1
|
Hioe CE, Liu X, Banin AN, Heindel DW, Klingler J, Rao PG, Luo CC, Jiang X, Pandey S, Ordonez T, Barnette P, Totrov M, Zhu J, Nádas A, Zolla-Pazner S, Upadhyay C, Shen X, Kong XP, Hessell AJ. Vaccination with immune complexes modulates the elicitation of functional antibodies against HIV-1. Front Immunol 2023; 14:1271686. [PMID: 37854587 PMCID: PMC10579950 DOI: 10.3389/fimmu.2023.1271686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Neutralizing antibodies (Abs) are one of the immune components required to protect against viral infections. However, developing vaccines capable of eliciting neutralizing Abs effective against a broad array of HIV-1 isolates has been an arduous challenge. Objective This study sought to test vaccines aimed to induce Abs against neutralizing epitopes at the V1V2 apex of HIV-1 envelope (Env). Methods Four groups of rabbits received a DNA vaccine expressing the V1V2 domain of the CRF01_AE A244 strain on a trimeric 2J9C scaffold (V1V2-2J9C) along with a protein vaccine consisting of an uncleaved prefusion-optimized A244 Env trimer with V3 truncation (UFO-BG.ΔV3) or a V1V2-2J9C protein and their respective immune complexes (ICs). These IC vaccines were made using 2158, a V1V2-specific monoclonal Ab (mAb), which binds the V2i epitope in the underbelly region of V1V2 while allosterically promoting the binding of broadly neutralizing mAb PG9 to its V2 apex epitope in vitro. Results Rabbit groups immunized with the DNA vaccine and uncomplexed or complexed UFO-BG.ΔV3 proteins (DNA/UFO-UC or IC) displayed similar profiles of Env- and V1V2-binding Abs but differed from the rabbits receiving the DNA vaccine and uncomplexed or complexed V1V2-2J9C proteins (DNA/V1V2-UC or IC), which generated more cross-reactive V1V2 Abs without detectable binding to gp120 or gp140 Env. Notably, the DNA/UFO-UC vaccine elicited neutralizing Abs against some heterologous tier 1 and tier 2 viruses from different clades, albeit at low titers and only in a fraction of animals, whereas the DNA/V1V2-UC or IC vaccines did not. In comparison with the DNA/UFO-UC group, the DNA/UFO-IC group showed a trend of higher neutralization against TH023.6 and a greater potency of V1V2-specific Ab-dependent cellular phagocytosis (ADCP) but failed to neutralize heterologous viruses. Conclusion These data demonstrate the capacity of V1V2-2J9C-encoding DNA vaccine in combination with UFO-BG.ΔV3, but not V1V2-2J9C, protein vaccines, to elicit homologous and heterologous neutralizing activities in rabbits. The elicitation of neutralizing and ADCP activities was modulated by delivery of UFO-BG.ΔV3 complexed with V2i mAb 2158.
Collapse
Affiliation(s)
- Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research Service, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Xiaomei Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew N. Banin
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel W. Heindel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priyanka G. Rao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christina C. Luo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Tracy Ordonez
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | | | - Jiang Zhu
- Department of Integrative Structural and Computational Biology and Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Arthur Nádas
- Department of Environment Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaoying Shen
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW This review summarizes recent studies reporting the induction of vaccinal effects by human immunodeficiency virus (HIV-1) antibody therapy. It also puts into perspective preclinical studies that have identified mechanisms involved in the immunomodulatory properties of antiviral antibodies. Finally, it discusses potential therapeutic interventions to enhance host adaptive immune responses in people living with HIV (PLWH) treated with broadly neutralizing antibodies (bNAbs). RECENT FINDINGS Recent studies in promising clinical trials have shown that, in addition to controlling viremia, anti-HIV-1 bNAbs are able to enhance the host's humoral and cellular immune response. Such vaccinal effects, in particular the induction of HIV-1-specific CD8 + T-cell responses, have been observed upon treatment with two potent bNAbs (3BNC117 and 10-1074) alone or in combination with latency-reversing agents (LRA). While these studies reinforce the idea that bNAbs can induce protective immunity, the induction of vaccinal effects is not systematic and might depend on both the virological status of the patient as well as the therapeutic strategy chosen. SUMMARY HIV-1 bNAbs can enhance adaptive host immune responses in PLWH. The challenge now is to exploit these immunomodulatory properties to design optimized therapeutic interventions to promote and enhance the induction of protective immunity against HIV-1 infection during bNAbs therapy.
Collapse
|
3
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Fc-Dependent Immunomodulation Induced by Antiviral Therapeutic Antibodies: New Perspectives for Eliciting Protective Immune Responses. Antibodies (Basel) 2022; 11:antib11030050. [PMID: 35892710 PMCID: PMC9331007 DOI: 10.3390/antib11030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
The multiple mechanisms of action of antiviral monoclonal antibodies (mAbs) have made these molecules a potential therapeutic alternative for treating severe viral infections. In addition to their direct effect on viral propagation, several studies have shown that mAbs are able to enhance the host's adaptive immune response and generate long-lasting protective immunity. Such immunomodulatory effects occur in an Fc-dependent manner and rely on Fc-FcγR interactions. It is noteworthy that several FcγR-expressing cells have been shown to play a key role in enhancing humoral and cellular immune responses (so-called "vaccinal effects") in different experimental settings. This review recalls recent findings concerning the vaccinal effects induced by antiviral mAbs, both in several preclinical animal models and in patients treated with mAbs. It summarizes the main cellular and molecular mechanisms involved in these immunomodulatory properties of antiviral mAbs identified in different pathological contexts. It also describes potential therapeutic interventions to enhance host immune responses that could guide the design of improved mAb-based immunotherapies.
