1
|
Kalamvoki M, Norris V. A Defective Viral Particle Approach to COVID-19. Cells 2022; 11:302. [PMID: 35053418 PMCID: PMC8774189 DOI: 10.3390/cells11020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 has caused a pandemic resulting in millions of deaths worldwide. While multiple vaccines have been developed, insufficient vaccination combined with adaptive mutations create uncertainty for the future. Here, we discuss novel strategies to control COVID-19 relying on Defective Interfering Particles (DIPs) and related particles that arise naturally during an infection. Our intention is to encourage and to provide the basis for the implementation of such strategies by multi-disciplinary teams. We therefore provide an overview of SARS-CoV-2 for a multi-disciplinary readership that is specifically tailored to these strategies, we identify potential targets based on the current knowledge of the properties and functions of coronaviruses, and we propose specific strategies to engineer DIPs and other interfering or therapeutic nanoparticles.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France;
| |
Collapse
|
2
|
Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2015; 240:165-190. [PMID: 26686079 DOI: 10.1016/j.jconrel.2015.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Gene therapy is becoming an influential part of the rapidly increasing armamentarium of biopharmaceuticals for improving health and combating diseases. Currently, three gene therapy treatments are approved by regulatory agencies. While these treatments utilize viral vectors, non-viral alternative technologies are also being developed to improve the safety profile and manufacturability of gene carrier formulations. We present an overview of gene-based therapies focusing on non-viral gene delivery systems and the genetic therapeutic tools that will further revolutionize medical treatment with primary focus on the range and development of non-invasive delivery systems for dermal, transdermal, ocular and pulmonary administrations and perspectives on other administration methods such as intranasal, oral, buccal, vaginal, rectal and otic delivery.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Daniella Calderon
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lokesh Narsineni
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amirreza Rafiee
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
A novel non-integrative single-cycle chimeric HIV lentivector DNA vaccine. Vaccine 2015; 33:2273-2282. [PMID: 25825333 DOI: 10.1016/j.vaccine.2015.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 02/05/2023]
Abstract
Novel HIV vaccine vectors and strategies are needed to control HIV/AIDS epidemic in humans and eradicate the infection. DNA vaccines alone failed to induce immune responses robust enough to control HIV-1. Development of lentivirus-based DNA vaccines deficient for integration and with a limited replication capacity is an innovative and promising approach. This type of vaccine mimics the early stages of virus infection/replication like the live-attenuated viruses but lacks the inconvenient integration and persistence associated with disease. We developed a novel lentivector DNA vaccine "CAL-SHIV-IN(-)" that undergoes a single round of replication in the absence of integration resulting in augmented expression of vaccine antigens in vivo. Vaccine gene expression is under control of the LTRs of a naturally attenuated lentivirus, Caprine arthritis encephalitis virus (CAEV) the natural goat lentivirus. The safety of this vaccine prototype was increased by the removal of the integrase coding sequences from the pol gene. We examined the functional properties of this lentivector DNA in cell culture and the immunogenicity in mouse models. Viral proteins were expressed in transfected cells, assembled into viral particles that were able to transduce once target permissive cells. Unlike the parental replication-competent SHIV-KU2 that was detected in DNA samples from any of the serial passage infected cells, CAL-SHIV-IN(-) DNA was detected only in target cells of the first round of infection, hence demonstrating the single cycle replication of the vaccine. A single dose DNA immunization of humanized NOD/SCID/β2 mice showed a substantial increase of IFN-γ-ELISPOT in splenocytes compared to the former replication and integration defective Δ4SHIV-KU2 DNA vaccine.
Collapse
|
4
|
|
5
|
Chandran PL, Dimitriadis EK, Lisziewicz J, Speransky V, Horkay F. DNA nanoparticles with core-shell morphology. SOFT MATTER 2014; 10:7653-60. [PMID: 25137385 PMCID: PMC4348574 DOI: 10.1039/c4sm00908h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.
