1
|
Anderson T, Jiang H, Cheallaigh AN, Bengtsson D, Oscarson S, Cairns C, St Michael F, Cox A, Kuttel MM. Formation and immunological evaluation of Moraxella catarrhalis glycoconjugates based on synthetic oligosaccharides. Carbohydr Polym 2024; 332:121928. [PMID: 38431400 DOI: 10.1016/j.carbpol.2024.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.e., without the Lipid A part and containing four or five glucose moieties or four glucose moieties and one Kdo residue, and their subsequent conjugation to a carrier protein via a five‑carbon bifunctional spacer to form glycoconjugates. Immunisation experiments both in mice and rabbits of these gave a good antibody response, being 2-7 times that of pre-immune sera. However, the sera produced only recognized the immunizing glycan immunogens and failed to bind to native LPS or whole bacterial cells. Comparative molecular modelling of three alternative antigens shows that an additional (2 → 4)-linked Kdo residue, not present in the synthetic structures, has a significant impact on the shape and volume of the molecule, with implications for antigen binding and cross-reactivity.
Collapse
Affiliation(s)
- Taigh Anderson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hao Jiang
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Ní Cheallaigh
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dennis Bengtsson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Chantelle Cairns
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Andrew Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
2
|
Zahid A, Wilson JC, Grice ID, Peak IR. Otitis media: recent advances in otitis media vaccine development and model systems. Front Microbiol 2024; 15:1345027. [PMID: 38328427 PMCID: PMC10847372 DOI: 10.3389/fmicb.2024.1345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Otitis media is an inflammatory disorder of the middle ear caused by airways-associated bacterial or viral infections. It is one of the most common childhood infections as globally more than 80% of children are diagnosed with acute otitis media by 3 years of age and it is a common reason for doctor's visits, antibiotics prescriptions, and surgery among children. Otitis media is a multifactorial disease with various genetic, immunologic, infectious, and environmental factors predisposing children to develop ear infections. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most common culprits responsible for acute otitis media. Despite the massive global disease burden, the pathogenesis of otitis media is still unclear and requires extensive future research. Antibiotics are the preferred treatment to cure middle ear infections, however, the antimicrobial resistance rate of common middle ear pathogens has increased considerably over the years. At present, pneumococcal and influenza vaccines are administered as a preventive measure against otitis media, nevertheless, these vaccines are only beneficial in preventing carriage and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an important healthcare burden. The development of multi-species vaccines is an arduous process but is required to reduce the global burden of this disease. Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower the disease burden and provide better protection against otitis media. To study disease pathology the rat, mouse, and chinchilla are commonly used to induce experimental acute otitis media to test new therapeutics, including antibiotics and vaccines. Each of these models has its advantages and disadvantages, yet there is still a need to develop an improved animal model providing a better correlated mechanistic understanding of human middle ear infections, thereby underpinning the development of more effective otitis media therapeutics. This review provides an updated summary of current vaccines against otitis media, various animal models of otitis media, their limitations, and some future insights in this field providing a springboard in the development of new animal models and novel vaccines for otitis media.
Collapse
Affiliation(s)
- Ayesha Zahid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jennifer C. Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
3
|
Gao Y, Lee J, Widmalm G, Im W. Preferred conformations of lipooligosaccharides and oligosaccharides of Moraxella catarrhalis. Glycobiology 2020; 30:86-94. [PMID: 31616921 DOI: 10.1093/glycob/cwz086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
Moraxella catarrhalis (M. catarrhalis) is a pathogenic gram-negative bacterium that causes otitis media and sinusitis in children. Three major serotypes A, B and C are identified to account for approximately 95% of the clinical isolates. Understanding the conformational properties of different serotypes of M. catarrhalis provides insights into antigenic determinants. In this work, all-atom molecular dynamics simulations were conducted for M. catarrhalis lipooligosaccharide (LOS) bilayer systems and oligosaccharides (OS) in water solution to investigate the conformational similarities and differences of three serotypes. For up to 10 neutral monosaccharides in the core part, the conformational ensembles described by the pair-wise root mean square deviation distributions are similar among the three serotypes of either the LOS or OS. At the central β-($1\to4$)-linkage, anti-$\psi$ conformation in conjunction with the gauche-gauche (g-) conformation of the central trisubstituted glucosyl residue is observed as the dominant conformation to sustain the structural characteristics of M. catarrhalis three types, which is further supported by calculated transglycosidic ${}^3{J}_{C,H}\Big({\psi}_H\Big)$ of serotype A in comparison to experimental data. Interestingly, the conformational variability of three serotypes is more restricted for the OS in water solution than that in the LOS bilayer systems. The LOS-LOS interactions in the bilayer systems are responsible for the increased conformational diversity despite of tight packing. Solvent-accessible surface area analysis suggests that a trisaccharide attached to the β-($1\to 6$)-linked sugar in all three serotypes of LOS could be the common epitope and have the possibility to interact with antibodies.
