1
|
Topuz Ata D, Hussain M, Jones M, Best J, Wiese M, Carter KC. Immunisation with Transgenic L. tarentolae Expressing Gamma Glutamyl Cysteine Synthetase from Pathogenic Leishmania Species Protected against L. major and L. donovani Infection in a Murine Model. Microorganisms 2023; 11:1322. [PMID: 37317296 PMCID: PMC10223578 DOI: 10.3390/microorganisms11051322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Leishmaniasis is a protozoan disease responsible for significant morbidity and mortality. There is no recommended vaccine to protect against infection. In this study, transgenic Leishmania tarentolae expressing gamma glutamyl cysteine synthetase (γGCS) from three pathogenic species were produced and their ability to protect against infection determined using models of cutaneous and visceral leishmaniasis. The ability of IL-2-producing PODS® to act as an adjuvant was also determined in L. donovani studies. Two doses of the live vaccine caused a significant reduction in L. major (p < 0.001) and L. donovani (p < 0.05) parasite burdens compared to their respective controls. In contrast, immunisation with wild type L. tarentolae, using the same immunisation protocol, had no effect on parasite burdens compared to infection controls. Joint treatment with IL-2-producing PODS® enhanced the protective effect of the live vaccine in L. donovani studies. Protection was associated with a Th1 response in L. major and a mixed Th1/Th2 response in L. donovani, based on specific IgG1 and IgG2a antibody and cytokine production from in vitro proliferation assays using antigen-stimulated splenocytes. The results of this study provide further proof that γGCS should be considered a candidate vaccine for leishmaniasis.
Collapse
Affiliation(s)
- Derya Topuz Ata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Muattaz Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Michael Jones
- Cell Guidance Systems, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Jonathan Best
- Cell Guidance Systems, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Katharine Christine Carter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
2
|
Immunogenicity and Efficacy of Polytope DNA Vaccine Against Cutaneous Leishmaniosis In Vivo. HEALTH SCOPE 2017. [DOI: 10.5812/jhealthscope.63159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Maspi N, Ghaffarifar F, Sharifi Z, Dalimi A, Dayer MS. Immunogenicity and efficacy of a bivalent DNA vaccine containing LeIF and TSA genes against murine cutaneous leishmaniasis. APMIS 2017; 125:249-258. [DOI: 10.1111/apm.12651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/15/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Nahid Maspi
- Department of Medical Parasitology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Fatemeh Ghaffarifar
- Department of Medical Parasitology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
| | - Abdolhossein Dalimi
- Department of Medical Parasitology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Mohammad Saaid Dayer
- Department of Medical Parasitology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
4
|
Kumar A, Samant M. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control. Parasite Immunol 2016; 38:273-81. [DOI: 10.1111/pim.12315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/21/2016] [Indexed: 01/23/2023]
Affiliation(s)
- A. Kumar
- Department of Biotechnology; National Institute of Technology; Raipur Chhattisgarh India
| | - M. Samant
- Cell and Molecular biology laboratory; Department of Zoology; Kumaun University SSJ Campus; Almora Uttarakhand India
| |
Collapse
|
5
|
Duthie MS, Reed SG. The Emergence of Defined Subunit Vaccines for the Prevention of Leishmaniasis. CURRENT TROPICAL MEDICINE REPORTS 2014. [DOI: 10.1007/s40475-014-0024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Dey R, Natarajan G, Bhattacharya P, Cummings H, Dagur PK, Terrazas C, Selvapandiyan A, McCoy JP, Duncan R, Satoskar AR, Nakhasi HL. Characterization of cross-protection by genetically modified live-attenuated Leishmania donovani parasites against Leishmania mexicana. THE JOURNAL OF IMMUNOLOGY 2014; 193:3513-27. [PMID: 25156362 DOI: 10.4049/jimmunol.1303145] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previously, we showed that genetically modified live-attenuated Leishmania donovani parasite cell lines (LdCen(-/-) and Ldp27(-/-)) induce a strong cellular immunity and provide protection against visceral leishmaniasis in mice. In this study, we explored the mechanism of cross-protection against cutaneous lesion-causing Leishmania mexicana. Upon challenge with wild-type L. mexicana, mice immunized either for short or long periods showed significant protection. Immunohistochemical analysis of ears from immunized/challenged mice exhibited significant influx of macrophages, as well as cells expressing MHC class II and inducible NO synthase, suggesting an induction of potent host-protective proinflammatory responses. In contrast, substantial inhibition of IL-10, IL-4, and IL-13 expression and the absence of degranulated mast cells and less influx of eosinophils within the ears of immunized/challenged mice suggested a controlled anti-inflammatory response. L. mexicana Ag-stimulated lymph node cell culture from the immunized/challenged mice revealed induction of IFN-γ secretion by the CD4 and CD8 T cells compared with non-immunized/challenged mice. We also observed suppression of Th2 cytokines in the culture supernatants of immunized/challenged lymph nodes compared with non-immunized/challenged mice. Adoptively transferred total T cells from immunized mice conferred strong protection in recipient mice against L. mexicana infection, suggesting that attenuated L. donovani can provide protection against heterologous L. mexicana parasites by induction of a strong T cell response. Furthermore, bone marrow-derived dendritic cells infected with LdCen(-/-) and Ldp27(-/-) parasites were capable of inducing a strong proinflammatory response leading to the proliferation of Th1 cells. These studies demonstrate the potential of live-attenuated L. donovani parasites as pan-Leishmania species vaccines.
