1
|
Ghosh S, Pawar R, Kangralkar V, Mallya AD, Dhere RM, Bolgiano B, Ravenscroft N. Acid hydrolysis conditions for quantification of meningococcal X polysaccharide in a pentavalent vaccine using HPAEC-PAD/ESI-MS. Anal Biochem 2023; 683:115363. [PMID: 37866526 DOI: 10.1016/j.ab.2023.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
A selective and sensitive method was evaluated for quantitation of meningococcal X (Men X) polysaccharide in pentavalent meningococcal A, C, W, Y and X conjugate vaccine using different acid hydrolysis conditions like HCl, TFA, HF, HF-TFA, and HF-HCl. High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) using CarboPac PA10 column was used to identify the hydrolyzed products based on retention time and its comparison with monosaccharide standards. Complete release of glucosamine (GlcN) from Men X in monovalent bulk and pentavalent vaccine samples was achieved using HF hydrolysis at 80 °C for 2 h. The Men X HF-hydrolyzed polysaccharide to glucosamine along with the reference standard was identified using collision-induced dissociation (CID) electrospray mass spectroscopy and the MS/MS fragments of m/z 162, m/z 144 and m/z 84. Meningococcal polysaccharide concentration was determined with a correlation coefficient r2 >0.99 using polysaccharide reference standard. The serogroups A, W, and Y were converted to their monosaccharides units and quantified using this method however, milder acid hydrolysis 0.1 M HCl 80 °C 2 h for release of sialic acid for Men C polysaccharide was found to be more suitable. These methods will provide necessary tools and prove to be beneficial to laboratories developing new saccharide-based vaccine combinations.
Collapse
Affiliation(s)
- Saurav Ghosh
- Serum Institute of India Pvt Ltd, Serum Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Rakesh Pawar
- Serum Institute of India Pvt Ltd, Serum Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Vivek Kangralkar
- Serum Institute of India Pvt Ltd, Serum Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Asha D Mallya
- Serum Institute of India Pvt Ltd, Serum Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India.
| | - Rajeev M Dhere
- Serum Institute of India Pvt Ltd, Serum Biopharma Park, 212/2, Hadapsar, Pune, 411 028, Maharashtra, India
| | - Barbara Bolgiano
- National Institute for Biological Standards and Control, Medicines and Healthcare Products Regulatory Agency, South Mimms, AL3 6DP, United Kingdom
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
2
|
Hurlburt NK, Guan J, Ong H, Yu H, Chen X, Fisher AJ. Structural characterization of a nonhydrolyzing UDP-GlcNAc 2-epimerase from Neisseria meningitidis serogroup A. Acta Crystallogr F Struct Biol Commun 2020; 76:557-567. [PMID: 33135674 PMCID: PMC7605110 DOI: 10.1107/s2053230x20013680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/13/2020] [Indexed: 11/10/2022] Open
Abstract
Bacterial nonhydrolyzing UDP-N-acetylglucosamine 2-epimerases catalyze the reversible interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmannosamine (UDP-ManNAc). UDP-ManNAc is an important intermediate in the biosynthesis of certain cell-surface polysaccharides, including those in some pathogenic bacteria, such as Neisseria meningitidis and Streptococcus pneumoniae. Many of these epimerases are allosterically regulated by UDP-GlcNAc, which binds adjacent to the active site and is required to initiate UDP-ManNAc epimerization. Here, two crystal structures of UDP-N-acetylglucosamine 2-epimerase from Neisseria meningitidis serogroup A (NmSacA) are presented. One crystal structure is of the substrate-free enzyme, while the other structure contains UDP-GlcNAc substrate bound to the active site. Both structures form dimers as seen in similar epimerases, and substrate binding to the active site induces a large conformational change in which two Rossmann-like domains clamp down on the substrate. Unlike other epimerases, NmSacA does not require UDP-GlcNAc to instigate the epimerization of UDP-ManNAc, although UDP-GlcNAc was found to enhance the rate of epimerization. In spite of the conservation of residues involved in binding the allosteric UDP-GlcNAc observed in similar UDP-GlcNAc 2-epimerases, the structures presented here do not contain UDP-GlcNAc bound in the allosteric site. These structural results provide additional insight into the mechanism and regulation of this critical enzyme and improve the structural understanding of the ability of NmSacA to epimerize modified substrates.