Collapse
|
5
|
Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The Importance of Glycans of Viral and Host Proteins in Enveloped Virus Infection. Front Immunol 2021; 12:638573. [PMID: 33995356 PMCID: PMC8116741 DOI: 10.3389/fimmu.2021.638573] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Animal viruses are parasites of animal cells that have characteristics such as heredity and replication. Viruses can be divided into non-enveloped and enveloped viruses if a lipid bilayer membrane surrounds them or not. All the membrane proteins of enveloped viruses that function in attachment to target cells or membrane fusion are modified by glycosylation. Glycosylation is one of the most common post-translational modifications of proteins and plays an important role in many biological behaviors, such as protein folding and stabilization, virus attachment to target cell receptors and inhibition of antibody neutralization. Glycans of the host receptors can also regulate the attachment of the viruses and then influence the virus entry. With the development of glycosylation research technology, the research and development of novel virus vaccines and antiviral drugs based on glycan have received increasing attention. Here, we review the effects of host glycans and viral proteins on biological behaviors of viruses, and the opportunities for prevention and treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Dongqi Liu
- The Queen's University of Belfast Joint College, China Medical University, Shenyang, China
| | - Yating Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Wenquan Su
- Dalian Medical University, Dalian, China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Weijie Dong
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Immune Complex Vaccine Strategies to Combat HIV-1 and Other Infectious Diseases. Vaccines (Basel) 2021; 9:vaccines9020112. [PMID: 33540685 PMCID: PMC7913084 DOI: 10.3390/vaccines9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 01/16/2023] Open
Abstract
Immune complexes (ICs) made of antibody-bound antigens exhibit immunomodulatory activities exploitable in a vaccination strategy to optimize vaccine efficacy. The modulatory effects of ICs are typically attributed to the Fc fragments of the antibody components, which engage Fc receptors, complement and complement receptors on various immune cells. These Fc-mediated functions facilitate the critical interplay between innate and adaptive immune systems to impact the quality and quantity of the elicited adaptive responses. In addition to the Fc contribution, the Fab fragment also plays an immunoregulation role. The antigen-binding domains of the Fab fragment can bind their specific epitopes at high affinity to sterically occlude these antigenic sites from recognition by other antibodies. Moreover, the Fab-mediated binding has been demonstrated to induce allosteric alterations at nearby or distant antigenic sites. In this review article, we survey published studies to illuminate how the immunomodulatory functions of ICs have been investigated or utilized in a vaccination strategy to fight against an array of infectious pathogens, culminating with IC vaccine designs aimed at preventing HIV-1 infection. In particular, we highlight IC vaccine candidates that exploit Fab-mediated steric and allosteric effects to direct antibody responses away or toward the V1V2 domain, the V3 loop, and other antigenic sites on the HIV-1 envelope gp120 glycoprotein. Like other HIV-1 vaccine approaches, the path for IC-based vaccines to reach the clinic faces major hurdles yet to be overcome; however, investigations into this vaccine strategy have provided insights into the multifaceted activities of antibodies beyond their conventional roles in the host defense against HIV-1 and other microbial pathogens.
Collapse
|
7
|
Zhang XL, Qu H. The Role of Glycosylation in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:219-237. [PMID: 34495538 DOI: 10.1007/978-3-030-70115-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.
Collapse
Affiliation(s)
- Xiao-Lian Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Haoran Qu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The review recalls recent findings regarding the induction of vaccinal effects by HIV-1 broadly neutralizing antibodies (bNAbs) and highlights potential therapeutic strategies to exploit such immunomodulatory properties. RECENT FINDINGS Studies in different animal models have shown that mAbs can generate long-lasting protective immunity. Induction of this vaccinal effect by HIV-1 bNAbs has also been more recently reported in animal models of HIV-1 infection. Notably, bNAbs treatment of macaques infected with the chimeric simian-human immunodeficiency virus (SHIV) improved both humoral and cellular adaptive immune responses that contributed to disease control. Importantly, this concept has been extended to HIV-1-infected patients as enhancement of humoral responses was recently reported in HIV-1 patients treated with bNAbs. Studies aiming at elucidating the mechanisms underlying these immunomodulatory properties of bNAbs have identified a role for immune complexes in shaping immune responses against HIV-1. They also highlight different Fc (fragment crystallizable) region effector functions that might be required for the enhancement of HIV-1 immune responses upon bNAbs treatment. SUMMARY HIV-1 bNAbs can elicit protective adaptive immune responses through mechanisms involving multiple cellular and molecular actors of the immune system. Harnessing these mechanisms will be crucial to achieve protective immunity against HIV-1 infection by bNAbs.
Collapse
|
9
|
Saika K, Kato M, Sanada H, Matsushita S, Matsui M, Handa H, Kawano M. Induction of adaptive immune responses against antigens incorporated within the capsid of simian virus 40. J Gen Virol 2020; 101:853-862. [PMID: 32501197 DOI: 10.1099/jgv.0.001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simian virus 40 (SV40) is a monkey polyomavirus. The capsid structure is icosahedral and comprises VP1 units that measure 45 nm in diameter. Five SV40 VP1 molecules form one pentamer subunit, and a single icosahedral subunit comprises 72 pentamers; a single SV40 VP1 capsid comprises 360 SV40 VP1 molecules. In a previous study, we showed that an influenza A virus matrix protein 1 (M1) CTL epitope inserted within SV40 virus-like particles (VLPs) induced cytotoxic T lymphocytes (CTLs) without the need for an adjuvant. Here, to address whether SV40 VLPs induce adaptive immune responses against VLP-incorporated antigens, we prepared SV40 VLPs containing M1 or chicken ovalbumin (OVA). This was done by fusing M1 or OVA with the carboxyl terminus of SV40 VP2 and co-expressing them with SV40 VP1 in insect cells using a baculovirus vector. Intraperitoneal (i.p.) or intranasal administration of SV40 VLPs incorporating M1 induced the production of CTLs specific for the M1 epitope without the requirement for adjuvant. The production of antibodies against SV40 VLPs was also induced by i.p. administration of SV40 VLPs in the absence of adjuvant. Finally, the administration of SV40 VLPs incorporating OVA induced anti-OVA antibodies in the absence of adjuvant; in addition, the level of antibody production was comparable with that after i.p. administration of OVA plus alum adjuvant. These results suggest that the SV40 capsid incorporating foreign antigens can be used as a vaccine platform to induce adaptive immune responses without the need for adjuvant.
Collapse
Affiliation(s)
- Kikue Saika
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masahiko Kato
- R&I Business Development, Business Strategy Development, Sysmex Corporation, 1-1-2 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hideaki Sanada
- R&I Business Development, Business Strategy Development, Sysmex Corporation, 1-1-2 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Sho Matsushita
- Allergy Center, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.,Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|
10
|
Antibody Responses Elicited by Immunization with BG505 Trimer Immune Complexes. J Virol 2019; 93:JVI.01188-19. [PMID: 31375582 DOI: 10.1128/jvi.01188-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022] Open
Abstract
Immune complex (IC) vaccines have been successfully used to increase immune responses against various pathogens, including HIV-1. Additionally, IC vaccines can induce qualitatively different antibody responses, with distinct antigenic specificities compared to the same antigens used alone. Here we measured the HIV-1-specific antibody responses in female New Zealand White rabbits after immunization with ICs made from BG505 SOSIP.664 trimers (BG505 trimers) and three rabbit monoclonal antibodies (MAbs) with different neutralization profiles. Two of the MAbs were specific for a hole in the glycan shield of the BG505 trimer, while the third, which bound less avidly, was specific for determinants at the gp41-gp120 interface. We found that immunization with one of the glycan-hole-specific ICs resulted in lower levels of trimer-binding antibodies compared to vaccination with the uncomplexed trimer, and that ICs made using either of the glycan-hole-specific MAbs resulted in lower rates of anti-trimer antibody decay. We concluded that ICs based on MAbs that bound to the immunodominant glycan hole epitope likely diverted antibody responses, to some extent, away from this site and to other regions of the trimer. However, this outcome was not accompanied by a widening of the breadth or an increase in the potency of neutralizing antibody responses compared with uncomplexed trimers.IMPORTANCE Immunodominant epitopes may suppress immune responses to more desirable determinants, such as those that elicit potentially protective neutralizing antibody responses. To overcome this problem, we attempted to mask immunodominant glycan holes by immunizing rabbits with ICs consisting of the BG505 SOSIP.664 gp140 trimer and MAbs that targeted the glycan holes. We found that IC vaccination likely diverted antibody responses, to some extent, away from the glycan holes and toward other regions of the trimer. IC vaccination resulted in slower decay of HIV-1-specific antibodies than did immunization with uncomplexed trimer. We did not observe a widening of the breadth or an increase in the potency of neutralizing antibody responses compared to uncomplexed trimers. Our results suggest that selective epitope dampening of BG505 trimers by ICs is rather ineffective. However, IC vaccination may represent a novel means of increasing the duration of vaccine-induced antibody responses.
