significant infrastructure. Notably, intravenous and subcutaneous injections are the only routes of administration tested for mRNA nanoparticle tumor vaccination. In this report, we demonstrate that tumor immunity can be achieved via nasal administration of mRNA. Mice nasally immunized with mRNA delivered in nanoparticle format demonstrate delayed tumor progression in both prophylactic and therapeutic immunization models. The observed tumor immunity correlates with splenic antigen-specific CD8+ T cells and is achieved only when mRNA is delivered in nanoparticle but not in naked format. In conclusion, we demonstrate, as a proof-of-concept, a non-invasive approach to mRNA tumor vaccination, increasing its potential as a broadly applicable and off-the-shelf therapy for cancer treatment.
Collapse
|
14
|
Enhancement of nasal HIV vaccination with adenoviral vector-based nanocomplexes using mucoadhesive and DC-targeting adjuvants. Pharm Res 2014; 31:2748-61. [PMID: 24792827 DOI: 10.1007/s11095-014-1372-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/21/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE To investigate the vaccine effect of a replication-defective recombinant adenovirus 5 (rAd5)-based nanocomplex with chitooligosaccharides (Oligo) and mannosylated polyethyleneimine-triethyleneglycol (mPEI) as adjuvants for human immunodeficiency virus (HIV) infection. METHODS Physical characteristics were determined through detecting the size, zeta potential and morphology of Oligo-mPEI-rAd5 nanocomplex, and in vitro vaccine uptake and transduction efficiency were estimated. Nanocomplexes were then administered intranasally to Balb/c mice to evaluate in vivo rAd5 residence in nasal cavity and HIVgag-specific immune responses using cytotoxic T lymphocyte (CTL), intracellular cytokine staining (ICS) and ELISA assay. RESULTS The mucoadhesivity of Oligo prolonged nasal residence time, while the dendritic cell (DC) specificity of mPEI improved vaccine uptake. These two adjuvants jointly enhanced transduction efficiency of rAd5. Oligo-mPEI-rAd5 nanocomplex elicited potent HIVgag-specific CTL response and increased IFN-γ positive CD8(+)T and IL-4 positive CD4(+)T cells, indicating high cellular immune responses. This vaccine candidate also led to strong humoral immune responses (IgG/IgG1/IgG2a) with balanced Th1/Th2 CD4(+)T cell activity. Moreover, mice nasally immunized with Oligo-mPEI-rAd5 showed higher levels of SIgA in nasal washes than did mice immunized with rAd5. CONCLUSIONS Intranasal delivery of Oligo-mPEI-rAd5 with a prime-boost regimen is a potential immunization for HIV infection, inducing HIVgag-specific cellular, humoral and mucosal immune responses.
Collapse
|
15
|
Chen WT, Chen T, Cheng CS, Huang WY, Wang X, Yin HS. Circular permutation of chicken interleukin-1 beta enhances its thermostability. Chem Commun (Camb) 2014; 50:4248-50. [DOI: 10.1039/c3cc48313d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Haughney SL, Petersen LK, Schoofs AD, Ramer-Tait AE, King JD, Briles DE, Wannemuehler MJ, Narasimhan B. Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles. Acta Biomater 2013; 9:8262-71. [PMID: 23774257 DOI: 10.1016/j.actbio.2013.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 02/03/2023]
Abstract
Pneumococcal surface protein A (PspA) is a choline-binding protein which is a virulence factor found on the surface of all Streptococcus pneumoniae strains. Vaccination with PspA has been shown to be protective against a lethal challenge with S. pneumoniae, making it a promising immunogen for use in vaccines. Herein the design of a PspA-based subunit vaccine using polyanhydride nanoparticles as a delivery platform is described. Nanoparticles based on sebacic acid (SA), 1,6-bis-(p-carboxyphenoxy)hexane (CPH) and 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), specifically 50:50 CPTEG:CPH and 20:80 CPH:SA, were used to encapsulate and release PspA. The protein released from the nanoparticle formulations retained its primary and secondary structure as well as its antigenicity. The released PspA was also biologically functional based on its ability to bind to apolactoferrin and prevent its bactericidal activity against Escherichia coli. When the PspA nanoparticle formulations were administered subcutaneously to mice they elicited a high titer and high avidity anti-PspA antibody response. Together these studies provide a framework for the rational design of a vaccine against S. pneumoniae based on polyanhydride nanoparticles.