Collapse
Affiliation(s)
| | - Jasper Guan
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Hoonsan Ong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Andrew J. Fisher
- Department of Chemistry, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Evaluation of impact of temperature and pH alterations on the size and antigenicity of meningococcal serogroup A and X polysaccharides and conjugates. Vaccine 2019; 37:965-972. [PMID: 30651197 DOI: 10.1016/j.vaccine.2018.12.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/10/2018] [Accepted: 12/29/2018] [Indexed: 02/05/2023]
Abstract
The changes in the recommended storage conditions of the glycoconjugate vaccines against Neisseria meningitidis (Men) serogroup A and serogroup X can affect its activity or potency. Elevated temperature and the change in pH may result in the physical instability leading to the size degradation of the polysaccharide (PS) and subsequent loss of PS epitopes. Moreover, high temperature may also result in protein aggregation and altered tertiary structure of the protein in the conjugate. Consequently, the construction of a potent glycoconjugate is dependent on optimal temperature and pH. The changes in both these conditions can also affect the production of a capsular polysaccharide (PS) and its conjugation to a protein carrier and may also affect the integrity of the vaccine molecule including the maintenance of the protective epitopes. In our study we have used inhibition ELISA as a tool to assess the impact of temperature and pH alterations on the antigenicity of N. meningitidis serogroup A and X, PS and conjugates and their correlation with the size distribution analysis using high pressure size exclusion chromatography. The studies on pH alterations from 5 to 9 led to minimal impact on size and antigenicity of all antigens, however, an elevated temperature adversely impacted the antigen size as well as antigenicity to varying extent. Results indicate the higher stability of MenX PS and conjugate as compared to that for MenA counterparts at elevated temperatures. Furthermore, both the MenA and MenX conjugates appears to be more stable as compared to the corresponding PSs.
Collapse
|
4
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
5
|
Norheim G, Mueller JE, Njanpop-Lafourcade BM, Delrieu I, Findlow H, Borrow R, Xie O, Nagaputra J, Ramasamy R, Dold C, Tamekloe TA, Rollier CS, Watt H, Kere AB, Næss LM, Pollard AJ. Natural immunity against capsular group X N. meningitidis following an outbreak in Togo, 2007. Vaccine 2018; 36:1297-1303. [DOI: 10.1016/j.vaccine.2018.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
|
6
|
Beresford NJ, Martino A, Feavers IM, Corbel MJ, Bai X, Borrow R, Bolgiano B. Quality, immunogenicity and stability of meningococcal serogroup ACWY-CRM 197 , DT and TT glycoconjugate vaccines. Vaccine 2017; 35:3598-3606. [DOI: 10.1016/j.vaccine.2017.03.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022]
|
7
|
Vipond C, Swann CJ, Dougall TW, Rigsby P, Gao F, Beresford NJ, Bolgiano B. Evaluation of candidate international standards for meningococcal serogroups A and X polysaccharide. Biologicals 2017; 47:33-45. [DOI: 10.1016/j.biologicals.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/29/2022] Open
|
8
|
An efficient cell free enzyme-based total synthesis of a meningococcal vaccine candidate. NPJ Vaccines 2016; 1:16017. [PMID: 29263856 PMCID: PMC5707881 DOI: 10.1038/npjvaccines.2016.17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 11/14/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a global health problem and vaccination has proven the most effective way of disease control. Neisseria meningitidis serogroup X (NmX) is an emerging threat in the African sub-Saharan meningitis belt, but no vaccine is available today. Leading vaccines against Nm are glycoconjugates, in which capsular polysaccharides isolated from large-scale pathogen cultures are conjugated to adjuvant proteins. Though safe and efficacious even in infants, high costs and biohazard associated with the production limit abundant application of glycoconjugate vaccines particularly in the most afflicted nations. An existing NmX vaccine candidate (CPSXn-CRM197) produced by established protocols from NmX capsule polysaccharide (CPSX) has been shown to elicit high bactericidal immunoglobulin G titres in mice. Here we describe the scalable in vitro synthesis of CPSXiv from chemically pure precursors by the use of recombinant NmX capsule polymerase. Application of the described coupling chemistry gives CPSXiv-CRM197, which in mouse vaccination experiments behaves identical to the benchmark CPSXn-CRM197. Excluding any biohazards, this novel process represents a paradigm shift in vaccine production and a premise towards vaccine manufacturing in emerging economies.