Collapse
Affiliation(s)
- Preethi L. Chandran
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD
- Biomedical Engineering and Physical Science Shared Resource, NIBIB, Bldg 13, 13 South Drive, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emilios K. Dimitriadis
- Biomedical Engineering and Physical Science Shared Resource, NIBIB, Bldg 13, 13 South Drive, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Vlad Speransky
- Biomedical Engineering and Physical Science Shared Resource, NIBIB, Bldg 13, 13 South Drive, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ferenc Horkay
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD
| |
Collapse
|
6
|
Smith PL, Tanner H, Dalgleish A. Developments in HIV-1 immunotherapy and therapeutic vaccination. F1000PRIME REPORTS 2014; 6:43. [PMID: 24991420 PMCID: PMC4047951 DOI: 10.12703/p6-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the human immunodeficiency virus (HIV-1) pandemic began, few prophylactic vaccines have reached phase III trials. Only one has shown partial efficacy in preventing HIV-1 infection. The introduction of antiretroviral therapy (ART) has had considerable success in controlling infection and reducing transmission but in so doing has changed the nature of HIV-1 infection for those with access to ART. Access, compliance, and toxicity alongside the emergence of serious non-AIDS morbidity and the sometimes poor immune reconstitution in ART-treated patients have emphasized the need for additional therapies. Such therapy is intended to contribute to control of HIV-1 infection, permit structured treatment interruptions, or even establish a functional cure of permanently suppressed and controlled infection. Both immunotherapy and therapeutic vaccination have the potential to reach these goals. In this review, the latest developments in immunotherapy and therapeutic vaccination are discussed.
Collapse
|
7
|
Tőke ER, Lőrincz O, Csiszovszki Z, Somogyi E, Felföldi G, Molnár L, Szipőcs R, Kolonics A, Malissen B, Lori F, Trocio J, Bakare N, Horkay F, Romani N, Tripp CH, Stoitzner P, Lisziewicz J. Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Ther 2014; 21:566-74. [PMID: 24694539 DOI: 10.1038/gt.2014.29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/19/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
Abstract
There is no clinically available cancer immunotherapy that exploits Langerhans cells (LCs), the epidermal precursors of dendritic cells (DCs) that are the natural agent of antigen delivery. We developed a DNA formulation with a polymer and obtained synthetic 'pathogen-like' nanoparticles that preferentially targeted LCs in epidermal cultures. These nanoparticles applied topically under a patch-elicited robust immune responses in human subjects. To demonstrate the mechanism of action of this novel vaccination strategy in live animals, we assembled a high-resolution two-photon laser scanning-microscope. Nanoparticles applied on the native skin poorly penetrated and poorly induced LC motility. The combination of nanoparticle administration and skin treatment was essential both for efficient loading the vaccine into the epidermis and for potent activation of the LCs to migrate into the lymph nodes. LCs in the epidermis picked up nanoparticles and accumulated them in the nuclear region demonstrating an effective nuclear DNA delivery in vivo. Tissue distribution studies revealed that the majority of the DNA was targeted to the lymph nodes. Preclinical toxicity of the LC-targeting DNA vaccine was limited to mild and transient local erythema caused by the skin treatment. This novel, clinically proven LC-targeting DNA vaccine platform technology broadens the options on DC-targeting vaccines to generate therapeutic immunity against cancer.
Collapse
Affiliation(s)
- E R Tőke
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | - O Lőrincz
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | | | - E Somogyi
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | - G Felföldi
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | - L Molnár
- Genetic Immunity Kft, H-1045 Budapest, Hungary
| | - R Szipőcs
- 1] Wigner RCP of HAS, H-1121 Budapest, Hungary [2] R&D Ultrafast Lasers Ltd, H-1539 Budapest, Hungary
| | - A Kolonics
- 1] Wigner RCP of HAS, H-1121 Budapest, Hungary [2] R&D Ultrafast Lasers Ltd, H-1539 Budapest, Hungary
| | - B Malissen
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix Marseille Université, Marseille, France
| | - F Lori
- Research Institute for Genetic and Human Therapy (RIGHT), Bethesda, MD, USA
| | - J Trocio
- Research Institute for Genetic and Human Therapy (RIGHT), Bethesda, MD, USA
| | - N Bakare
- Research Institute for Genetic and Human Therapy (RIGHT), Bethesda, MD, USA
| | - F Horkay
- Section on Tissue Biophysics and Biomimetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - N Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - C H Tripp
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - P Stoitzner
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
8
|
