1
|
Chua BY, Sekiya T, Koutsakos M, Nomura N, Rowntree LC, Nguyen THO, McQuilten HA, Ohno M, Ohara Y, Nishimura T, Endo M, Itoh Y, Habel JR, Selva KJ, Wheatley AK, Wines BD, Hogarth PM, Kent SJ, Chung AW, Jackson DC, Brown LE, Shingai M, Kedzierska K, Kida H. Immunization with inactivated whole virus particle influenza virus vaccines improves the humoral response landscape in cynomolgus macaques. PLoS Pathog 2022; 18:e1010891. [PMID: 36206307 PMCID: PMC9581423 DOI: 10.1371/journal.ppat.1010891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.
Collapse
Affiliation(s)
- Brendon Y. Chua
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Toshiki Sekiya
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hayley A. McQuilten
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | | | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Parkville, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
- Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David C. Jackson
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lorena E. Brown
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Masashi Shingai
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Katherine Kedzierska
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hiroshi Kida
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, Brown LE, Kida H. Selecting and Using the Appropriate Influenza Vaccine for Each Individual. Viruses 2021; 13:971. [PMID: 34073843 PMCID: PMC8225103 DOI: 10.3390/v13060971] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.
Collapse
Affiliation(s)
- Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Chimuka Handabile
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
| | - David C. Jackson
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Lorena E. Brown
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
3
|
Newman M, Gregg K, Estes R, Pursell K, Pitrak D. Acquired hypogammaglobulinemia and pathogen-specific antibody depletion after solid organ transplantation in human immunodeficiency virus infection: A brief report. Transpl Infect Dis 2019; 21:e13188. [PMID: 31587457 PMCID: PMC6917882 DOI: 10.1111/tid.13188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 09/15/2019] [Indexed: 01/04/2023]
Abstract
Hypogammaglobulinemia (HGG) frequently occurs in recipients after types of (SOT). The incidence and significance of HGG in HIV+ recipients of SOT are just being explored. We reported that 12% of the recipients in the SOT in multi-center HIV-TR (HIV-TR) Study developed moderate or severe HGG at 1 year. In LT recipients, this was associated with serious infections and death. We have now further characterized the decreased antibodies in HIV+ SOT recipients who developed HGG. We measured the levels of pathogen-specific antibodies and poly-specific self-reactive antibodies (PSA) in relation to total IgG levels from serial serum samples for 20 HIV+ SOT recipients who developed moderate to severe HGG following SOT. Serum antibody levels to measles, tetanus toxoid, and HIV-1 were determined by EIA. Levels of PSAs were determined by incubating control lymphocytes with patient serum, staining with anti-human IgG Fab-FITC, and analysis by flow cytometry. Levels of PSA were higher compared to healthy, HIV-uninfected controls at pre-transplant baseline and increased by weeks 12 and 26, but the changes were not significant. Likewise, anti-HIV antibody levels remained unchanged over time. In contrast, antibody levels against measles and tetanus were significantly reduced from baseline by week 12, and did not return to baseline, even after 2 years. For HIV patients who develop moderate to severe HGG after transplant, the reduction in IgG levels is associated with a significant decrease in pathogen-specific antibody titers, while PSA levels and anti-HIV antibodies are unchanged. This may contribute to infectious complications and other clinical endpoints.