Collapse
|
11
|
Urbanowicz RA, Wang R, Schiel JE, Keck ZY, Kerzic MC, Lau P, Rangarajan S, Garagusi KJ, Tan L, Guest JD, Ball JK, Pierce BG, Mariuzza RA, Foung SKH, Fuerst TR. Antigenicity and Immunogenicity of Differentially Glycosylated Hepatitis C Virus E2 Envelope Proteins Expressed in Mammalian and Insect Cells. J Virol 2019; 93:e01403-18. [PMID: 30651366 PMCID: PMC6430559 DOI: 10.1128/jvi.01403-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
The development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic, and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex- and high-mannose-type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose-type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A to E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than did HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes.IMPORTANCE The development of a vaccine for hepatitis C virus (HCV) remains a global health challenge. A major challenge for vaccine development is focusing the immune response on conserved regions of the HCV envelope protein, E2, capable of eliciting neutralizing antibodies. Modification of E2 by glycosylation might influence the immunogenicity of E2. Accordingly, we performed molecular and immunogenic comparisons of E2 produced in mammalian and insect cells. Mass spectrometry demonstrated that the predicted glycosylation sites were utilized in both mammalian and insect cell E2, although the glycan types in insect cell E2 were smaller and less complex. Mouse immunogenicity studies revealed similar polyclonal antibody responses. However, insect cell E2 induced stronger neutralizing antibody responses against the homologous isolate used in the vaccine, albeit the two proteins elicited comparable neutralization titers against heterologous isolates. A more productive approach for vaccine development may be complete deletion of specific glycans in the E2 protein.
Collapse
Affiliation(s)
- Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, United Kingdom
| | - Ruixue Wang
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - John E Schiel
- University of Maryland Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, Maryland, USA
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa C Kerzic
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Sneha Rangarajan
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kyle J Garagusi
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Lei Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Johnathan D Guest
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, United Kingdom
| | - Brian G Pierce
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas R Fuerst
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
12
|
Hioe CE, Kumar R, Upadhyay C, Jan M, Fox A, Itri V, Peachman KK, Rao M, Liu L, Lo NC, Tuen M, Jiang X, Kong XP, Zolla-Pazner S. Modulation of Antibody Responses to the V1V2 and V3 Regions of HIV-1 Envelope by Immune Complex Vaccines. Front Immunol 2018; 9:2441. [PMID: 30416503 PMCID: PMC6212562 DOI: 10.3389/fimmu.2018.02441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Prophylactic HIV vaccines must elicit antibodies (Abs) against the virus envelope glycoproteins (Env) to effectively prevent HIV infection. We investigated a vaccine platform that utilizes immune complexes made of Env proteins gp120 and monoclonal Abs (mAbs) against different gp120 epitopes. We previously observed alterations in V3 antigenicity upon formation of certain gp120/mAb complexes and demonstrated the ability of these complexes to modulate the elicitation of V3 Ab responses. However, the effects on the V1V2 domain, an important target for Abs that correlate with vaccine-induced protection against HIV, have not been studied, nor have immune complex vaccines made with non-B subtype Env. This study compared subtypes B (JRFL) and CRF_01.AE (A244) Env gp120 proteins in complex with selected gp120-specific mAbs. Allosteric and antigenic changes were detected on these immune complexes, indicating that gp120/mAb interaction induces alterations on the Env surface that may modify the Env immunogenic properties. To evaluate this idea, mice were immunized with gp120/mAb complexes or their uncomplexed gp120 counterparts. The overall serum IgG titers elicited against gp120 were comparable, but a marked skewing toward V1V2 or V3 was evident and dependent on the gp120 strain and the specificity of the mAb used to form the complexes. Compared with uncomplexed gp120JRFL, gp120JRFL complexed with CD4bs or V1V2 mAbs, but not with C2 or V3 mAbs, elicited V3 Abs of greater titers and breadth, and Abs more capable of neutralizing tier 1 virus. Epitope mapping revealed a shift to a more conserved site in the V3 crown. However, the complexes did not enhance V1V2 Ab response, and the elicited V1V2 Abs were not cross-reactive. This profile contrasts with Ab responses to gp120A244/mAb complexes. Notably, gp120A244/mAb complexes induced higher levels of V1V2 Abs with some cross-reactivity, while also stimulating weak or strain-specific V3 Abs. Sera from gp120A244/mAb complex-immunized animals displayed no measurable virus neutralization but did mediate Ab-dependent cellular phagocytosis, albeit at levels similar to that induced by gp120A244 alone. These data indicate the potential utility of immune complexes as vaccines to shape Ab responses toward or away from Env sites of interest.
