1
|
Zhyldyz A, Aitakin K, Atabek B, Elmurat J, Rysbek N, Jailobek O, Ahedor B, Otgonsuren D, Mumbi NNM, Guswanto A, Sivakumar T, Yokoyama N. An epidemiological survey of vector-borne pathogens infecting cattle in Kyrgyzstan. Parasitol Int 2023; 97:102791. [PMID: 37544641 DOI: 10.1016/j.parint.2023.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Cattle production is a major contributor to the national economy of Kyrgyzstan. Most cattle in Kyrgyzstan are managed via extensive systems and graze in communal pastures. As a result, infestations with ectoparasites are widespread, implying that various vector-borne diseases might be common in cattle. However, methods to control such infectious diseases are not available in Kyrgyzstan because the epidemiology of vector-borne pathogens (VBPs) infecting cattle remains unclear. The present study was therefore designed to survey Kyrgyz cattle for VBPs. We prepared blood DNA samples from 319 cattle in Kyrgyzstan and screened them with specific PCR assays for detecting Babesia bovis, Babesia bigemina, Babesia naoakii, Theileria annulata, Theileria orientalis, Trypanosoma evansi, Trypanosoma theileri, and Anaplasma marginale infections. Our findings indicated that the surveyed cattle were infected with six of the eight pathogens targeted, with the exceptions being B. naoakii and Try. evansi. The most common pathogen was T. orientalis (84.3%), followed by B. bigemina (47.6%), T. annulata (16.6%), A. marginale (11.6%), Try. theileri (7.2%), and B. bovis (2.5%). Additional screening of the B. bovis- and B. bigemina-negative samples with a Babesia genus-specific 18S rRNA PCR identified two positive samples, and sequencing analysis confirmed that each of them was infected with either Babesia major or Babesia occultans. To the best of our knowledge, this is the first report of B. bovis, B. bigemina, B. occultans, Try. theileri, and A. marginale infections in cattle in Kyrgyzstan. Our findings suggest that cattle in Kyrgyzstan are at high risk of infectious diseases caused by VBPs.
Collapse
Affiliation(s)
- Atambekova Zhyldyz
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Kyrgyz Research Institute of Veterinary Named After A. Duisheev, Togolok Moldo Str. 60, Bishkek 720033, Kyrgyzstan
| | - Kamarli Aitakin
- Kyrgyz Research Institute of Veterinary Named After A. Duisheev, Togolok Moldo Str. 60, Bishkek 720033, Kyrgyzstan
| | - Berdikulov Atabek
- Kyrgyz Research Institute of Veterinary Named After A. Duisheev, Togolok Moldo Str. 60, Bishkek 720033, Kyrgyzstan
| | - Jetigenov Elmurat
- Kyrgyz National Agrarian University Named After. K.I. Scryabin, Mederova Str. 68, Bishkek 720005, Kyrgyzstan
| | - Nurgaziev Rysbek
- Kyrgyz National Agrarian University Named After. K.I. Scryabin, Mederova Str. 68, Bishkek 720005, Kyrgyzstan
| | - Orozov Jailobek
- Kyrgyz Research Institute of Veterinary Named After A. Duisheev, Togolok Moldo Str. 60, Bishkek 720033, Kyrgyzstan
| | - Believe Ahedor
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Davaajav Otgonsuren
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ngigi Noel Muthoni Mumbi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Azirwan Guswanto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; WOAH Reference Laboratories for Bovine Babesiosis and Equine Piroplasmosis, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
2
|
Saaid AA, Salih DA, Elhaj LM, Abdalla MA, Baumann M, Obara I, Ahmed JS, Clausen PH, El Hussein ARM. The protection afforded to cattle immunized with Theileria annulata infected cell line is enhanced by subunit vaccine candidate TaSP. Transbound Emerg Dis 2020; 67 Suppl 1:26-34. [PMID: 32174037 DOI: 10.1111/tbed.13374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 11/27/2022]
Abstract
Tropical theileriosis constraints the development of the dairy industry in the Sudan and vaccination using live attenuated schizont vaccines is considered a promising measure for its control. The present study was carried out to investigate the ability of recombinant T. annulata surface protein (TaSP) to improve the efficacy of the attenuated Atbara cell line in protecting calves against field challenge. To this end, 23 cross-bred (Friesian × Kenana) calves were divided into four groups. Animals in group 1 (n = 5) were left unvaccinated. Group 2 (n = 6) received the Atbara cell line, animals in group 3 (n = 6) were immunized with three doses of TaSP on days 21, 49 and 77, while animals in group 4 (n = 6) received the cell line vaccine on day 0 and three doses of TaSP in Freund's incomplete adjuvant at days 21, 49 and 77. Twenty-eight days after the last TaSP boost, all groups were challenged by exposing them to natural field tick infestation in a region known to be endemic for tropical theileriosis. No thermal reactions, piroplasms or schizonts were observed in the immunized animals following immunization. Upon challenge, all animals showed a range of symptoms of clinical theileriosis with variable degrees of severity. The application of TaSP alone appeared to have no effect in terms of protection. The efficacy of the cell line alone was lower than the 100% level of protection against mortality observed in the group that received the combined cell line vaccine and TaSP, suggesting a synergistic effect of this combination.