Collapse
Affiliation(s)
- Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China.,Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.,School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
| |
Collapse
|
4
|
Immunological characterisation of truncated lipooligosaccharide-outer membrane protein based conjugate vaccine against Moraxella catarrhalis and nontypeable Haemophilus influenzae. Vaccine 2020; 38:309-317. [PMID: 31668366 DOI: 10.1016/j.vaccine.2019.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 11/21/2022]
Abstract
Moraxella catarrhalis and nontypeable Haemophilus influenzae are important bacterial causes of otitis media in children and respiratory diseases in adults. Lipooligosaccharide (LOS) from M. catarrhalis and outer membrane protein 26 (OMP26) from NTHi are major surface antigens identified as potential vaccine components against these organisms. We previously constructed M. catarrhalis in which LOS is truncated, but contains a structure common to the three known serotypes of M. catarrhalis. OMP26 is known to enhance clearance of NTHi following vaccination in animal models, so was chosen as the carrier protein. In this study, we conjugated wild-type and truncated M. catarrhalis detoxified-LOS to a recombinant modified OMP26, rOMP26VTAL. Vaccination of mice with these conjugates resulted in a significant increase in anti-LOS and anti-rOMP26VTAL IgG levels. Importantly, mouse antisera showed complement-mediated bactericidal activity against all M. catarrhalis serotype A and B strains and a NTHi strain tested. Serotypes A & B make up more than 90% of isolates. These data suggest that the LOS and OMP based conjugate can be used as vaccine components and require further investigation in animal models.
Collapse
|
5
|
Pettigrew MM, Alderson MR, Bakaletz LO, Barenkamp SJ, Hakansson AP, Mason KM, Nokso-Koivisto J, Patel J, Pelton SI, Murphy TF. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2017; 156:S76-S87. [PMID: 28372533 DOI: 10.1177/0194599816632178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective To review the literature on progress regarding (1) effectiveness of vaccines for prevention of otitis media (OM) and (2) development of vaccine antigens for OM bacterial and viral pathogens. Data Sources PubMed database of the National Library of Science. Review Methods We performed literature searches in PubMed for OM pathogens and candidate vaccine antigens, and we restricted the searches to articles in English that were published between July 2011 and June 2015. Panel members reviewed literature in their area of expertise. Conclusions Pneumococcal conjugate vaccines (PCVs) are somewhat effective for the prevention of pneumococcal OM, recurrent OM, OM visits, and tympanostomy tube insertions. Widespread use of PCVs has been associated with shifts in pneumococcal serotypes and bacterial pathogens associated with OM, diminishing PCV effectiveness against AOM. The 10-valent pneumococcal vaccine containing Haemophilus influenzae protein D (PHiD-CV) is effective for pneumococcal OM, but results from studies describing the potential impact on OM due to H influenzae have been inconsistent. Progress in vaccine development for H influenzae, Moraxella catarrhalis, and OM-associated respiratory viruses has been limited. Additional research is needed to extend vaccine protection to additional pneumococcal serotypes and other otopathogens. There are likely to be licensure challenges for protein-based vaccines, and data on correlates of protection for OM vaccine antigens are urgently needed. Implications for Practice OM continues to be a significant health care burden globally. Prevention is preferable to treatment, and vaccine development remains an important goal. As a polymicrobial disease, OM poses significant but not insurmountable challenges for vaccine development.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- 1 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven Connecticut, USA
| | | | - Lauren O Bakaletz
- 3 Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | - Kevin M Mason
- 3 Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | - Janak Patel
- 7 University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephen I Pelton
- 8 Boston University School of Medicine, Boston, Massachusetts, USA
| | - Timothy F Murphy
- 9 University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
6
|
Perez AC, Murphy TF. Potential impact of a Moraxella catarrhalis vaccine in COPD. Vaccine 2017; 37:5551-5558. [PMID: 28185742 DOI: 10.1016/j.vaccine.2016.12.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
Moraxella catarrhalis is the second most common cause of exacerbations in adults with COPD, resulting in enormous morbidity and mortality in this clinical setting. Vaccine development for M. catarrhalis has lagged behind the other two important causes of exacerbations in COPD, nontypeable Haemophilus influenzae and Streptococcus pneumoniae. While no licensed vaccine is currently available for M. catarrhalis, several promising candidate vaccine antigens have been identified and characterized and are close to entering clinical trials. Key steps that are required to advance vaccines for M. catarrhalis along the translational pipeline include standardization of assay systems to assess candidate antigens, identification of a reliable correlate of protection and expansion of partnerships between industry, academia and government to overcome regulatory hurdles. A vaccine to prevent M. catarrhalis infections in COPD would have a major impact in reducing morbidity, mortality and healthcare costs in COPD.