Collapse
Affiliation(s)
- Catarina E Hioe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,James J. Peters VA Medical Center, Bronx, NY, United States
| | - Rajnish Kumar
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,James J. Peters VA Medical Center, Bronx, NY, United States
| | - Chitra Upadhyay
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,James J. Peters VA Medical Center, Bronx, NY, United States
| | - Muzafar Jan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alisa Fox
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vincenza Itri
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristina K Peachman
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lily Liu
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Nathan C Lo
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | | |
Collapse
|
13
|
Hua CK, Ackerman ME. Increasing the Clinical Potential and Applications of Anti-HIV Antibodies. Front Immunol 2017; 8:1655. [PMID: 29234320 PMCID: PMC5712301 DOI: 10.3389/fimmu.2017.01655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023] Open
Abstract
Preclinical and early human clinical studies of broadly neutralizing antibodies (bNAbs) to prevent and treat HIV infection support the clinical utility and potential of bNAbs for prevention, postexposure prophylaxis, and treatment of acute and chronic infection. Observed and potential limitations of bNAbs from these recent studies include the selection of resistant viral populations, immunogenicity resulting in the development of antidrug (Ab) responses, and the potentially toxic elimination of reservoir cells in regeneration-limited tissues. Here, we review opportunities to improve the clinical utility of HIV Abs to address these challenges and further accomplish functional targets for anti-HIV Ab therapy at various stages of exposure/infection. Before exposure, bNAbs' ability to serve as prophylaxis by neutralization may be improved by increasing serum half-life to necessitate less frequent administration, delivering genes for durable in vivo expression, and targeting bNAbs to sites of exposure. After exposure and/or in the setting of acute infection, bNAb use to prevent/reduce viral reservoir establishment and spread may be enhanced by increasing the potency with which autologous adaptive immune responses are stimulated, clearing acutely infected cells, and preventing cell-cell transmission of virus. In the setting of chronic infection, bNAbs may better mediate viral remission or "cure" in combination with antiretroviral therapy and/or latency reversing agents, by targeting additional markers of tissue reservoirs or infected cell types, or by serving as targeting moieties in engineered cell therapy. While the clinical use of HIV Abs has never been closer, remaining studies to precisely define, model, and understand the complex roles and dynamics of HIV Abs and viral evolution in the context of the human immune system and anatomical compartmentalization will be critical to both optimize their clinical use in combination with existing agents and define further strategies with which to enhance their clinical safety and efficacy.
Collapse
Affiliation(s)
- Casey K. Hua
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
14
|
Fcγ Receptor Function and the Design of Vaccination Strategies. Immunity 2017; 47:224-233. [PMID: 28813656 DOI: 10.1016/j.immuni.2017.07.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Through specific interactions with distinct types of Fcγ receptors (FcγRs), the Fc domain of immunoglobulin G (IgG) mediates a wide spectrum of immunological functions that influence both innate and adaptive responses. Recent studies indicate that IgG Fc-FcγR interactions are dynamically regulated during an immune response through the control of the Fc-associated glycan structure and Ig subclass composition on the one hand and selective FcγR expression on immune cells on the other, which together determine the capacity of IgG to interact in a cell-type-specific manner with specific members of the FcγR family. Here, we present a framework that synthesizes the current understanding of the contribution of FcγR pathways to the induction and regulation of antibody and T cell responses. Within this context, we discuss vaccination strategies to elicit broad and potent immune responses based on the immunomodulatory properties of Fc-FcγR interactions.
Collapse
|
15
|
Balasubramanian P, Kumar R, Williams C, Itri V, Wang S, Lu S, Hessell AJ, Haigwood NL, Sinangil F, Higgins KW, Liu L, Li L, Nyambi P, Gorny MK, Totrov M, Nadas A, Kong XP, Zolla-Pazner S, Hioe CE. Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine 2017; 35:1464-1473. [PMID: 28185743 DOI: 10.1016/j.vaccine.2016.11.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/22/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022]
Abstract
The V3 loop in the HIV envelope gp120 is one of the immunogenic sites targeted by Abs. The V3 crown in particular has conserved structural elements recognized by cross-reactive neutralizing Abs, indicating its potential contribution in protection against HIV. Crystallographic analyses of anti-V3 crown mAbs in complex with the V3 peptides have revealed that these mAbs recognize the conserved sites on the V3 crown via two distinct strategies: a cradle-binding mode (V3C) and a ladle-binding (V3L) mode. However, almost all of the anti-V3 crown mAbs studied in the past were isolated from chronically HIV-infected individuals. The extents to which the two types of anti-V3 crown Abs are generated by vaccination are unknown. This study analyzed the prevalence of V3C-type and V3L-type Ab responses in HIV-infected individuals and in HIV envelope-immunized humans and animals using peptide mimotopes that distinguish the two Ab types. The results show that both V3L-type and V3C-type Abs were generated by the vast majority of chronically HIV-infected humans, although the V3L-type were more prevalent. In contrast, only one of the two V3 Ab types was elicited in vaccinated humans or animal models, irrespective of HIV-1 envelope clades, envelope constructs (oligomeric or monomeric), and protocols (DNA plus protein or protein alone) used for vaccinations. The V3C-type Abs were produced by vaccinated humans, macaques, and rabbits, whereas the V3L-type Abs were made by mice. The V3C-type and V3L-type Abs generated by the vaccinations were able to mediate virus neutralization. These data indicate the restricted repertoires and the species-specific differences in the functional V3-specific Ab responses induced by the HIV envelope vaccines. The study implies the need for improving immunogen designs and vaccination strategies to broaden the diversity of Abs in order to target the different conserved epitopes in the V3 loop and, by extension, in the entire HIV envelope.
Collapse
Affiliation(s)
- Preetha Balasubramanian
- The Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajnish Kumar
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Constance Williams
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Vincenza Itri
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shixia Wang
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shan Lu
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Keith W Higgins
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Lily Liu
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Liuzhe Li
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Phillipe Nyambi
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Maxim Totrov
- Molsoft LLC, 3366 N Torrey Pines Ct., La Jolla, CA 92037, USA
| | - Arthur Nadas
- Department of Environment Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catarina E Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
16
|
Converting monoclonal antibody-based immunotherapies from passive to active: bringing immune complexes into play. Emerg Microbes Infect 2016; 5:e92. [PMID: 27530750 PMCID: PMC5034104 DOI: 10.1038/emi.2016.97] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs), which currently constitute the main class of biotherapeutics, are now recognized as major medical tools that are increasingly being considered to fight severe viral infections. Indeed, the number of antiviral mAbs developed in recent years has grown exponentially. Although their direct effects on viral blunting have been studied in detail, their potential immunomodulatory actions have been overlooked until recently. The ability of antiviral mAbs to modulate antiviral immune responses in infected organisms has recently been revealed. More specifically, upon recognition of their cognate antigens, mAbs form immune complexes (ICs) that can be recognized by the Fc receptors expressed on different immune cells of infected individuals. This binding may be followed by the modulation of the host immune responses. Harnessing this immunomodulatory property may facilitate improvements in the therapeutic potential of antiviral mAbs. This review focuses on the role of ICs formed with different viral determinants and mAbs in the induction of antiviral immune responses in the context of both passive immunotherapies and vaccination strategies. Potential deleterious effects of ICs on the host immune response are also discussed.