Collapse
|
9
|
Dillon MJ, Loban RA, Reed DE, Thorkildson P, Pflughoeft KJ, Pandit SG, Brett PJ, Burtnick MN, AuCoin DP. Contribution of murine IgG Fc regions to antibody binding to the capsule of Burkholderia pseudomallei. Virulence 2016; 7:691-701. [PMID: 27096636 PMCID: PMC4991319 DOI: 10.1080/21505594.2016.1176655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022] Open
Abstract
Immunoglobulin G3 (IgG3) is the predominant IgG subclass elicited in response to polysaccharide antigens in mice. This specific subclass has been shown to crosslink its fragment crystallizable (Fc) regions following binding to multivalent polysaccharides. Crosslinking leads to increased affinity through avidity, which theoretically should lead to more effective protection against bacteria and yeast displaying capsular polysaccharides on their surface. To investigate this further we have analyzed the binding characteristics of 2 IgG monoclonal antibody (mAb) subclass families that bind to the capsular polysaccharide (CPS) of Burkholderia pseudomallei. The first subclass family originated from an IgG3 hybridoma cell line (3C5); the second family was generated from an IgG1 cell line (2A5). When the Fc region of the 3C5 IgG3 is removed by proteolytic cleavage, the resulting F(ab')2 fragments exhibit decreased affinity compared to the full-length mAb. Similarly, when the parent IgG3 mAb is subclass-switched to IgG1, IgG2b, and IgG2a, all of these subclasses exhibit decreased affinity. This decrease in affinity is not seen when the 2A5 IgG1 mAb is switched to an IgG2b or IgG2a, strongly suggesting the drop in affinity is related to the IgG3 Fc region.
Collapse
Affiliation(s)
- Michael J. Dillon
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA
| | - Rachael A. Loban
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA
| | - Dana E. Reed
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA
| | - Peter Thorkildson
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA
| | - Kathryn J. Pflughoeft
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sujata G. Pandit
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - David P. AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
10
|
Simple alternative to sialic acid determination in meningococcal polysaccharides W or Y. J Pharm Biomed Anal 2016; 120:283-9. [PMID: 26760246 DOI: 10.1016/j.jpba.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 11/21/2022]
Abstract
Physicochemical methods are the primary tests used to ensure that batches of meningococcal polysaccharide (PS) antigens are manufactured consistently to those shown to be safe and effective in clinical trials. Although modern physicochemical methods of analysis providing structural information about the antigens have been developed and used, simpler assays, which can be readily validated, are still in use for polysaccharide batch release. The simple and cheap method for Neisseria meningitidis serogroup W or Y polysaccharide (MenW or MenY PS) content quantification has been developed. This colorimetric method is based on the galactose or glucose quantification in MenW or MenY PS hydrolysate, respectively. Intra- and inter-assay precision and accuracy of the novel method have been demonstrated, in comparison to the same properties of the current regulatory approved method for the same purpose - sialic acid quantification. We provided the calculation of the possible future regulatory requirement for the galactose or glucose content in MenW or MenY PS, respectively, and revealed in detail the stoichiometric calculation behind it.