Collapse
Affiliation(s)
- Antonia C Perez
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Department of Microbiology, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
7
|
Abstract
INTRODUCTION Moraxella catarrhalis is a prominent pathogen that causes acute otitis media in children and lower respiratory tract infections in adults, resulting in a significant socioeconomic burden on healthcare systems globally. No vaccine is currently available for M. catarrhalis. Promising M. catarrhalis target antigens have been characterized in animal models and should soon enter human clinical trials. AREAS COVERED This review discusses the detailed features and research status of current candidate target antigens for an M. catarrhalis vaccine. The approaches for assessing M. catarrhalis vaccine efficacy are also discussed. EXPERT OPINION Targeting the key molecules contributing to serum resistance may be a viable strategy to identify effective vaccine targets among M. catarrhalis antigens. Elucidating the role and mechanisms of the serum and mucosal immune responses to M. catarrhalis is significant for vaccine target selection, testing and evaluation. Developing animal models closely simulating M. catarrhalis-caused human respiratory diseases is of great benefit in better understanding pathogenesis and evaluating vaccine efficacy. Carrying out clinical trials will be a landmark in the progress of M. catarrhalis vaccine research. Combined multicomponent vaccines will be a focus of future M. catarrhalis vaccine studies.
Collapse
Affiliation(s)
- Dabin Ren
- a 1 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA +1 585 922 3706 ;
| | - Michael E Pichichero
- b 2 Research Institute, Rochester General Hospital , 1425 Portland Avenue, Rochester, NY, USA
| |
Collapse
|
8
|
Frank M, Collins PM, Peak IR, Grice ID, Wilson JC. An Unusual Carbohydrate Conformation is Evident in Moraxella catarrhalis Oligosaccharides. Molecules 2015; 20:14234-53. [PMID: 26251889 PMCID: PMC6332130 DOI: 10.3390/molecules200814234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 01/28/2023] Open
Abstract
Oligosaccharide structures derived from the lipooligosaccharide of M. catarrhalis show that the highly branched glucose-rich inner core of the oligosaccharide has an altered conformation compared to the most truncated tetra-glucose-Kdo lgt1/4Δ oligosaccharide structure. Addition of one residue each to the (1-4) and (1-6) chains to give the lgt2Δ oligosaccharide is the minimum requirement for this conformational change to occur. Extensive molecular modeling and NMR investigations have shown that the (1-3), (1-4), and (1-6) glycosidic linkages from the central α-d-Glcp have significantly altered conformational preferences between the two structures. For the lgt1/4Δ oligosaccharide the (1-3) and (1-4) linkage populates predominantly the syn minimum on the conformational free energy map and for the (1-6) linkage conformational flexibility is observed, which is supported by 1H-NMR T1 measurements. For the lgt2Δ oligosaccharide the unusual “(1-4)anti-ψ(1-6)gg” conformation, which could be confirmed by long-range NOE signals, is a dominant conformation in which the oligosaccharide is very compact with the terminal α-d-GlcNAc residue folding back towards the center of the molecule leading to an extensive intra-molecular hydrophobic interaction between the terminal residues. Comparing effective H-H distances, which were calculated for conformational sub-ensembles, with the NOE distances revealed that typically multiple conformations could be present without significantly violating the measured NOE restraints. For lgt2Δ the presence of more than one conformation is supported by the NOE data.