Collapse
|
17
|
Pandey SS, Cherian S, Thakar M, Paranjape RS. Short Communication: Phylogenetic and Molecular Characterization of Six Full-Length HIV-1 Genomes from India Reveals a Monophyletic Lineage of Indian Sub-Subtype A1. AIDS Res Hum Retroviruses 2016; 32:489-502. [PMID: 26756665 DOI: 10.1089/aid.2015.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although HIV-1 epidemic in India is mainly driven by subtype C, subtype A has been reported for over two decades. This is the first comprehensive analysis of sequences of HIV-1 subtype A from India, based on the near full-length genome sequences of six different HIV-1 subtype A Indian isolates along with available partial gene sequences from India and global sequences. The phylogenetic analyses revealed the convergence of all Indian whole-genome sequences and majority of the partial gene sequences to a single node with the sequences most closely related to African sub-subtype A1. The presence of the signature motifs consistent with those observed in subtype A and CTL epitopes characterized specifically for subtype A1 were observed among the study sequences. Deletion of LY amino acid of LYPXnL motif of p6gag and one amino acid in V3 loop have been observed among the study isolates, which have also been observed in a few sequences from East Africa. Overall, the results are indicative of a monophyletic lineage or founder effect of the Indian epidemic due to sub-subtype A1 and supportive of a possible migration of subtype A1 into India from East Africa.
Collapse
Affiliation(s)
| | - Sarah Cherian
- Bioinformatics Group, National Institute of Virology (ICMR), Pune, India
| | - Madhuri Thakar
- Department of Immunology, National AIDS Research Institute (ICMR), Pune, India
| | - Ramesh S. Paranjape
- Department of Immunology, National AIDS Research Institute (ICMR), Pune, India
| |
Collapse
|
18
|
Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody. J Virol 2015; 90:2740-55. [PMID: 26719262 DOI: 10.1128/jvi.02380-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies and is being explored as a vaccine candidate to elicit protective antibodies. One of the most promising antigenic and structural mimics of HIV-1 Env is the SOSIP.664-stabilized soluble trimer from the clade A strain BG505, which is preferentially recognized by broadly neutralizing antibodies. Trimer immunization elicits high-titer neutralization of the autologous tier 2 BG505 strain; however, breadth is limited, and substantial interest has focused on understanding and improving trimer immunogenicity. We sought to improve the antigenic specificity of BG505 SOSIP.664 by reducing recognition of the variable loop 3 (V3) region, which elicits only weakly neutralizing antibodies. To stabilize the trimer in its prefusion closed conformation, we complexed trimeric BG505 SOSIP.664 with the antigen-binding fragment (Fab) of PGT145, a broadly neutralizing quaternary-structure-specific antibody. Compared to the ligand-free trimer, the PGT145 Fab-BG505 SOSIP.664 complex displayed increased melting temperature stability and reduced V3 recognition. In guinea pigs, immunization with the PGT145 Fab-BG505 SOSIP.664 complex elicited ∼100-fold lower V3-directed binding and neutralization titers than those obtained with ligand-free BG505 SOSIP.664. Both complexed and ligand-free BG505 SOSIP.664 elicited comparable neutralization of the autologous BG505 virus, and in both cases, BG505 neutralization mapped to the outer domain of gp120 for some guinea pigs. Our results indicate that it is possible to reduce immune recognition of the V3 region of the trimer while maintaining the antigenic profile needed to induce autologous neutralizing antibodies. These data suggest that appropriate modifications of trimer immunogens could further focus the immune response on key neutralization epitopes. IMPORTANCE HIV-1 Env trimers have been proposed as preferred HIV-1 vaccine immunogens. One version, BG505 SOSIP.664, a soluble stabilized trimer, was recently shown to elicit high-titer autologous neutralizing antibodies (NAbs) in rabbits. Here we compared two immunogens: the ligand-free BG505 SOSIP.664 trimer and the same trimer bound to the antigen-binding fragment (Fab) of the PGT145 antibody, a broadly neutralizing antibody which recognizes the trimer at its membrane-distal apex. We hypothesized that the Fab-bound complex would stabilize BG505 SOSIP.664 in its prefusion closed conformation and limit reactivity to weakly neutralizing antibodies targeting the variable loop 3 (V3) region. In guinea pigs, the Fab-complexed trimer induced 100-fold lower responses to the V3 region, while both ligand-free and Fab-complexed trimers elicited similar levels of autologous NAbs. Our findings demonstrate the potential to reduce "off-target" immunogenicity while maintaining the capacity to generate autologous NAbs.
Collapse
|
19
|
Abstract
IgG antibodies are actively produced in response to antigenic challenge or passively administered as an effective form of immunotherapy to confer immunity against foreign antigens. Their protective activity is mediated through their bifunctional nature: a variable Fab domain mediates antigen-binding specificity, whereas the constant Fc domain engages Fcγ receptors (FcγRs) expressed on the surface of leukocytes to mediate effector functions. While traditionally considered the invariant domain of an IgG molecule, the Fc domain displays remarkable structural heterogeneity determined primarily by differences in the amino acid sequence of the various IgG subclasses and by the composition of the complex, Fc-associated biantennary N-linked glycan. These structural determinants regulate the conformational flexibility of the IgG Fc domain and affect its capacity to interact with distinct types of FcγRs (type I or type II FcγRs). FcγR engagement activates diverse downstream immunomodulatory pathways with pleiotropic functional consequences including cytotoxicity and phagocytosis of IgG-coated targets, differentiation and activation of antigen presenting cells, modulation of T-cell activation, plasma cell survival, and regulation of antibody responses. These functions highlight the importance of FcγR-mediated pathways in the modulation of adaptive immune responses and suggest a central role for IgG-FcγR interactions during active and passive immunization.
Collapse
Affiliation(s)
- Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Ave, New York, NY 10065
| | - Jeffrey V. Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Ave, New York, NY 10065
| |
Collapse
|
20
|
N463 Glycosylation Site on V5 Loop of a Mutant gp120 Regulates the Sensitivity of HIV-1 to Neutralizing Monoclonal Antibodies VRC01/03. J Acquir Immune Defic Syndr 2015; 69:270-7. [PMID: 25751231 DOI: 10.1097/qai.0000000000000595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND HIV-1 gp120/gp41 is heavily modified by n-linked carbohydrates that play important roles either in correct folding or in shielding vulnerable viral protein surfaces from antibody recognition. METHODS In our previous work, 25 potential N-linked glycosylation sites (PNGS) of a CRF07_BC isolate of HIV-1 were individually mutated, and the resulting effects on infectivity and antibody-mediated neutralization were evaluated. To further understand the functional role of these PNGS, we generated double and multiple mutants from selected individual PNGS mutants. The effects were then evaluated by examining infectivity and sensitivity to antibody-mediated neutralization by neutralizing monoclonal antibodies (nMAbs) and serum antibodies from HIV-1 positive donors. RESULTS Infectivity results showed that, among the 12 combined PNGS mutants, only 197M.1 (N197D/N301Q) lost infectivity completely, whereas all others (except for 197M.6) showed reduced viral infectivity. In terms of neutralization sensitivity to known nMAbs, we found that adding N463Q mutation to all the gp120 mutants containing N197D significantly increased neutralization sensitivity to VRC01 and VRC03, suggesting N197 and N463 have a strong synergistic effect in regulating the neutralizing sensitivity of HIV-1 to the anti-CD4bs nMAbs VRC01/VRC03. Structural analysis based on the available structures of gp120 alone and in complex with CD4 and various nMAbs elucidates a molecular rationale for this experimental observation. CONCLUSIONS The data indicate that N463 plays an important role in regulating the CD4bs MAbs VRC01/VRC03 sensitivity in the genetic background of N197D mutation of gp120, which should provide valuable information for a better understanding of the interplay between HIV-1 and VRC01/03.