Collapse
|
11
|
Mihret W, Lema T, Merid Y, Kassu A, Abebe W, Moges B, Tenna A, Woldegebriel F, Yidnekachew M, Mekonnen W, Ahmed A, Yamuah L, Silamsaw M, Petros B, Oksnes J, Rosenqvist E, Ayele S, Aseffa A, Caugant DA, Norheim G. Surveillance of Bacterial Meningitis, Ethiopia, 2012-2013. Emerg Infect Dis 2016; 22:75-8. [PMID: 26689450 PMCID: PMC4696686 DOI: 10.3201/eid2201.150432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among 139 patients with suspected bacterial meningitis in Ethiopia, 2012-2013, meningococci (19.4%) and pneumococci (12.9%) were the major disease-causing organisms. Meningococcal serogroups detected were A (n = 11), W (n = 7), C (n = 1), and X (n = 1). Affordable, multivalent meningitis vaccines for the African meningitis belt are urgently needed.
Collapse
|
12
|
Agnememel A, Traincard F, Dartevelle S, Mulard L, Mahamane AE, Oukem-Boyer OOM, Denizon M, Kacou-N Douba A, Dosso M, Gake B, Lombart JP, Taha MK. Development and evaluation of a dipstick diagnostic test for Neisseria meningitidis serogroup X. J Clin Microbiol 2015; 53:449-54. [PMID: 25411183 PMCID: PMC4298516 DOI: 10.1128/jcm.02444-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/13/2014] [Indexed: 11/20/2022] Open
Abstract
The emergence of Neisseria meningitidis serogroup X (NmX) in the African meningitis belt has urged the development of diagnostic tools and vaccines for this serogroup, especially following the introduction of a conjugate vaccine against N. meningitidis serogroup A (NmA). We have developed and evaluated a new rapid diagnostic test (RDT) for detecting the capsular polysaccharide (cps) antigen of this emerging serogroup. Whole inactivated NmX bacteria were used to immunize rabbits. Following purification by affinity chromatography, the cpsX-specific IgG antibodies were utilized to develop an NmX-specific immunochromatography dipstick RDT. The test was validated against purified cpsX and meningococcal strains of different serogroups. Its performance was evaluated against that of PCR on a collection of 369 cerebrospinal fluid (CSF) samples obtained from patients living in countries within the meningitis belt (Cameroon, Côte d'Ivoire, and Niger) or in France. The RDT was highly specific for NmX strains. Cutoffs of 10(5) CFU/ml and 1 ng/ml were observed for the reference NmX strain and purified cpsX, respectively. Sensitivity and specificity were 100% and 94%, respectively. A high agreement between PCR and RDT (Kappa coefficient, 0.98) was observed. The RDT gave a high positive likelihood ratio and a low negative likelihood (0.07), indicating almost 100% probability of declaring disease or not when the test is positive or negative, respectively. This unique NmX-specific test could be added to the available set of RDT for the detection of meningococcal meningitis in Africa as a major tool to reinforce epidemiological surveillance after the introduction of the NmA conjugate vaccine.
Collapse
Affiliation(s)
- Alain Agnememel
- Institut Pasteur, Invasive Bacterial Infection Unit, National Reference Centre for Meningococci, Paris, France WHO Collaborating Centre for Meningococci, Institut Pasteur, Paris, France Université Denis Diderot, Sorbonne Paris Cité, Paris, France
| | - François Traincard
- Institut Pasteur, Plateforme d'Ingénierie des Anticorps (PFIA), Paris, France
| | - Sylvie Dartevelle
- Institut Pasteur, Plateforme d'Ingénierie des Anticorps (PFIA), Paris, France
| | - Laurence Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules, Paris, France CNRS UMR 3523, Institut Pasteur, Paris, France
| | | | | | - Mélanie Denizon
- Institut Pasteur, Invasive Bacterial Infection Unit, National Reference Centre for Meningococci, Paris, France WHO Collaborating Centre for Meningococci, Institut Pasteur, Paris, France
| | | | | | - Bouba Gake
- Centre Pasteur Annexe de Garoua, Garoua, Cameroon
| | | | - Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infection Unit, National Reference Centre for Meningococci, Paris, France WHO Collaborating Centre for Meningococci, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Abstract
Physicochemical techniques are a powerful tool for the structural characterization of carbohydrate-based vaccines. High-field Nuclear Magnetic Resonance (NMR) spectroscopy has been established as an extremely useful and robust method for tracking the industrial manufacturing process of these vaccines from polysaccharide bulk antigen through to the final formulation. Here, we describe the use of proton NMR for structural identity and conformity testing of carbohydrate-based vaccines.