Collapse
Affiliation(s)
| | | | - Limia M Elhaj
- Central Veterinary Research Laboratory, Khartoum, Sudan
| | - Mohammed A Abdalla
- Faculty of Veterinary Medicine, Sudan University for Science and Technology, Khartoum North, Sudan
| | - Maximilian Baumann
- Freie Universität Berlin, Institute for Veterinary Epidemiology and Biostatistics, Berlin, Germany
| | - Isaiah Obara
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
| | - Jabbar S Ahmed
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
| | - Peter-Henning Clausen
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany
| | | |
Collapse
|
3
|
Molecular Survey and Genetic Diversity of Babesia spp. and Theileria spp. in Cattle in Gansu Province, China. Acta Parasitol 2020; 65:422-429. [PMID: 32077037 DOI: 10.2478/s11686-020-00179-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/06/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE Babesia spp. and Theileria spp. are tick-borne pathogens of livestock globally. In this study, we investigated the presence and distribution of these pathogens in cattle from 20 locations in 4 Counties of Wuwei City. The aim of the present research was to evaluate the spread of piroplasms, so as to provide the epidemiological information for control piroplasmosis in the region. METHODS The authors provided the molecular data for Babesia spp. and Theileria spp. and analyzed the obtained sequences of the 18S rRNA gene, Tams1 gene and MPSP gene by using the ClustalW program in MEGA version 6.06 software and BLASTn tool of NCBI GenBank database. RESULTS The total infection rates were detected by nPCR with 1.8% for T. orientalis, 3% for T. sinensis, 0.6% for T. annulata, 1.8% for B. motasi and 0.6% for B. bigemina. CONCLUSIONS To the best of our knowledge, this is the first report investigating T. sinensis from cattle by PCR in Wuwei City. In particular, ovine B. motasi has been for the first time detected in cattle in our study and its impact is worth discussing to figure out the potential reasons.
Collapse
|
4
|
Bilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, Pekagirbas M, Ahmed J, Deschermeier C, Langley G, Karagenc T. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis-infected cell line as vaccines against ovine babesiosis. Ticks Tick Borne Dis 2019; 11:101280. [PMID: 31506224 DOI: 10.1016/j.ttbdis.2019.101280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/17/2023]
Abstract
Babesiosis is a disease complex caused by unicellular Babesia parasites and among them, malignant ovine babesiosis caused by B. ovis has a devastating economical impact on the small ruminant industry. The control of disease is mainly based on chemotherapy and preventing animals from tick infestation and to date no vaccine is available against ovine babesiosis. The requirement for vaccination against B. ovis infection in endemically unstable regions is necessary for implementation of effective disease control measures. The aim of the present study was to evaluate the effectiveness of different immunisation protocols against disease in sheep experimentally vaccinated with recombinant B. ovis apical membrane antigen-1 (rBoAMA-1) and/or live, a B. ovis-infected cell line. Sheep were divided into four experimental groups, plus a control group. Animals were immunised either with the B. ovis stabilate, or with rBoAMA-1, or with both rBoAMA-1 and the B. ovis stabilate. Western blots and ELISAs indicated that immunisation with rBoAMA-1 resulted in generation of a specific response against the recombinant protein, but the degree of antibody response did not correlate with the level of induced protection against challenge. The strongest immune response was induced in animals co-immunised with the live B. ovis stabilate plus rBoAMA-1. Both the hematological and parasitological findings indicated that this co-immunisation regimen has vaccine potential to limit losses incurred by ovine babesiosis in endemic countries.
Collapse
Affiliation(s)
- Huseyin Bilgin Bilgic
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Selin Hacilarlioglu
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Serkan Bakirci
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Onur Kose
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey; Burdur Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Parasitology, 15030, Istiklal Yerleskesi, Burdur, Turkey.
| | - Ahmet Hakan Unlu
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey; Van Yuzuncu Yil University, Vocational High School of Gevas, Department of Veterinary Medicine, Programme of Laboratorian and Veterinary Health, 65700, Van, Turkey.
| | - Ayca Aksulu
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Metin Pekagirbas
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| | - Jabbar Ahmed
- Institue for Parasitology and Tropical Veterinary Medicine, Faculty of Veterinary Medicine, Free University of Berlin, Germany.