Collapse
|
21
|
kumar SR, Prabakaran M, Ashok raj KV, He F, Kwang J. Amino Acid Substitutions Improve the Immunogenicity of H7N7HA Protein and Protect Mice against Lethal H7N7 Viral Challenge. PLoS One 2015; 10:e0128940. [PMID: 26030920 PMCID: PMC4452345 DOI: 10.1371/journal.pone.0128940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/01/2015] [Indexed: 12/29/2022] Open
Abstract
Avian influenza A H7N7/NL/219/03 virus creates a serious pandemic threat to human health because it can transmit directly from domestic poultry to humans and from human to human. Our previous vaccine study reported that mice when immunized intranasally (i.n) with live Bac-HA were protected from lethal H7N7/NL/219/03 challenge, whereas incomplete protection was obtained when administered subcutaneously (s.c) due to the fact that H7N7 is a poor inducer of neutralizing antibodies. Interestingly, our recent vaccine studies reported that mice when vaccinated subcutaneously with Bac-HA (H7N9) was protected against both H7N9 (A/Sh2/2013) and H7N7 virus challenge. HA1 region of both H7N7 and H7N9 viruses are differ at 15 amino acid positions. Among those, we selected three amino acid positions (T143, T198 and I211) in HA1 region of H7N7. These amino acids are located within or near the receptor binding site. Following the selection, we substituted the amino acid at these three positions with amino acids found on H7N9HA wild-type. In this study, we evaluate the impact of amino acid substitutions in the H7N7 HA-protein on the immunogenicity. We generated six mutant constructs from wild-type influenza H7N7HA cDNA by site directed mutagenesis, and individually expressed mutant HA protein on the surface of baculovirus (Bac-HAm) and compared their protective efficacy of the vaccines with Bac-H7N7HA wild-type (Bac-HA) by lethal H7N7 viral challenge in a mouse model. We found that mice immunized subcutaneously with Bac-HAm constructs T143A or T198A-I211V or I211V-T143A serum showed significantly higher hemagglutination inhibition and neutralization titer against H7N7 and H7N9 viruses when compared to Bac-HA vaccinated mice groups. We also observed low level of lung viral titer, negligible weight loss and complete protection against lethal H7N7 viral challenge. Our results indicated that amino acid substitution at position 143 or 211 improve immunogenicity of H7N7HA vaccine against H7N7/NL/219/03 virus.
Collapse
Affiliation(s)
- Subaschandrabose Rajesh kumar
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
| | - Mookkan Prabakaran
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
| | - Kattur Venkatachalam Ashok raj
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
| | - Fang He
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
22
|
Immunization with Immune Complexes Modulates the Fine Specificity of Antibody Responses to a Flavivirus Antigen. J Virol 2015; 89:7970-8. [PMID: 26018152 DOI: 10.1128/jvi.00938-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/11/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The antibody response to proteins may be modulated by the presence of preexisting antigen-specific antibodies and the formation of immune complexes (ICs). Effects such as a general increase or decrease of the response as well as epitope-specific phenomena have been described. In this study, we investigated influences of IC immunization on the fine specificity of antibody responses in a structurally well-defined system, using the envelope (E) protein of tick-borne encephalitis (TBE) virus as an immunogen. TBE virus occurs in Europe and Asia and-together with the yellow fever, dengue, West Nile, and Japanese encephalitis viruses-represents one of the major human-pathogenic flaviviruses. Mice were immunized with a dimeric soluble form of E (sE) alone or in complex with monoclonal antibodies specific for each of the three domains of E, and the antibody response induced by these ICs was compared to that seen after immunization with sE alone. Immunoassays using recombinant domains and domain combinations of TBE virus sE as well as the distantly related West Nile virus sE allowed the dissection and quantification of antibody subsets present in postimmunization sera, thus generating fine-specificity patterns of the polyclonal responses. There were substantially different responses with two of the ICs, and the differences could be mechanistically related to (i) epitope shielding and (ii) antibody-mediated structural changes leading to dissociation of the sE dimer. The phenomena described may also be relevant for polyclonal responses upon secondary infections and/or booster immunizations and may affect antibody responses in an individual-specific way. IMPORTANCE Infections with flaviviruses such as yellow fever, dengue, Japanese encephalitis, West Nile, and tick-borne encephalitis (TBE) viruses pose substantial public health problems in different parts of the world. Antibodies to viral envelope protein E induced by natural infection or vaccination were shown to confer protection from disease. Such antibodies can target different epitopes in E protein, and the fine specificities of polyclonal responses can differ between individuals. We conducted a mouse immunization study with TBE E protein alone or complexed to monoclonal antibodies specific for each of the three protein domains. We demonstrated that phenomena such as epitope shielding and antibody-induced structural changes can profoundly influence the fine specificity of antibody responses to the same immunogen. The study thus provided important new information on the potential immunomodulatory role of preexisting antibodies in a flavivirus system that can be relevant for understanding individual-specific factors influencing antibody responses in sequential flavivirus infections and/or immunizations.
Collapse
|
23
|
Kim MY, Reljic R, Kilbourne J, Ceballos-Olvera I, Yang MS, Reyes-del Valle J, Mason HS. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform. Vaccine 2015; 33:1830-8. [PMID: 25728317 DOI: 10.1016/j.vaccine.2015.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/05/2015] [Accepted: 02/13/2015] [Indexed: 11/27/2022]
Abstract
Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens.