Collapse
|
17
|
García-Arévalo C, Bermejo-Martín JF, Rico L, Iglesias V, Martín L, Rodríguez-Cabello JC, Arias FJ. Immunomodulatory Nanoparticles from Elastin-Like Recombinamers: Single-Molecules for Tuberculosis Vaccine Development. Mol Pharm 2013; 10:586-97. [DOI: 10.1021/mp300325v] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carmen García-Arévalo
- Bioforge Group, University of Valladolid, CIBER-BBN, Paseo de Belén
11, 47011 Valladolid, Spain
| | - Jesús F. Bermejo-Martín
- Infection and Immunity Medical Research Unit (IMI), Microbiology
Department, Hospital Clínico Universitario-IECSCYL, Ramón y Cajal 3, 47005 Valladolid, Spain
| | - Lucia Rico
- Infection and Immunity Medical Research Unit (IMI), Microbiology
Department, Hospital Clínico Universitario-IECSCYL, Ramón y Cajal 3, 47005 Valladolid, Spain
| | - Verónica Iglesias
- Infection and Immunity Medical Research Unit (IMI), Microbiology
Department, Hospital Clínico Universitario-IECSCYL, Ramón y Cajal 3, 47005 Valladolid, Spain
| | - Laura Martín
- Bioforge Group, University of Valladolid, CIBER-BBN, Paseo de Belén
11, 47011 Valladolid, Spain
| | | | - F. Javier Arias
- Bioforge Group, University of Valladolid, CIBER-BBN, Paseo de Belén
11, 47011 Valladolid, Spain
| |
Collapse
|
18
|
Gwinn WM, Johnson BT, Kirwan SM, Sobel AE, Abraham SN, Gunn MD, Staats HF. A comparison of non-toxin vaccine adjuvants for their ability to enhance the immunogenicity of nasally-administered anthrax recombinant protective antigen. Vaccine 2013; 31:1480-9. [PMID: 23352329 DOI: 10.1016/j.vaccine.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/19/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Development of nasal immunization for human use is hindered by the lack of acceptable adjuvants. Although CT is an effective adjuvant, its toxicity will likely prevent its use in nasal vaccines. This study compared non-toxin adjuvants to CT for their ability to induce protective antibody responses with nasal immunization. C3H/HeN and C57BL/6 mice were immunized with rPA formulated with the following adjuvants: CT, IL-1α, LPS, CpG, Pam3CSK4, 3M-019, resiquimod/R848 or c48/80. Serum and nasal wash cytokine concentrations were monitored 6h post-vaccination as biomarkers for acute activation of the innate immune system. Not all of the adjuvants induced significant changes in innate serum or nasal wash cytokines, but when changes were observed, the cytokine signatures were unique for each adjuvant. All adjuvants except Pam3CSK4 induced significantly increased anti-rPA serum IgG titers in both strains of mice, while only IL-1α, c48/80 and CpG enhanced mucosal anti-rPA IgA. Pam3CSK4 was the only adjuvant unable to enhance the induction of serum LeTx-neutralizing antibodies in C3H/HeN mice while c48/80 was the only adjuvant to induce increased serum LeTx-neutralizing antibodies in C57BL/6 mice. Only CT enhanced total serum IgE in C3H/HeN mice while IL-1α enhanced total serum IgE in C57BL/6 mice. The adjuvant influenced antigen-specific serum IgG subclass and T cell cytokine profiles, but these responses did not correlate with the induction of LeTx-neutralizing activity. Our results demonstrate the induction of diverse innate and adaptive immune responses by non-toxin nasal vaccine adjuvants that lead to protective humoral immunity comparable to CT and that these responses may be influenced by the host strain.