| | - Christina Deschermeier
- Diagnostics Development Laboratory, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Gordon Langley
- Laboratoire de Biologie Comparative des Apicomplexes, Institut Cochin, Inserm U1016, Cnrs UMR 8104, Faculte de Medecine - Universite Paris Descartes, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France.
| | - Tulin Karagenc
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Parasitology, 09016, Isikli/Aydin, Turkey.
| |
Collapse
|
5
|
Jaramillo Ortiz JM, Paoletta MS, Gravisaco MJ, López Arias LS, Montenegro VN, de la Fournière SAM, Valenzano MN, Guillemi EC, Valentini B, Echaide I, Farber MD, Wilkowsky SE. Immunisation of cattle against Babesia bovis combining a multi-epitope modified vaccinia Ankara virus and a recombinant protein induce strong Th1 cell responses but fails to trigger neutralising antibodies required for protection. Ticks Tick Borne Dis 2019; 10:101270. [PMID: 31445874 DOI: 10.1016/j.ttbdis.2019.101270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/04/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
Protection against the intraerythrocytic protozoan parasite Babesia bovis depends on both strong innate and adaptive immune response, this latter involving the presentation of parasite antigens to CD4+ T-lymphocytes by professional antigen-presenting cells. Secretion of Th1 cytokines by CD4+ T cell is also very important for isotype switching to IgG2, the best opsonising antibody isotype in cattle, to target extracellular parasites and parasite antigens displayed at the erythrocyte surface. In the field of vaccinology, heterologous prime-boost schemes combining protein-adjuvant formulations with a modified vaccinia Ankara vector expressing the same antigen have demonstrated the induction of both humoral and cellular immune responses. It has been previously demonstrated that MVA-infected dendritic cells can present antigens in the context of MHC II and activate CD4+ T cell. These results support the use of the MVA viral vector for a pathogen like Babesia bovis, which only resides within erythrocytes. In this study, 13-15-months-old Holstein-Friesian steers were immunised with a subunit vaccine as a prime and a modified vaccinia Ankara vector as a boost, both expressing a chimeric multi-antigen (rMABbo - rMVA). This antigen includes the immunodominant B and T cell epitopes of three B. bovis proteins: merozoite surface antigen - 2c (MSA - 2c), rhoptry associated protein 1 (RAP - 1) and heat shock protein 20 (HSP20). Responses were compared with the Babesia bovis live attenuated vaccine used in Argentina (R1A). Eleven weeks after the first immunisation, all bovines were challenged by the inoculation of a virulent B. bovis strain. All groups were monitored daily for hyperthermia and reduction of packed cell volume. Both the rMABbo - rMVA and R1A vaccinated animals developed high titters of total IgG antibodies and an antigen-specific Th1 cellular response before and after challenge. However, all rMABbo - rMVA steers showed clinical signs of disease upon challenge. Only the R1A live vaccine group developed an immune response associated with in vitro neutralising antibodies at a level that significantly inhibited the parasite invasion. The lack of protection observed with this recombinant formulation indicates the need to perform further basic and clinical studies in the bovine model in order to achieve the desired effectiveness. This is the first report in which a novel vaccine candidate against Babesia bovis was constructed based on a recombinant and rationally designed viral vector and evaluated in the biological model of the disease.
Collapse
Affiliation(s)
- José Manuel Jaramillo Ortiz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Martina Soledad Paoletta
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Ludmila Sol López Arias
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Valeria Noely Montenegro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Sofía Ana María de la Fournière
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Magalí Nicole Valenzano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Eliana Carolina Guillemi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Beatriz Valentini
- Laboratorio de Inmunología y Parasitología Veterinaria, EEA Rafaela, INTA, RN 34, Km 227, CC 22, 2300, Rafaela, Santa Fe, Argentina
| | - Ignacio Echaide
- Laboratorio de Inmunología y Parasitología Veterinaria, EEA Rafaela, INTA, RN 34, Km 227, CC 22, 2300, Rafaela, Santa Fe, Argentina
| | - Marisa Diana Farber
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Silvina Elizabeth Wilkowsky
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Nene V, Morrison WI. Approaches to vaccination against Theileria parva and Theileria annulata. Parasite Immunol 2016; 38:724-734. [PMID: 27647496 PMCID: PMC5299472 DOI: 10.1111/pim.12388] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022]
Abstract
Despite having different cell tropism, the pathogenesis and immunobiology of the diseases caused by Theileria parva and Theileria annulata are remarkably similar. Live vaccines have been available for both parasites for over 40 years, but although they provide strong protection, practical disadvantages have limited their widespread application. Efforts to develop alternative vaccines using defined parasite antigens have focused on the sporozoite and intracellular schizont stages of the parasites. Experimental vaccination studies using viral vectors expressing T. parva schizont antigens and T. parva and T. annulata sporozoite antigens incorporated in adjuvant have, in each case, demonstrated protection against parasite challenge in a proportion of vaccinated animals. Current work is investigating alternative antigen delivery systems in an attempt to improve the levels of protection. The genome architecture and protein-coding capacity of T. parva and T. annulata are remarkably similar. The major sporozoite surface antigen in both species and most of the schizont antigens are encoded by orthologous genes. The former have been shown to induce species cross-reactive neutralizing antibodies, and comparison of the schizont antigen orthologues has demonstrated that some of them display high levels of sequence conservation. Hence, advances in development of subunit vaccines against one parasite species are likely to be readily applicable to the other.