Collapse
Affiliation(s)
- Mi-Young Kim
- Center of Infectious Diseases and Vaccinology, Biodesign Institute, Tempe, AZ 85287, USA; Institute for Infection and Immunity, St George's University of London, London, UK
| | - Rajko Reljic
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Jacquelyn Kilbourne
- Center of Infectious Diseases and Vaccinology, Biodesign Institute, Tempe, AZ 85287, USA
| | | | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, Jeonju-si, South Korea
| | | | - Hugh S Mason
- Center of Infectious Diseases and Vaccinology, Biodesign Institute, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
24
|
Cenci A, D'Avenio G, Tavoschi L, Chiappi M, Becattini S, Narino MDP, Picconi O, Bernasconi D, Fanales-Belasio E, Vardas E, Sukati H, Lo Presti A, Ciccozzi M, Monini P, Ensoli B, Grigioni M, Buttò S. Molecular characterization of HIV-1 subtype C gp-120 regions potentially involved in virus adaptive mechanisms. PLoS One 2014; 9:e95183. [PMID: 24788065 PMCID: PMC4005737 DOI: 10.1371/journal.pone.0095183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
The role of variable regions of HIV-1 gp120 in immune escape of HIV has been investigated. However, there is scant information on how conserved gp120 regions contribute to virus escaping. Here we have studied how molecular sequence characteristics of conserved C3, C4 and V3 regions of clade C HIV-1 gp120 that are involved in HIV entry and are target of the immune response, are modulated during the disease course. We found an increase of “shifting” putative N-glycosylation sites (PNGSs) in the α2 helix (in C3) and in C4 and an increase of sites under positive selection pressure in the α2 helix during the chronic stage of disease. These sites are close to CD4 and to co-receptor binding sites. We also found a negative correlation between electric charges of C3 and V4 during the late stage of disease counteracted by a positive correlation of electric charges of α2 helix and V5 during the same stage. These data allow us to hypothesize possible mechanisms of virus escape involving constant and variable regions of gp120. In particular, new mutations, including new PNGSs occurring near the CD4 and CCR5 binding sites could potentially affect receptor binding affinity and shield the virus from the immune response.
Collapse
Affiliation(s)
| | - Giuseppe D'Avenio
- Istituto Superiore di Sanità, Department of Technology and Health, Rome, Italy
| | - Lara Tavoschi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Michele Chiappi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | | | | | - Orietta Picconi
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | | | | | - Eftyhia Vardas
- Stellenbosch University, Division of Medical Virology, Stellenbosch, South Africa; Lancet Laboratories, Johannesburg, South Africa
| | - Hosea Sukati
- National Center Public Health Laboratory, Manzini, Swaziland
| | - Alessandra Lo Presti
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immunomediated Diseases, Rome, Italy
| | - Massimo Ciccozzi
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immunomediated Diseases, Rome, Italy; University of Biomedical Campus, Rome, Italy
| | - Paolo Monini
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Barbara Ensoli
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| | - Mauro Grigioni
- Istituto Superiore di Sanità, Department of Technology and Health, Rome, Italy
| | - Stefano Buttò
- Istituto Superiore di Sanità, National AIDS Center, Rome, Italy
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The HIV-1 site of binding for the CD4 receptor has long attracted attention as a potential supersite of vulnerability to antibody-mediated neutralization. We review recent findings related to effective CD4-binding site antibodies isolated from HIV-1-infected individuals and discuss implications for immunogen design. RECENT FINDINGS Highly effective CD4-binding site antibodies such as antibody VRC01 have the ability to neutralize over 90% of circulating HIV-1 strains. Sequence and structural analysis of these antibodies from over half a dozen HIV-1-infected donors reveals remarkable similarity in their ontogenies and their modes of recognition, all of which involve mimicry of CD4 receptor by antibody-heavy chain. Meanwhile, other effective CD4-binding site neutralizers such as antibody CH103 have been shown to utilize a different mode of recognition, with next-generation sequencing of both virus and antibody suggesting co-evolution to drive the development of antibody-neutralization breadth. SUMMARY The nexus of information concerning the CD4-binding site and its recognition by human antibodies capable of effective neutralization has expanded remarkably in the last few years. Although barriers are substantial, new insights from donor-serum responses, atomic-level structures of antibody-Env complexes, and next-generation sequencing of B-cell transcripts are invigorating vaccine-design efforts to elicit effective CD4-binding site antibodies.
Collapse
|
26
|
Rosales-Mendoza S, Orellana-Escobedo L, Romero-Maldonado A, Decker EL, Reski R. The potential of Physcomitrella patens as a platform for the production of plant-based vaccines. Expert Rev Vaccines 2014; 13:203-12. [PMID: 24405402 DOI: 10.1586/14760584.2014.872987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The moss Physcomitrella patens has a number of advantages for the production of biopharmaceuticals, including: i) availability of standardized conditions for cultivation in bioreactors; ii) not being part of the food chain; iii) high biosafety; iv) availability of highly efficient transformation methods; v) a haploid, fully sequenced genome providing genetic stability and uniform expression; vi) efficient gene targeting at the nuclear level allows for the generation of mutants with specific post-translational modifications (e.g., glycosylation patterns); and vii) oral formulations are a viable approach as no toxic effects are attributed to ingestion of this moss. In the light of this panorama, this opinion paper analyzes the possibilities of using P. patens for the production of oral vaccines and presents some specific cases where its use may represent significant progress in the field of plant-based vaccine development. The advantages represented by putative adjuvant effects of endogenous secondary metabolites and producing specific glycosylation patterns are highlighted.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | | | | | | | | |
Collapse
|
27
|
Kumar R, Tuen M, Liu J, Nàdas A, Pan R, Kong X, Hioe CE. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine 2013; 31:5413-21. [PMID: 24051158 DOI: 10.1016/j.vaccine.2013.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/11/2013] [Accepted: 09/06/2013] [Indexed: 01/25/2023]
Abstract
HIV-1 envelope gp120 is the target for neutralizing antibodies (NAbs) against the virus. Various approaches have been explored to improve immunogenicity of broadly neutralizing epitopes on this antigen with limited success. We previously demonstrated that immunogenicity of gp120 and especially its V3 epitopes was enhanced when gp120 was co-administered as immune-complex vaccines with monoclonal antibodies (mAb) to the CD4-binding site (CD4bs). To define the mechanisms by which immune complexes influence V3 immunogenicity, we compared gp120 complexed with mAbs specific for the C2 region (1006-30), the V2 loop (2158), or the CD4bs (654), and found that the gp120/654 and gp120/2158 complexes elicited anti-V3 NAbs, but the gp120/654 complex was the most effective. gp120 complexed with 654 F(ab')2 was as potent, indicating that V3 immunogenicity is determined by the specificity of the mAb's Fab fragment used to form the complexes. Importantly, the gp120/654 complex not only induced anti-gp120 antibodies (Abs) to higher titers, but also of greater avidity. The Abs were cross-reactive with V3 peptides from most subtype B and some subtype C isolates. Neutralization was detected only against Tier-1 HIV-1 pseudoviruses, while Tier-2 viruses, including the homologous JRFL strain, were not neutralized. However, JRFL produced in the presence of a mannosidase inhibitor was sensitive to anti-V3 NAbs in the immune sera. These results demonstrate that the gp120/654 complex is a potent immunogen for eliciting cross-reactive functional NAbs against V3 epitopes, of which exposure is determined by the specific compositions of glycans shrouding the HIV-1 envelope glycoproteins.