Safety, tolerability, and immunogenicity of repeated doses of dermavir, a candidate therapeutic HIV vaccine, in HIV-infected patients receiving combination antiretroviral therapy: results of the ACTG 5176 trial. J Acquir Immune Defic Syndr 2013; 64:351-9. [PMID: 24169120 DOI: 10.1097/qai.0b013e3182a99590] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV-specific cellular immune responses are associated with control of viremia and delayed disease progression. An effective therapeutic vaccine could mimic these effects and reduce the need for continued antiretroviral therapy. DermaVir, a topically administered plasmid DNA-nanomedicine expressing HIV (CladeB) virus-like particles consisting of 15 antigens, induces predominantly central memory T-cell responses. METHODS Treated HIV-infected adults (HIV RNA <50 and CD4 >350) were randomized to placebo or escalating DermaVir doses (0.1 or 0.4 mg of plasmid DNA at weeks 1, 7, and 13 in the low- and intermediate-dose groups and 0.8 mg at weeks 0, 1, 6, 7, 12, and 13 in the high-dose group), n = 5-6 evaluable subjects per group. Immunogenicity was assessed by a 12-day cultured interferon-γ enzyme-linked immunosorbent spot assay at baseline and at weeks 9, 17, and 37 using 1 Tat/Rev and 3 overlapping Gag peptide pools (p17, p24, and p15). RESULTS Groups were comparable at baseline. The study intervention was well tolerated, without dose-limiting toxicities. Most responses were highest at week 17 (4 weeks after last vaccination) when Gag p24 responses were significantly greater among intermediate-dose group compared with control subjects [median (IQR): 67,600 (5633-74,368) versus 1194 (9-1667)] net spot-forming units per million cells, P = 0.032. In the intermediate-dose group, there was also a marginal Gag p15 response increase from baseline to week 17 [2859 (1867-56,933), P = 0.06], and this change was significantly greater than in the placebo group [0 (-713 to 297), P = 0.016]. CONCLUSIONS DermaVir administration was associated with a trend toward greater HIV-specific, predominantly central memory T-cell responses. The intermediate DermaVir dose tended to show the greatest immunogenicity, consistent with previous studies in different HIV-infected patient populations.
Collapse
|
9
|
Buonaguro L, Tagliamonte M, Visciano ML, Tornesello ML, Buonaguro FM. Developments in virus-like particle-based vaccines for HIV. Expert Rev Vaccines 2013; 12:119-127. [PMID: 23414404 DOI: 10.1586/erv.12.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Virus-like particles (VLPs) hold great promise for the development of effective and affordable vaccines. VLPs, indeed, are suitable for presentation and efficient delivery to antigen-presenting cells of linear as well as conformational antigens. This will ultimately result in a crosspresentation with both MHC class I and II molecules to prime CD4(+) T-helper and CD8(+) cytotoxic T cells. This review describes an update on the development and use of VLPs as vaccine approaches for HIV.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Department of Experimental Oncology, Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori 'Fond Pascale', Via Mariano Semmola 142, 80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
10
|
Lisziewicz J, Tőke ER. Nanomedicine applications towards the cure of HIV. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:28-38. [DOI: 10.1016/j.nano.2012.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
11
|
Lisziewicz J, Bakare N, Calarota SA, Bánhegyi D, Szlávik J, Ujhelyi E, Tőke ER, Molnár L, Lisziewicz Z, Autran B, Lori F. Single DermaVir immunization: dose-dependent expansion of precursor/memory T cells against all HIV antigens in HIV-1 infected individuals. PLoS One 2012; 7:e35416. [PMID: 22590502 PMCID: PMC3348904 DOI: 10.1371/journal.pone.0035416] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/14/2012] [Indexed: 11/25/2022] Open
Abstract
Background The GIHU004 study was designed to evaluate the safety and immunogenicity of three doses of DermaVir immunization in HIV-infected subjects on fully suppressive combination antiretroviral therapy (cART). Methodology/Principal Findings This first-in-human dose escalation study was conducted with three topical DermaVir doses targeted to epidermal Langerhans cells to express fifteen HIV antigens in draining lymph nodes: 0.1 mg DNA targeted to two, 0.4 mg and 0.8 mg DNA targeted to four lymph nodes. Particularly, in the medium dose cohort 0.1 mg DNA was targeted per draining lymph node via ∼8 million Langerhans cells located in 80 cm2 epidermis area. The 28-days study with 48-week safety follow-up evaluated HIV-specific T cell responses against Gag p17, Gag p24 and Gag p15, Tat and Rev antigens. DermaVir-associated side effects were mild, transient and not dose-dependent. Boosting of HIV-specific effector CD4+ and CD8+ T cells expressing IFN-gamma and IL-2 was detected against several antigens in every subject of the medium dose cohort. The striking result was the dose-dependent expansion of HIV-specific precursor/memory T cells with high proliferation capacity. In low, medium and high dose cohorts this HIV-specific T cell population increased by 325-, 136,202 and 50,759 counts after 4 weeks, and by 3,899, 9,878 and 18,382 counts after one year, respectively, compared to baseline. Conclusions/Significance Single immunization with the DermaVir candidate therapeutic vaccine was safe and immunogenic in HIV-infected individuals. Based on the potent induction of Gag, Tat and Rev-specific memory T cells, especially in the medium dose cohort, we speculate that DermaVir boost T cell responses specific to all the 15 HIV antigens expressed from the single DNA. For durable immune reactivity repeated DermaVir immunization might be required since the frequency of DermaVir-boosted HIV-specific memory T cells decreased during the 48-week follow up. Trial Registration ClinicalTrial.gov NCT00712530.