Collapse
|
14
|
Harale KR, Dumare NB, Singh D, Misra AK, Chhikara MK. Synthesis of a tetrasaccharide and its glycoconjugate corresponding to the capsular polysaccharide of Neisseria meningitidis serogroup X and its immunochemical studies. RSC Adv 2015. [DOI: 10.1039/c5ra02993g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A tetrameric unit of capsular polysaccharide of Neisseria meningitidis X has been synthesized and conjugated with tetanus toxoid. Their immunochemical property has been evaluated which indicates towards the development of a potential MenX vaccine.
Collapse
Affiliation(s)
- Kishore R. Harale
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd
- New Delhi 110062
- India
| | - Nilesh B. Dumare
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd
- New Delhi 110062
- India
| | - Deepti Singh
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd
- New Delhi 110062
- India
| | | | | |
Collapse
|
15
|
Tunheim G, Næss L, Acevedo R, Fjeldheim Å, Bolstad K, García L, Cardoso D, Aase A, Zayas C, González H, Rosenqvist E, Norheim G. Preclinical immunogenicity study of trivalent meningococcal AWX-OMV vaccines for the African meningitis belt. Vaccine 2014; 32:6631-8. [DOI: 10.1016/j.vaccine.2014.09.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/05/2014] [Accepted: 09/26/2014] [Indexed: 12/11/2022]
|
16
|
Reyes F, Otero O, Camacho F, Amin N, Ramírez F, Valdés Y, Acevedo R, García L, Cardoso D, Cuello M. A novel monoclonal antibody to Neisseria meningitidis serogroup X capsular polysaccharide and its potential use in quantitation of meningococcal vaccines. Biologicals 2014; 42:312-5. [PMID: 25218518 DOI: 10.1016/j.biologicals.2014.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022] Open
Abstract
A novel murine hybridoma monoclonal antibody (MAb) was produced against the capsular polysaccharide (CP) of Neisseria meningitidis serogroup X (MenX) in order to develop a sandwich enzyme linked immunosorbent assay (ELISA) for the quantitation of the meningococcal polysaccharide. The MAb only reacted with the CP from MenX and did not react with CPs from N. meningitidis serogroups A, C, Y and W (MenA, MenC, MenY, MenW). The affinity constant (Ka) of the MAb measured by non-competitive ELISA was 7.25 × 10(7) M(-1). The application of this MAb in a sandwich ELISA was demonstrated by its ability to properly quantitate three lots of an experimental meningococcal CP-based vaccine. The MAb obtained in this work could be a valuable reagent for the detection and quantitation of future meningococcal vaccines containing MenX CP.
Collapse
Affiliation(s)
- Fátima Reyes
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba; Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, P.O. Box 160C, Chile.