Collapse
Affiliation(s)
- William M Gwinn
- Duke University Medical Center, Department of Pathology, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Thompson AL, Johnson BT, Sempowski GD, Gunn MD, Hou B, DeFranco AL, Staats HF. Maximal adjuvant activity of nasally delivered IL-1α requires adjuvant-responsive CD11c(+) cells and does not correlate with adjuvant-induced in vivo cytokine production. THE JOURNAL OF IMMUNOLOGY 2012; 188:2834-46. [PMID: 22345651 DOI: 10.4049/jimmunol.1100254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IL-1 has been shown to have strong mucosal adjuvant activities, but little is known about its mechanism of action. We vaccinated IL-1R1 bone marrow (BM) chimeric mice to determine whether IL-1R1 expression on stromal cells or hematopoietic cells was sufficient for the maximal adjuvant activity of nasally delivered IL-1α as determined by the acute induction of cytokine responses and induction of Bacillus anthracis lethal factor (LF)-specific adaptive immunity. Cytokine and chemokine responses induced by vaccination with IL-1α were predominantly derived from the stromal cell compartment and included G-CSF, IL-6, IL-13, MCP-1, and keratinocyte chemoattractant. Nasal vaccination of Il1r1(-/-) (knock-out [KO]) mice given wild-type (WT) BM (WT→KO) and WT→WT mice with LF + IL-1α induced maximal adaptive immune responses, whereas vaccination of WT mice given Il1r1(-/-) BM (KO→WT) resulted in significantly decreased production of LF-specific serum IgG, IgG subclasses, lethal toxin-neutralizing Abs, and mucosal IgA compared with WT→KO and WT→WT mice (p < 0.05). IL-1α adjuvant activity was not dependent on mast cells. However, the ability of IL-1α to induce serum LF-specific IgG2c and lethal toxin-neutralizing Abs was significantly impaired in CD11c-Myd88(-/-) mice when compared with WT mice (p < 0.05). Our results suggest that CD11c(+) cells must be directly activated by nasally administered IL-1α for maximal adjuvant activity and that, although stromal cells are required for maximal adjuvant-induced cytokine production, the adjuvant-induced stromal cell cytokine responses are not required for effective induction of adaptive immunity.
Collapse
Affiliation(s)
- Afton L Thompson
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang SH, Kirwan SM, Abraham SN, Staats HF, Hickey AJ. Stable dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci 2012; 101:31-47. [PMID: 21905034 PMCID: PMC3725471 DOI: 10.1002/jps.22742] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 11/12/2022]
Abstract
There is a current biodefense interest in protection against anthrax. Here, we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by recombinant protective antigen (rPA) delivered intranasally with a novel mucosal adjuvant, a mast cell activator compound 48/80 (C48/80). The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D(50) = 25 μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by circular dichroism and attenuated total reflectance-Fourier transform infrared spectroscopy, whereas functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unit-dose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over 2 years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by intramuscular immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine or an attractive vaccine platform for other mucosally transmitted diseases.
Collapse
Affiliation(s)
- Sheena H. Wang
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
| | - Shaun M. Kirwan
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Herman F. Staats
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anthony J. Hickey
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
| |
Collapse
|
22
|
Transferrin conjugation confers mucosal molecular targeting to a model HIV-1 trimeric gp140 vaccine antigen. J Control Release 2011; 158:240-9. [PMID: 22119743 PMCID: PMC3314955 DOI: 10.1016/j.jconrel.2011.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 12/30/2022]
Abstract
The generation of effective immune responses by mucosal vaccination without the use of inflammatory adjuvants, that compromise the epithelial barrier and recruit new cellular targets, is a key goal of vaccines designed to protect against sexually acquired pathogens. In the present study we use a model HIV antigen (CN54gp140) conjugated to transferrin (Tf) and evaluate the ability of the natural transferrin receptor CD71 to modulate immunity. We show that the conjugated transferrin retained high affinity for its receptor and that the conjugate was specifically transported across an epithelial barrier, co-localizing with MHC Class II+ cells in the sub-mucosal stroma. Vaccination studies in mice revealed that the Tf-gp140 conjugate elicited high titres of CN54gp140-specific serum antibodies, equivalent to a systemic vaccination, when conjugate was applied topically to the nasal mucosae whereas gp140 alone was poorly immunogenic. Moreover, the Tf-gp140 conjugate elicited both IgG and IgA responses and significantly higher gp140-specific IgA titre in the female genital tract than unconjugated antigen. These responses were achieved after mucosal application of the conjugated protein alone, in the absence of any pro-inflammatory adjuvant and suggest a potentially useful and novel molecular targeting approach, delivering a vaccine cargo to directly elicit or enhance pathogen-specific mucosal immunity.