Collapse
Affiliation(s)
- Rajnish Kumar
- VA New York Harbor Healthcare System, Manhattan Campus and New York University School of Medicine, Department of Pathology, New York, NY 10010, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Isik G, van Montfort T, Boot M, Cobos Jiménez V, Kootstra NA, Sanders RW. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity. PLoS One 2013; 8:e60126. [PMID: 23565193 PMCID: PMC3615126 DOI: 10.1371/journal.pone.0060126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF) chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF) proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF) should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.
Collapse
Affiliation(s)
- Gözde Isik
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maikel Boot
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Viviana Cobos Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, United States of America
| |
Collapse
|
29
|
Julien JP, Lee PS, Wilson IA. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol Rev 2013; 250:180-98. [PMID: 23046130 DOI: 10.1111/imr.12005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) envelope protein (Env) and influenza hemagglutinin (HA) are the surface glycoproteins responsible for viral entry into host cells, the first step in the virus life cycle necessary to initiate infection. These glycoproteins exhibit a high degree of sequence variability and glycosylation, which are used as strategies to escape host immune responses. Nonetheless, antibodies with broadly neutralizing activity against these viruses have been isolated that have managed to overcome these barriers. Here, we review recent advances in the structural characterization of these antibodies with their viral antigens that defines a few sites of vulnerability on these viral spikes. These broadly neutralizing antibodies tend to focus their recognition on the sites of similar function between the two viruses: the receptor-binding site and membrane fusion machinery. However, some sites of recognition are unique to the virus neutralized, such as the dense shield of oligomannose carbohydrates on HIV-1 Env. These observations are discussed in the context of structure-based design strategies to aid in vaccine design or development of antivirals.
Collapse
Affiliation(s)
- Jean-Philippe Julien
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
30
|
Wang W, Nie J, Prochnow C, Truong C, Jia Z, Wang S, Chen XS, Wang Y. A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology 2013; 10:14. [PMID: 23384254 PMCID: PMC3648360 DOI: 10.1186/1742-4690-10-14] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/04/2013] [Indexed: 12/29/2022] Open
Abstract
Background Glycans on the human immunodeficiency virus (HIV) envelope glycoprotein (Env) play an important role in viral infection and evasion of neutralization by antibodies. In this study, all 25 potential N-linked glycosylation sites (PNGS) on the HIV-1 CRF07_BC Env, FE, were mutated individually to study the effect of their removal on viral infectivity, virion production, and antibody-mediated neutralization. Results Removal of specific N-glycosylation sites has a significant effect on viral infectivity and antibody-mediated neutralization phenotype. Six of these glycosylation mutants located on the V1/V2 and C1/C2 domains lost infectivity. PNGS mutations located on V4/C4/V5 (except N392 on V4), were shown to increase viral infectivity. Furthermore, FE is much more dependent on specific glycans than clade B Env YU-2. On neutralization effect, PNGS mutations at N197 (C2), N301 (V3), N442 (C4) and N625 (gp41) rendered the virus more susceptible to neutralization by the monoclonal antibodies (MAbs) that recognize the CD4 binding site or gp41. Generally, mutations on V4/V5 loops, C2/C3/C4 regions and gp41 reduced the neutralization sensitivity to PG16. However, mutation of N289 (C2) made the virus more sensitive to both PG9 and PG16. Furthermore, we showed that mutations at N142 (V1), N355 (C3) and N463 (V5) conferred resistance to neutralization by anti-gp41 MAbs. We used the available structural information of HIV Env and homology modeling to provide a structural basis for the observed biological effects of these mutations. Conclusions This report provides the first systematic experimental account of the biological role of the entire PNGS on an HIV-1 Env, which should provide valuable insights for understanding the function of Env in HIV infection cycle and for developing future anti-HIV strategies.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Cell Biology, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Beijing 100050, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Demberg T, Robert-Guroff M. Controlling the HIV/AIDS epidemic: current status and global challenges. Front Immunol 2012; 3:250. [PMID: 22912636 PMCID: PMC3418522 DOI: 10.3389/fimmu.2012.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
This review provides an overview of the current status of the global HIV pandemic and strategies to bring it under control. It updates numerous preventive approaches including behavioral interventions, male circumcision (MC), pre- and post-exposure prophylaxis (PREP and PEP), vaccines, and microbicides. The manuscript summarizes current anti-retroviral treatment options, their impact in the western world, and difficulties faced by emerging and resource-limited nations in providing and maintaining appropriate treatment regimens. Current clinical and pre-clinical approaches toward a cure for HIV are described, including new drug compounds that target viral reservoirs and gene therapy approaches aimed at altering susceptibility to HIV infection. Recent progress in vaccine development is summarized, including novel approaches and new discoveries.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, Section on Immune Biology of Retroviral Infection, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
32
|
Kumar R, Visciano ML, Li H, Hioe C. Targeting a Neutralizing Epitope of HIV Envelope Gp120 by Immune Complex Vaccine. ACTA ACUST UNITED AC 2012; S8. [PMID: 22891160 DOI: 10.4172/2155-6113.s8-002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There are formidable challenges in developing HIV vaccines that elicit potent neutralizing antibodies against a broad array of HIV-1 isolates. The key targets for these neutralizing antibodies are the viral envelope antigens gp120 and gp41. Although broadly reactive neutralizing epitopes on gp120 and gp41 have been mapped and studied extensively, these epitopes are poorly immunogenic. Indeed, various vaccine candidates tested in preclinical and clinical trials do not generate antibodies against these epitopes. Hence, novel immunogen designs to augment the immunogenicity of these neutralizing epitopes are wanted. In this review, a unique immunogen design strategy that exploits immune complexes of gp120 and selected anti-gp120 monoclonal antibodies (mAb) to elicit neutralizing antibodies against cross-reactive V3 epitopes is discussed. The ability of these complexes to stimulate neutralizing antibodies is dictated by fine specificity and affinity of mAbs used to form the complexes, indicating the contribution of Fab-mediated activity, rather than conventional Fc-mediated enhancement. Further improvement of V3 immunogenicity is attainable by forming immune complexes with gp120 mutants lacking site-specific N-linked glycans. The increased V3 immunogenicity on the mutated gp120/mAb complexes correlates with enhancement of in vitro antibody recognition (antigenicity) and proteolytic resistance of V3 epitopes when presented on the complexes. These insights should provide guidelines for the development of more potent immunogens that target not only the prototypic V3 epitopes but also other broadly reactive epitopes on the HIV envelope.
Collapse
Affiliation(s)
- Rajnish Kumar
- New York University School of Medicine, Department of Pathology, New York, NY 10016, USA
| | | | | | | |
Collapse
|