| | - Oscar Otero
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba
| | - Frank Camacho
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba; Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, P.O. Box 160C, Chile
| | - Nevis Amin
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba
| | - Fidel Ramírez
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba
| | - Yolanda Valdés
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba
| | - Reynaldo Acevedo
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba
| | - Luis García
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba
| | - Daniel Cardoso
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba
| | - Maribel Cuello
- Research and Development Vicepresidency, Finlay Institute, La Habana, A.P. 16017, Cod. 11600, Cuba
| |
Collapse
|
17
|
Chilukuri SR, Reddy P, Avalaskar N, Mallya A, Pisal S, Dhere RM. Process development and immunogenicity studies on a serogroup ‘X’ Meningococcal polysaccharide conjugate vaccine. Biologicals 2014; 42:160-8. [DOI: 10.1016/j.biologicals.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022] Open
|
18
|
Adamo R, Micoli F, Proietti D, Berti F. Efficient Synthesis of Meningococcal X Polysaccharide Repeating Unit (N-Acetylglucosamine-4-phosphate) as Analytical Standard for Polysaccharide Determination. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2013.853189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Roberto Adamo
- a Research Center , Novartis Vaccines and Diagnostics , Siena , Italy
| | - Francesca Micoli
- b Research Center , Novartis Vaccines Institute for Global Health , Siena , Italy
| | - Daniela Proietti
- a Research Center , Novartis Vaccines and Diagnostics , Siena , Italy
| | - Francesco Berti
- a Research Center , Novartis Vaccines and Diagnostics , Siena , Italy
| |
Collapse
|
19
|
Fiebig T, Berti F, Freiberger F, Pinto V, Claus H, Romano MR, Proietti D, Brogioni B, Stummeyer K, Berger M, Vogel U, Costantino P, Gerardy-Schahn R. Functional expression of the capsule polymerase of Neisseria meningitidis serogroup X: a new perspective for vaccine development. Glycobiology 2013; 24:150-8. [PMID: 24259400 DOI: 10.1093/glycob/cwt102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis and sepsis. A key feature in pathogenicity is the capsular polysaccharide (CPS) that prevents complement activation and thus supports bacterial survival in the host. Twelve serogroups characterized by immunologically and structurally different CPSs have been identified. Meningococcal CPSs elicit bactericidal antibodies and consequently are used for the development of vaccines. Vaccination against the epidemiologically most relevant serogroups was initially carried out with purified CPS and later followed by conjugate vaccines which consist of CPS covalently linked to a carrier protein. Of increasing importance in the African meningitis belt is NmX for which no vaccine is currently available. Here, we describe the molecular cloning, recombinant expression and purification of the capsule polymerase (CP) of NmX called CsxA. The protein expressed with N- and/or C-terminal epitope tags was soluble and could be purified to near homogeneity. With short oligosaccharide primers derived from the NmX capsular polysaccharide (CPSX), recombinant CsxA produced long polymer chains in vitro that in immunoblots were detected with NmX-specific antibodies. Moreover, the chemical identity of in vitro produced NmX polysaccharides was confirmed by NMR. Besides the demonstration that the previously identified gene csxA encodes the NmX CP CsxA, the data presented in this study pave the way for the use of the recombinant CP as a safe and economic way to generate the CPSX in vaccine developmental programs.
Collapse
Affiliation(s)
- Timm Fiebig
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc Natl Acad Sci U S A 2013; 110:19077-82. [PMID: 24191022 DOI: 10.1073/pnas.1314476110] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in the African meningitis belt, and has a high associated mortality. The meningococcal serogroups A, W, and X have been responsible for epidemics and almost all cases of meningococcal meningitis in the meningitis belt over the past 12 y. Currently no vaccine is available against meningococcal X (MenX). Because the development of a new vaccine through to licensure takes many years, this leaves Africa vulnerable to new epidemics of MenX meningitis at a time when the epidemiology of meningococcal meningitis on the continent is changing rapidly, following the recent introduction of a glycoconjugate vaccine against serogroup A. Here, we report the development of candidate glycoconjugate vaccines against MenX and preclinical data from their use in animal studies. Following optimization of growth conditions of our seed MenX strain for polysaccharide (PS) production, a scalable purification process was developed yielding high amounts of pure MenX PS. Different glycoconjugates were synthesized by coupling MenX oligosaccharides of varying chain length to CRM197 as carrier protein. Analytical methods were developed for in-process control and determination of purity and consistency of the vaccines. All conjugates induced high anti-MenX PS IgG titers in mice. Antibodies were strongly bactericidal against African MenX isolates. These findings support the further development of glycoconjugate vaccines against MenX and their assessment in clinical trials to produce a vaccine against the one cause of epidemic meningococcal meningitis that currently cannot be prevented by available vaccines.
Collapse
|
21
|
Micoli F, Adamo R, Proietti D, Gavini M, Romano MR, MacLennan CA, Costantino P, Berti F. Meningococcal X polysaccharide quantification by high-performance anion-exchange chromatography using synthetic N-acetylglucosamine-4-phosphate as standard. Anal Biochem 2013; 442:259-61. [PMID: 23938776 DOI: 10.1016/j.ab.2013.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX.