Collapse
|
23
|
Thompson AL, Staats HF. Cytokines: the future of intranasal vaccine adjuvants. Clin Dev Immunol 2011; 2011:289597. [PMID: 21826181 PMCID: PMC3150188 DOI: 10.1155/2011/289597] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/22/2011] [Indexed: 01/09/2023]
Abstract
Due to its potential as an effective, needle-free route of immunization for use with subunit vaccines, nasal immunization continues to be evaluated as a route of immunization in both research and clinical studies. However, as with other vaccination routes, subunit vaccines often require the addition of adjuvants to induce potent immune responses. Unfortunately, many commonly used experimental vaccine adjuvants, such as cholera toxin and E. coli heat-labile toxin, are too toxic for use in humans. Because new adjuvants are needed, cytokines have been evaluated for their ability to provide effective adjuvant activity when delivered by the nasal route in both animal models and in limited human studies. It is the purpose of this paper to discuss the potential of cytokines as nasal vaccine adjuvants.
Collapse
Affiliation(s)
- Afton L. Thompson
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, NC 27710, USA
| | - Herman F. Staats
- Department of Pathology, Duke University Medical Center, P.O. Box 3712, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
24
|
Zhu W, Chen CJ, Thomas CE, Anderson JE, Jerse AE, Sparling PF. Vaccines for gonorrhea: can we rise to the challenge? Front Microbiol 2011; 2:124. [PMID: 21687431 PMCID: PMC3109613 DOI: 10.3389/fmicb.2011.00124] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022] Open
Abstract
Immune responses to the gonococcus after natural infection ordinarily result in little immunity to reinfection, due to antigenic variation of the gonococcus, and redirection or suppression of immune responses. Brinton and colleagues demonstrated that parenteral immunization of male human volunteers with a purified pilus vaccine gave partial protection against infection by the homologous strain. However, the vaccine failed in a clinical trial. Recent vaccine development efforts have focused on the female mouse model of genital gonococcal infection. Here we discuss the state of the field, including our unpublished data regarding efficacy in the mouse model of either viral replicon particle (VRP) vaccines, or outer membrane vesicle (OMV) vaccines. The OMV vaccines failed, despite excellent serum and mucosal antibody responses. Protection after a regimen consisting of a PorB-VRP prime plus recombinant PorB boost was correlated with apparent Th1, but not with antibody, responses. Protection probably was due to powerful adjuvant effects of the VRP vector. New tools including novel transgenic mice expressing human genes required for gonococcal infection should enable future research. Surrogates for immunity are needed. Increasing antimicrobial resistance trends among gonococci makes development of a vaccine more urgent.
Collapse
Affiliation(s)
- Weiyan Zhu
- Department of Medicine, University of North Carolina Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
25
|
Staats HF, Fielhauer JR, Thompson AL, Tripp AA, Sobel AE, Maddaloni M, Abraham SN, Pascual DW. Mucosal targeting of a BoNT/A subunit vaccine adjuvanted with a mast cell activator enhances induction of BoNT/A neutralizing antibodies in rabbits. PLoS One 2011; 6:e16532. [PMID: 21304600 PMCID: PMC3029387 DOI: 10.1371/journal.pone.0016532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/17/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We previously reported that the immunogenicity of Hcβtre, a botulinum neurotoxin A (BoNT/A) immunogen, was enhanced by fusion to an epithelial cell binding domain, Ad2F, when nasally delivered to mice with cholera toxin (CT). This study was performed to determine if Ad2F would enhance the nasal immunogenicity of Hcβtre in rabbits, an animal model with a nasal cavity anatomy similar to humans. Since CT is not safe for human use, we also tested the adjuvant activity of compound 48/80 (C48/80), a mast cell activating compound previously determined to safely exhibit nasal adjuvant activity in mice. METHODS New Zealand White or Dutch Belted rabbits were nasally immunized with Hcβtre or Hcβtre-Ad2F alone or combined with CT or C48/80, and serum samples were tested for the presence of Hcβtre-specific binding (ELISA) or BoNT/A neutralizing antibodies. RESULTS Hcβtre-Ad2F nasally administered with CT induced serum anti-Hcβtre IgG ELISA and BoNT/A neutralizing antibody titers greater than those induced by Hcβtre + CT. C48/80 provided significant nasal adjuvant activity and induced BoNT/A-neutralizing antibodies similar to those induced by CT. CONCLUSIONS Ad2F enhanced the nasal immunogenicity of Hcβtre, and the mast cell activator C48/80 was an effective adjuvant for nasal immunization in rabbits, an animal model with a nasal cavity anatomy similar to that in humans.
Collapse
Affiliation(s)
- Herman F Staats
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jesus S, Borges O. Recent Developments in the Nasal Immunization against Anthrax. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/wjv.2011.13008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
|