Collapse
Affiliation(s)
- Julianna Lisziewicz
- Genetic Immunity, Budapest, Hungary and Genetic Immunity Inc, Mclean, Virginia, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Di Nunzio F, Félix T, Arhel N, Nisole S, Charneau P, Beignon AS. HIV-derived vectors for therapy and vaccination against HIV. Vaccine 2012; 30:2499-509. [DOI: 10.1016/j.vaccine.2012.01.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/29/2022]
|
13
|
Lori F. DermaVir: a plasmid DNA-based nanomedicine therapeutic vaccine for the treatment of HIV/AIDS. Expert Rev Vaccines 2012; 10:1371-84. [PMID: 21988301 DOI: 10.1586/erv.11.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The HIV global pandemic continues to rage with over 33 million people living with the disease. Although multidrug therapy has improved the prognosis for those infected by the virus, it has not eradicated the infection. Immunological therapies, including therapeutic vaccines, are needed to supplement drug therapy in the search for a 'functional cure' for HIV. DermaVir (Genetic Immunity Kft, Budapest, Hungary and McLean, Virginia, USA), an experimental HIV/AIDS therapeutic vaccine, combines three key elements of rational therapeutic vaccine design: a single plasmid DNA (pDNA) immunogen expressing 15 HIV antigens, a synthetic pDNA nanomedicine formulation and a dendritic cell-targeting topical-vaccine administration. DermaVir's novel mechanism of action, natural transport by epidermal Langerhans cells to the lymph nodes to express the pDNA-encoded HIV antigens and induce precursor/memory T cells with high proliferation capacity, has been consistently demonstrated in mouse, rabbit, primate and human subjects. Safety, immunogenicity and preliminary efficacy of DermaVir have been clinically demonstrated in HIV-infected human subjects. The DermaVir technology platform for dendritic cell-based therapeutic vaccination might offer a new treatment paradigm for cancer and infectious diseases.
Collapse
Affiliation(s)
- Franco Lori
- ViroStatics srl, Viale Umberto I, 07100, Sassari, Italy.
| |
Collapse
|
14
|
Lisziewicz J, Lőrincz O. HIV-specific immunotherapy with DermaVir, the first pDNA/PEIm pathogen-like nanomedicine. EUROPEAN JOURNAL OF NANOMEDICINE 2012. [DOI: 10.1515/ejnm-2012-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Affiliation(s)
- Ruth Duncan
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe, Av. Autopista del Saler 16 E-46012, Valencia, Spain
| | - Rogerio Gaspar
- Nanomedicine & Drug Delivery Systems Group, iMed, Faculty of Pharmacy of the University of Lisbon, Av. Prof Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
16
|
Lőrincz O, Tőke ER, Somogyi E, Horkay F, Chandran PL, Douglas JF, Szebeni J, Lisziewicz J. Structure and biological activity of pathogen-like synthetic nanomedicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:497-506. [PMID: 21839051 DOI: 10.1016/j.nano.2011.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
UNLABELLED Here we characterize the structure, stability and intracellular mode of action of DermaVir nanomedicine that is under clinical development for the treatment of HIV/AIDS. This nanomedicine comprises pathogen-like pDNA/PEIm nanoparticles (NPs) having the structure and function resembling spherical viruses that naturally evolved to deliver nucleic acids to the cells. Atomic force microscopy demonstrated spherical 100 - 200 nm NPs with a smooth polymer surface protecting the pDNA in the core. Optical absorption determined both the NP structural stability and biological activity relevant to their ability to escape from the endosome and release the pDNA at the nucleus. Salt, pH and temperature influence nanomedicine shelf-life and intracellular stability. This approach facilitates the development of diverse polyplex nanomedicines where the delivered pDNA-expressed antigens induce immune responses to kill infected cells. FROM THE CLINICAL EDITOR The authors investigated DermaVir nanomedicine comprised of pathogen-like pDNA/PEIm nanoparticles with structure and function resembling spherical viruses. DermaVir delivery of pDNA expresses antigens that induce immune responses to kill HIV infected cells.
Collapse
|