Collapse
Affiliation(s)
- V Nene
- The International Livestock Research Institute, Nairobi, Kenya
| | - W I Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
7
|
Control of tropical theileriosis (Theileria annulata infection in cattle) in North Africa. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60825-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Genetic diversity and phylogenetic analysis of Tams1 of Theileria annulata isolates from three continents between 2000 and 2012. Cent Eur J Immunol 2014; 39:476-84. [PMID: 26155166 PMCID: PMC4439959 DOI: 10.5114/ceji.2014.47732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/24/2014] [Indexed: 11/17/2022] Open
Abstract
Theileria annulata, which is part of the Theileria sergenti/Theileria buffeli/Theileria orientalis group, preferentially infects cattle and results in high mortality and morbidity in the Mediterranean, Middle East, and Central Asia. The polypeptide Tams1 is an immunodominant major merozoite piroplasm surface antigen of T. annulata that could be used as a marker for epidemiological studies and phylogenetic analysis. In the present study, a total of 155 Tams1 sequences were investigated for genetic diversity and phylogenetic relationships through phylogenetic analysis. Results showed that the Tams1 sequences were divided into two major groups and that distribution for some isolates also exhibited geographic specificity. As targeting polymorphic genes for parasite detection may result in underestimation of infection, polymerase chain reaction (PCR) assay using two different probes targeting tams-1 genes of these two groups can be more credible. In addition, the direction of the spread of the disease was discovered to be from the Mediterranean or the tropical zone to the Eurasian peninsula, Middle East, Southern Asia, and Africa, particularly for Group 2. A similar occurrence was also found between the Ms1 gene of Theileria lestoquardi and the Tams1 gene of T. annulata, which explains cross-immunogenicity to a certain extent. However, no potential glycosylation site in the Tams1 of T. annulata was found in this study, which illustrated that instead of N-glycosylation, other modifications have more significant effects on the immunogenicity of the Tams1 protein.
Collapse
|
9
|
Echebli N, Mhadhbi M, Chaussepied M, Vayssettes C, Di Santo JP, Darghouth MA, Langsley G. Engineering attenuated virulence of a Theileria annulata-infected macrophage. PLoS Negl Trop Dis 2014; 8:e3183. [PMID: 25375322 PMCID: PMC4222746 DOI: 10.1371/journal.pntd.0003183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/12/2014] [Indexed: 11/25/2022] Open
Abstract
Live attenuated vaccines are used to combat tropical theileriosis in North Africa, the Middle East, India, and China. The attenuation process is empirical and occurs only after many months, sometimes years, of in vitro culture of virulent clinical isolates. During this extensive culturing, attenuated lines lose their vaccine potential. To circumvent this we engineered the rapid ablation of the host cell transcription factor c-Jun, and within only 3 weeks the line engineered for loss of c-Jun activation displayed in vitro correlates of attenuation such as loss of adhesion, reduced MMP9 gelatinase activity, and diminished capacity to traverse Matrigel. Specific ablation of a single infected host cell virulence trait (c-Jun) induced a complete failure of Theileria annulata-transformed macrophages to disseminate, whereas virulent macrophages disseminated to the kidneys, spleen, and lungs of Rag2/γC mice. Thus, in this heterologous mouse model loss of c-Jun expression led to ablation of dissemination of T. annulata-infected and transformed macrophages. The generation of Theileria-infected macrophages genetically engineered for ablation of a specific host cell virulence trait now makes possible experimental vaccination of calves to address how loss of macrophage dissemination impacts the disease pathology of tropical theileriosis.
Collapse
Affiliation(s)
- Nadia Echebli
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, Ecole Nationale de Médecine Vétérinaire, Sidi Thabet, Tunisia
| | - Marie Chaussepied
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
| | - Catherine Vayssettes
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
| | - James P. Di Santo
- Innate Immunity Unit, Department of Immunology, Pasteur Institute, Paris, France
- Inserm U688, Pasteur Institute, Paris, France
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, Ecole Nationale de Médecine Vétérinaire, Sidi Thabet, Tunisia
- Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Tunis, Tunisia
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
| |
Collapse
|