Collapse
Affiliation(s)
- F Micoli
- Novartis Vaccines Institute for Global Health, Via Fiorentina 1, I-53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
23
|
Pajon R, Fergus AM, Granoff DM. Mutant Native Outer Membrane Vesicles Combined with a Serogroup A Polysaccharide Conjugate Vaccine for Prevention of Meningococcal Epidemics in Africa. PLoS One 2013; 8:e66536. [PMID: 23805230 PMCID: PMC3689835 DOI: 10.1371/journal.pone.0066536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/07/2013] [Indexed: 11/24/2022] Open
Abstract
Background The meningococcal serogroup A (MenA) polysaccharide conjugate vaccine used in Sub-Saharan Africa does not prevent disease caused by MenW or MenX strains, which also cause epidemics in the region. We investigated the vaccine-potential of native outer membrane vesicles with over-expressed factor H-binding protein (NOMV-fHbp), which targeted antigens in African meningococcal strains, and was combined with a MenA polysaccharide conjugate vaccine. Methodology/Principal Findings The NOMV-fHbp vaccine was prepared from a mutant African MenW strain with PorA P1.5,2, attenuated endotoxin (ΔLpxL1), deleted capsular genes, and over-expressed fHbp in variant group 1. The NOMV-fHbp was adsorbed with Al(OH)3 and used to reconstitute a lyophilized MenA conjugate vaccine, which normally is reconstituted with liquid MenC, Y and W conjugates in a meningococcal quadrivalent conjugate vaccine (MCV4-CRM, Novartis). Mice immunized with the NOMV-fHbp vaccine alone developed serum bactericidal (human complement) activity against 13 of 15 African MenA strains tested; 10 of 10 African MenX strains, 7 of 7 African MenW strains, and 6 of 6 genetically diverse MenB strains with fHbp variant group 1 (including 1 strain from The Gambia). The combination NOMV-fHbp/MenA conjugate vaccine elicited high serum bactericidal titers against the two MenA strains tested that were resistant to bactericidal antibodies elicited by the NOMV-fHbp alone; the combination elicited higher titers against the MenA and MenW strains than those elicited by a control MCV4-CRM vaccine (P<0.05); and high titers against MenX and MenB strains. For most strains, the titers elicited by a control NOMV-fHbp knock out vaccine were <1∶10 except when the strain PorA matched the vaccine (titers >1∶000). Conclusion/Significance The NOMV-fHbp/MenA conjugate vaccine provided similar or higher coverage against MenA and MenW strains than a quadrivalent meningococcal conjugate vaccine, and extended protection against MenX strains responsible for epidemics in Africa, and MenB strains with fHbp in variant group 1.
Collapse
MESH Headings
- Africa South of the Sahara/epidemiology
- Animals
- Female
- Humans
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/genetics
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Mice
- Neisseria meningitidis, Serogroup A/genetics
- Neisseria meningitidis, Serogroup A/immunology
- Polysaccharides, Bacterial/genetics
- Polysaccharides, Bacterial/immunology
- Vaccines, Conjugate/genetics
- Vaccines, Conjugate/immunology
Collapse
Affiliation(s)
- Rolando Pajon
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Andrew M. Fergus
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Dan M. Granoff
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Xie O, Pollard AJ, Mueller JE, Norheim G. Emergence of serogroup X meningococcal disease in Africa: Need for a vaccine. Vaccine 2013; 31:2852-61. [DOI: 10.1016/j.vaccine.2013.04.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 12/27/2022]
|
25
|
Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 2013; 378:35-44. [PMID: 23746650 DOI: 10.1016/j.carres.2013.05.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 12/11/2022]
Abstract
Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.
Collapse
Affiliation(s)
- Lisa M Willis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
26
|
Hong E, Giuliani MM, Deghmane AE, Comanducci M, Brunelli B, Dull P, Pizza M, Taha MK. Could the multicomponent meningococcal serogroup B vaccine (4CMenB) control Neisseria meningitidis capsular group X outbreaks in Africa? Vaccine 2013; 31:1113-6. [DOI: 10.1016/j.vaccine.2012.12.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 02/03/2023]
|
27
|
|