Collapse
Affiliation(s)
- Margaret Newman
- University of Chicago Medicine, Chicago, IL; Section of Infectious Diseases and Global Health
| | - Kevin Gregg
- University of Michigan, Ann Arbor, MI; Division of Infectious Diseases
| | - Randee Estes
- University of Chicago Medicine, Chicago, IL; Section of Infectious Diseases and Global Health
| | - Kenneth Pursell
- University of Chicago Medicine, Chicago, IL; Section of Infectious Diseases and Global Health
| | - David Pitrak
- University of Chicago Medicine, Chicago, IL; Section of Infectious Diseases and Global Health
| |
Collapse
|
4
|
Feng X, Xu W, Li Z, Song W, Ding J, Chen X. Immunomodulatory Nanosystems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900101. [PMID: 31508270 PMCID: PMC6724480 DOI: 10.1002/advs.201900101] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Indexed: 05/15/2023]
Abstract
Immunotherapy has emerged as an effective strategy for the prevention and treatment of a variety of diseases, including cancer, infectious diseases, inflammatory diseases, and autoimmune diseases. Immunomodulatory nanosystems can readily improve the therapeutic effects and simultaneously overcome many obstacles facing the treatment method, such as inadequate immune stimulation, off-target side effects, and bioactivity loss of immune agents during circulation. In recent years, researchers have continuously developed nanomaterials with new structures, properties, and functions. This Review provides the most recent advances of nanotechnology for immunostimulation and immunosuppression. In cancer immunotherapy, nanosystems play an essential role in immune cell activation and tumor microenvironment modulation, as well as combination with other antitumor approaches. In infectious diseases, many encouraging outcomes from using nanomaterial vaccines against viral and bacterial infections have been reported. In addition, nanoparticles also potentiate the effects of immunosuppressive immune cells for the treatment of inflammatory and autoimmune diseases. Finally, the challenges and prospects of applying nanotechnology to modulate immunotherapy are discussed.
Collapse
Affiliation(s)
- Xiangru Feng
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Department of Gastrointestinal Colorectal and Anal SurgeryChina–Japan Union Hospital of Jilin UniversityChangchun130033P. R. China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
5
|
Chua BY, Sekiya T, Jackson DC. Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunol 2018; 31:150-158. [PMID: 29369750 DOI: 10.1089/vim.2017.0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Empirically derived vaccines have in the past relied on the isolation and growth of disease-causing microorganisms that are then inactivated or attenuated before being administered. This is often done without prior knowledge of the mechanisms involved in conferring protective immunity. Recent advances in scientific technologies and in our knowledge of how protective immune responses are induced enable us to rationally design novel and safer vaccination strategies. Such advances have accelerated the development of inactivated whole-organism- and subunit-based vaccines. In this review, we discuss ideal attributes and criteria that need to be considered for the development of vaccines and some existing vaccine platforms. We focus on inactivated vaccines against influenza virus and ways by which vaccine efficacy can be improved with the use of adjuvants and Toll-like receptor-2 signaling.
Collapse
Affiliation(s)
- Brendon Y Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - Toshiki Sekiya
- 2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| |
Collapse
|
6
|
Barrett PN, Terpening SJ, Snow D, Cobb RR, Kistner O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines 2017; 16:883-894. [PMID: 28724343 DOI: 10.1080/14760584.2017.1357471] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.
Collapse
Affiliation(s)
| | | | - Doris Snow
- a Nanotherapeutics Inc. , Alachua , FL , USA
| | | | | |
Collapse
|
7
|
Halsey NA, Talaat KR, Greenbaum A, Mensah E, Dudley MZ, Proveaux T, Salmon DA. The safety of influenza vaccines in children: An Institute for Vaccine Safety white paper. Vaccine 2016; 33 Suppl 5:F1-F67. [PMID: 26822822 DOI: 10.1016/j.vaccine.2015.10.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 01/19/2023]
Abstract
Most influenza vaccines are generally safe, but influenza vaccines can cause rare serious adverse events. Some adverse events, such as fever and febrile seizures, are more common in children than adults. There can be differences in the safety of vaccines in different populations due to underlying differences in genetic predisposition to the adverse event. Live attenuated vaccines have not been studied adequately in children under 2 years of age to determine the risks of adverse events; more studies are needed to address this and several other priority safety issues with all influenza vaccines in children. All vaccines intended for use in children require safety testing in the target age group, especially in young children. Safety of one influenza vaccine in children should not be extrapolated to assumed safety of all influenza vaccines in children. The low rates of adverse events from influenza vaccines should not be a deterrent to the use of influenza vaccines because of the overwhelming evidence of the burden of disease due to influenza in children.