Collapse
Affiliation(s)
- Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Gayathri Natarajan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Hannah Cummings
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | - Pradeep K Dagur
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - César Terrazas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310
| | | | - John P McCoy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Robert Duncan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310;
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993;
| |
Collapse
|
7
|
Wiśniewski M, Lapiński M, Zdziarska A, Długosz E, Bąska P. Molecular cloning and analysis of Ancylostoma ceylanicum glutamate-cysteine ligase. Mol Biochem Parasitol 2014; 196:12-20. [PMID: 25092620 DOI: 10.1016/j.molbiopara.2014.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 01/25/2023]
Abstract
Glutamate-cysteine ligase (GCL) is a heterodimer enzyme composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM). This enzyme catalyses the synthesis of γ-glutamylcysteine, a precursor of glutathione. cDNAs of the putative glutamate-cysteine ligase catalytic (Ace-GCLC) and modifier subunits (Ace-GCLM) of Ancylostoma ceylanicum were cloned using the RACE-PCR amplification method. The Ace-gclc and Ace-gclm cDNAs encode proteins with 655 and 254 amino acids and calculated molecular masses of 74.76 and 28.51kDa, respectively. The Ace-GCLC amino acid sequence shares about 70% identity and 80% sequence similarity with orthologs in Loa loa, Onchocerca volvulus, Brugia malayi, and Ascaris suum, whereas the Ace-GCLM amino acid sequence has only about 30% sequence identity and 50% similarity to homologous proteins in those species. Real-time PCR analysis of mRNA expression in L3, serum stimulated L3 and adult stages of A. ceylanicum showed the highest level of Ace-GCLC and Ace-GCLM expression occurred in adult worms. No differences were detected among adult hookworms harvested 21 and 35dpi indicating expression of Ace-gclc and Ace-gclm in adult worms is constant during the course of infection. Positive interaction between two subunits of glutamate-cysteine ligase was detected using the yeast two-hybrid system, and by specific enzymatic reaction. Ace-GCL is an intracellular enzyme and is not exposed to the host immune system. Thus, as expected, we did not detect IgG antibodies against Ace-GCLC or Ace-GCLM on days 21, 60 and 120 of A. ceylanicum infection in hamsters. Furthermore, vaccination with one or both antigens did not reduce worm burdens, and resulted in no improvement of clinical parameters (hematocrit and hemoglobin) of infected hamsters. Therefore, due to the significant role of the enzyme in parasite metabolism, our analyses raises hope for the development of a successful new drug against ancylostomiasis based on the specific GCL inhibitor.
Collapse
Affiliation(s)
- Marcin Wiśniewski
- Division of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Maciej Lapiński
- Division of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Anna Zdziarska
- Division of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ewa Długosz
- Division of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Piotr Bąska
- Division of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
8
|
Aebischer T. Leishmania spp. Proteome Data Sets: A Comprehensive Resource for Vaccine Development to Target Visceral Leishmaniasis. Front Immunol 2014; 5:260. [PMID: 24959165 PMCID: PMC4050426 DOI: 10.3389/fimmu.2014.00260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/19/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis is a neglected infectious disease caused primarily by Leishmania donovani and Leishmania infantum protozoan parasites. A significant number of infections take a fatal course. Drug therapy is available but still costly and parasites resistant to first line drugs are observed. Despite many years of trial no commercial vaccine is available to date. However, development of a cost effective, needle-independent vaccine remains a high priority. Reverse vaccinology has attracted much attention since the term has been coined and the approach tested by Rappuoli and colleagues. This in silico selection of antigens from genomic and proteomic data sets was also adapted to aim at developing an anti-Leishmania vaccine. Here, an analysis of the efforts is attempted and the challenges to be overcome by these endeavors are discussed. Strategies that led to successful identification of antigens will be illustrated. Furthermore, these efforts are viewed in the context of anticipated modes of action of effective anti-Leishmania immune responses to highlight possible advantages and shortcomings.
Collapse
Affiliation(s)
- Toni Aebischer
- Agents of Mycoses, Parasitoses and Mycobacterioses, Robert Koch-Institut , Berlin , Germany
| |
Collapse
|
9
|
Alsaadi MM, Christine Carter K, Mullen AB. High performance liquid chromatography with evaporative light scattering detection for the characterisation of a vesicular delivery system during stability studies. J Chromatogr A 2013; 1320:80-5. [DOI: 10.1016/j.chroma.2013.10.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 11/25/2022]
|
10
|
McCall LI, Zhang WW, Ranasinghe S, Matlashewski G. Leishmanization revisited: immunization with a naturally attenuated cutaneous Leishmania donovani isolate from Sri Lanka protects against visceral leishmaniasis. Vaccine 2012; 31:1420-5. [PMID: 23219435 DOI: 10.1016/j.vaccine.2012.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/08/2012] [Accepted: 11/25/2012] [Indexed: 10/27/2022]
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa and associated with three main clinical presentations: cutaneous, mucocutaneous and visceral leishmaniasis. Visceral leishmaniasis is the second most lethal parasitic disease after malaria and there is so far no human vaccine. Leishmania donovani is a causative agent of visceral leishmaniasis in South East Asia and Eastern Africa. However, in Sri Lanka, L. donovani causes mainly cutaneous leishmaniasis, while visceral leishmaniasis is rare. We investigate here the possibility that the cutaneous form of L. donovani can provide immunological protection against the visceral form of the disease, as a potential explanation for why visceral leishmaniasis is rare in Sri Lanka. Subcutaneous immunization with a cutaneous clinical isolate from Sri Lanka was significantly protective against visceral leishmaniasis in BALB/c mice. Protection was associated with a mixed Th1/Th2 response. These results provide a possible rationale for the scarcity of visceral leishmaniasis in Sri Lanka and could guide leishmaniasis vaccine development efforts.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|