Collapse
Affiliation(s)
- Martin Frank
- Biognos AB, Generatorsgatan 1, 41705 Gothenburg, Sweden.
| | - Patrick M Collins
- Institute for Glycomics, Gold Coast Campus, Griffith University, 4222 Queensland, Australia.
| | - Ian R Peak
- Institute for Glycomics and School of Medical Science, Gold Coast Campus, Griffith University, 4222 Queensland, Australia.
| | - I Darren Grice
- Institute for Glycomics and School of Medical Science, Gold Coast Campus, Griffith University, 4222 Queensland, Australia.
| | - Jennifer C Wilson
- Menzies Health Institute and School of Medical Science, Gold Coast Campus, Griffith University, 4222 Queensland, Australia.
| |
Collapse
|
9
|
Augustyniak D, Piekut M, Majkowska-Skrobek G, Skała J. Bactericidal, opsonophagocytic and anti-adhesive effectiveness of cross-reactive antibodies against Moraxella catarrhalis. Pathog Dis 2015; 73:ftu026. [PMID: 25743473 DOI: 10.1093/femspd/ftu026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Moraxella catarrhalis is a human-restricted significant respiratory tract pathogen. The bacteria accounts for 15-20% of cases of otitis media in children and is an important causative agent of infectious exacerbations of chronic obstructive pulmonary disease in adults. The acquisition of new M. catarrhalis strains plays a central role in the pathogenesis of both mentioned disorders. The antibody-dependent immune response to this pathogen is critical for its effective elimination. Thus, the knowledge about the protective threshold of cross-reactive antibodies with defined functionality seems to be important. The complex analysis of broad-spectrum effectiveness of cross-reactive antibodies against M. catarrhalis has never been performed. The goal of the present study was to demonstrate and compare the bactericidal, opsonophagocytic and blocking function of cross-reacting antibodies produced in response to this bacterium or purified outer membrane proteins incorporated in Zwittergent-based micelles. The multivalent immunogens were used in order to better mimic the natural response of the host. The demonstrated broad-spectrum effectiveness of cross-reactive antibodies in pathogen eradication or inhibition strongly indicates that this pool of antibodies by recognition of pivotal shared M. catarrhalis surface epitopes seems to be an essential additional source to control host-microbe interaction.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland;
| | - Monika Piekut
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Grażyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Jacek Skała
- Department of Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
10
|
Molecular mechanisms of moraxella catarrhalis-induced otitis media. Curr Allergy Asthma Rep 2014; 13:512-7. [PMID: 23934577 DOI: 10.1007/s11882-013-0374-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Moraxella catarrhalis is a Gram-negative bacterium, exclusively present in humans and a leading causative agent of otitis media (OM) in children. Most children (80 %) experience at least one episode of OM by their third birthday and half suffer multiple episodes of infection. Over the last 10 years, increased evidence suggests that M. cat possesses multiple virulence factors which can be carried through biologically active outer membrane vesicles (OMVs) that are themselves able to activate host-immune responses. It has also been noted that multiple toll-like receptors are responsible for M. cat recognition. This review is intended to summarize the key findings and progress in recent years of the molecular mechanisms of M. cat-induced otitis media with particular emphasis on adhesion, invasion, and activation of the host immune system, biofilm formation, and vaccine development.
Collapse
|
11
|
Pelton SI, Pettigrew MM, Barenkamp SJ, Godfroid F, Grijalva CG, Leach A, Patel J, Murphy TF, Selak S, Bakaletz LO. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2013; 148:E90-101. [PMID: 23536534 DOI: 10.1177/0194599812466535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To update progress on the effectiveness of vaccine for prevention of acute otitis media (AOM) and identification of promising candidate antigens against Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis. REVIEW METHODS Literature searches were performed in OvidSP and PubMed restricted to articles published between June 2007 and September 2011. Search terms included otitis media, vaccines, vaccine antigens, and each of the otitis pathogens and candidate antigens identified in the ninth conference report. CONCLUSIONS The current report provides further evidence for the effectiveness of pneumococcal conjugate vaccines (PCVs) in the prevention of otitis media. Observational studies demonstrate a greater decline in AOM episodes than reported in clinical efficacy trials. Unmet challenges include extending protection to additional serotypes and additional pathogens, the need to prevent early episodes, the development of correlates of protection for protein antigens, and the need to define where an otitis media vaccine strategy fits with priorities for child health. IMPLICATIONS FOR PRACTICE Acute otitis media continues to be a burden on children and families, especially those who suffer from frequent recurrences. The 7-valent PCV (PCV7) has reduced the burden of disease as well as shifted the pneumococcal serotypes and the distribution of otopathogens currently reported in children with AOM. Antibiotic resistance remains an ongoing challenge. Multiple candidate antigens have demonstrated the necessary requirements of conservation, surface exposure, immunogenicity, and protection in animal models. Further research on the role of each antigen in pathogenesis, in the development of correlates of protection in animal models, and in new adjuvants to elicit responses in the youngest infants is likely to be productive and permit more antigens to move into human clinical trials.