Collapse
Affiliation(s)
- Neal A Halsey
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States.
| | - Kawsar R Talaat
- Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Adena Greenbaum
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eric Mensah
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Tina Proveaux
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
8
|
Hegde NR. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum Vaccin Immunother 2016; 11:1223-34. [PMID: 25875691 DOI: 10.1080/21645515.2015.1016666] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The traditional platform of using embryonated chicken eggs for the production of influenza vaccines has several drawbacks including the inability to meet the volume of required doses in the case of widespread epidemics and pandemics. Cell culture platforms have therefore been explored in the last 2 decades, and have attracted further attention following the H1N1 pandemic outbreak. This platform, while not the most economical for large-scale production, has several advantages, and can supplement the vaccine requirement when needed. Recent developments in production technologies have contributed greatly to fine-tuning this platform. In combination with other technologies such as live attenuated and recombinant protein or virus-like particle vaccines, and different adjuvants and delivery systems, cell culture-based influenza vaccine platform can be used both for production of seasonal vaccine, and to mitigate vaccine shortages in pandemic situations.
Collapse
Affiliation(s)
- Nagendra R Hegde
- a Ella Foundation; Genome Valley; Turkapally , Shameerpet Mandal , Hyderabad , India
| |
Collapse
|
9
|
Wodal W, Schwendinger MG, Savidis-Dacho H, Crowe BA, Hohenadl C, Fritz R, Brühl P, Portsmouth D, Karner-Pichl A, Balta D, Grillberger L, Kistner O, Barrett PN, Howard MK. Immunogenicity and protective efficacy of a Vero cell culture-derived whole-virus H7N9 vaccine in mice and guinea pigs. PLoS One 2015; 10:e0113963. [PMID: 25719901 PMCID: PMC4342221 DOI: 10.1371/journal.pone.0113963] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022] Open
Abstract
Background A novel avian H7N9 virus with a high case fatality rate in humans emerged in China in 2013. We evaluated the immunogenicity and protective efficacy of a candidate Vero cell culture-derived whole-virus H7N9 vaccine in small animal models. Methods Antibody responses induced in immunized DBA/2J mice and guinea pigs were evaluated by hemagglutination inhibition (HI), microneutralization (MN), and neuraminidase inhibition (NAi) assays. T-helper cell responses and IgG subclass responses in mice were analyzed by ELISPOT and ELISA, respectively. Vaccine efficacy against lethal challenge with wild-type H7N9 virus was evaluated in immunized mice. H7N9-specific antibody responses induced in mice and guinea pigs were compared to those induced by a licensed whole-virus pandemic H1N1 (H1N1pdm09) vaccine. Results The whole-virus H7N9 vaccine induced dose-dependent H7N9-specific HI, MN and NAi antibodies in mice and guinea pigs. Evaluation of T-helper cell responses and IgG subclasses indicated the induction of a balanced Th1/Th2 response. Immunized mice were protected against lethal H7N9 challenge in a dose-dependent manner. H7N9 and H1N1pdm09 vaccines were similarly immunogenic. Conclusions The induction of H7N9-specific antibody and T cell responses and protection against lethal challenge suggest that the Vero cell culture-derived whole-virus vaccine would provide an effective intervention against the H7N9 virus.