Collapse
Affiliation(s)
- Stephen I Pelton
- Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol 2013; 7:1073-100. [PMID: 22953708 DOI: 10.2217/fmb.12.80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Moraxella catarrhalis is a human-restricted commensal that over the last two decades has developed into an emerging respiratory tract pathogen. The bacterial species is equipped with various adhesins to facilitate its colonization. Successful evasion of the human immune system is a prerequisite for Moraxella infection. This strategy involves induction of an excessive proinflammatory response, intervention of granulocyte recruitment to the infection site, activation of selected pattern recognition receptors and cellular adhesion molecules to counteract the host bacteriolytic attack, as well as, finally, reprogramming of antigen presenting cells. Host immunomodulator molecules are also exploited by Moraxella to aid in resistance against complement killing and host bactericidal molecules. Thus, breaking the basis of Moraxella immune evasion mechanisms is fundamental for future invention of effective therapy in controlling Moraxella infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
13
|
Ulanova M, Tsang R, Altman E. Neglected infectious diseases in Aboriginal communities: Haemophilus influenzae serotype a and Helicobacter pylori. Vaccine 2012; 30:6960-6. [DOI: 10.1016/j.vaccine.2012.09.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
|
14
|
Altman E, Chandan V, Harrison BA, Veloso-Pita R, Li J, KuoLee R, Chen W, Vérez-Bencomo V. Design and immunological properties of Helicobacter pylori glycoconjugates based on a truncated lipopolysaccharide lacking Lewis antigen and comprising an α-1,6-glucan chain. Vaccine 2012; 30:7332-41. [PMID: 22534169 DOI: 10.1016/j.vaccine.2012.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/02/2012] [Accepted: 04/10/2012] [Indexed: 12/16/2022]
Abstract
To investigate the vaccine potential of H. pylori lipopolysaccharide (LPS), truncated LPS of H. pylori strain 26695 HP0826::Kan lacking O-chain polysaccharide and comprising an extended α-1,6-linked glucan chain was conjugated to tetanus toxoid (TT) or bovine serum albumin (BSA). Two approaches were used for delipidation or partial delipidation of H. pylori LPS: (1) mild hydrolysis resulting in delipidated LPS (dLPS) and (2) treatment with anhydrous hydrazine resulting in removal of O-linked fatty acids (LPS-OH). Both LPS-OH and dLPS were covalently linked through a 2-keto-3-deoxy-octulosonic acid (Kdo) residue to a diamino group-containing spacer, followed by conjugation to thiolated TT or BSA to give conjugates LPS-OH-TT, dLPS-BSA and dLPS-TT, respectively. The LPS-OH-TT, dLPS-BSA and dLPS-TT conjugates were immunogenic in both rabbits and mice, inducing strong and specific IgG responses against homologous and heterologous strains of H. pylori. Moreover, the rabbit post-immune sera showed cross-reactivity against clinical isolates of H. pylori in a whole-cell indirect ELISA, which was further confirmed by indirect immunofluorescent microscopy. A tenfold stronger IgG immune response to the immunizing antigen was generated in mice and rabbits that received dLPS-containing conjugate. The post-immune sera of rabbits immunized with LPS-OH-TT, dLPS-BSA or dLPS-TT displayed significant bactericidal activity against mutant and wild-type α-1,6-glucan-expressing strains and selected clinical isolates of H. pylori. Finally, partial protection against H. pylori challenge was demonstrated in mice vaccinated with dLPS-TT conjugate adjuvanted with cholera toxin. In summary, this study shows that glycoconjugates based on delipidated or partially delipidated LPS from H. pylori 26695 HP0826::Kan mutant induce broadly cross-reactive functional antibodies in immunized animals and should be considered for further vaccine development and testing.
Collapse
Affiliation(s)
- Eleonora Altman
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
St. Michael F, Cairns C, Filion AL, Neelamegan D, Lacelle S, Cox AD. Investigating the candidacy of lipopolysaccharide-based glycoconjugates as vaccines to combat Mannheimia haemolytica. Glycoconj J 2011; 28:397-410. [DOI: 10.1007/s10719-011-9339-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 11/25/2022]
|
16
|
Cox AD, St. Michael F, Cairns CM, Lacelle S, Filion AL, Neelamegan D, Wenzel CQ, Horan H, Richards JC. Investigating the potential of conserved inner core oligosaccharide regions of Moraxella catarrhalis lipopolysaccharide as vaccine antigens: accessibility and functional activity of monoclonal antibodies and glycoconjugate derived sera. Glycoconj J 2011; 28:165-82. [DOI: 10.1007/s10719-011-9332-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
|