Collapse
Affiliation(s)
- Walter Wodal
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | | | | | | | - Peter Brühl
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | - Dalida Balta
- Process Development R&D, Baxter BioScience, Orth/Donau, Austria
| | | | | | - P. Noel Barrett
- Vaccine R&D, Baxter BioScience, Orth/Donau, Austria
- * E-mail:
| | | |
Collapse
|
10
|
Abstract
In this chapter, we describe 73 zoonotic viruses that were isolated in Northern Eurasia and that belong to the different families of viruses with a single-stranded RNA (ssRNA) genome. The family includes viruses with a segmented negative-sense ssRNA genome (families Bunyaviridae and Orthomyxoviridae) and viruses with a positive-sense ssRNA genome (families Togaviridae and Flaviviridae). Among them are viruses associated with sporadic cases or outbreaks of human disease, such as hemorrhagic fever with renal syndrome (viruses of the genus Hantavirus), Crimean–Congo hemorrhagic fever (CCHFV, Nairovirus), California encephalitis (INKV, TAHV, and KHATV; Orthobunyavirus), sandfly fever (SFCV and SFNV, Phlebovirus), Tick-borne encephalitis (TBEV, Flavivirus), Omsk hemorrhagic fever (OHFV, Flavivirus), West Nile fever (WNV, Flavivirus), Sindbis fever (SINV, Alphavirus) Chikungunya fever (CHIKV, Alphavirus) and others. Other viruses described in the chapter can cause epizootics in wild or domestic animals: Geta virus (GETV, Alphavirus), Influenza A virus (Influenzavirus A), Bhanja virus (BHAV, Phlebovirus) and more. The chapter also discusses both ecological peculiarities that promote the circulation of these viruses in natural foci and factors influencing the occurrence of epidemic and epizootic outbreaks
Collapse
|
11
|
Phase I/II randomized double-blind study of the safety and immunogenicity of a nonadjuvanted vero cell culture-derived whole-virus H9N2 influenza vaccine in healthy adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:46-55. [PMID: 25355797 DOI: 10.1128/cvi.00275-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies on candidate pandemic vaccines against avian influenza viruses have focused on H5N1, but viruses of other subtypes, such as A/H9N2, are also considered to have pandemic potential. We investigated the safety and immunogenicity of two immunizations with one of five different antigen doses (ranging from 3.75 to 45 μg of hemagglutinin antigen) of a nonadjuvanted whole-virus G9 lineage H9N2 influenza virus vaccine in healthy adults aged 18 to 49 years. The antibody responses were measured by hemagglutination inhibition (HI), microneutralization (MN), and single radial hemolysis (SRH) assays. To investigate a hypothesis that previous exposure to H2N2 viruses in subjects born in or before 1968 might prime for more robust antibody responses to H9N2 vaccination than that in subjects born after 1968, a post hoc age-stratified analysis of antibody responses was done. Both vaccinations in all dose groups were safe and well tolerated. No vaccine-related serious adverse events were reported, and the majority of the adverse reactions were rated as mild. The rates of injection site reactions were lower in the 3.75-μg- and 7.5-μg-dose groups than those in the higher-dose groups; the rates of systemic reactions were similar across all dose groups. The seroprotection rates among the different dose groups 21 days after the second immunization ranged from 52.8% to 88.9% as measured by HI assay, from 88.7% to 98.1% or 82.7% to 96.2% as measured by MN assay (MN titer cutoffs, 1:40 and 1:80, respectively), and from 94.2% to 100% as measured by SRH assay. Higher antibody responses were not induced in subjects born in or before 1968. These data indicate that a nonadjuvanted whole-virus H9N2 vaccine is well tolerated and immunogenic in healthy adults. (This study has been registered at ClinicalTrials.gov under registration no. NCT01320696.).
Collapse
|
12
|
Barrett PN, Portsmouth D, Ehrlich HJ. Vero cell culture-derived pandemic influenza vaccines: preclinical and clinical development. Expert Rev Vaccines 2013; 12:395-413. [PMID: 23560920 DOI: 10.1586/erv.13.21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several subtypes of influenza A viruses with pandemic potential are endemic in bird populations throughout Asia, Africa and the Middle East, and evidence suggests that these viruses are adapting to the mammalian host. As emphasized by the high mortality rate of humans infected with H5N1 viruses, this situation presents a substantial risk to global human health. The Vero cell culture platform has been used to develop whole-virus influenza vaccines that provide broad cross-clade protection against viruses with pandemic potential, at low antigen doses, without the requirement for adjuvantation. The safety and immunogenicity of these vaccines has been demonstrated in studies with more than 10,000 individuals, including healthy adult and elderly subjects, children and various risk groups. These Vero cell-derived vaccines are licensed for prepandemic and pandemic use. The Vero platform is also being explored to develop next-generation live-attenuated and recombinant vaccines.
Collapse
Affiliation(s)
- P Noel Barrett
- Vaccine R&D, Baxter BioScience, Biomedical Research Centre, Uferstraße 15, A-2304 Orth/Donau, Austria.
| | | | | |
Collapse
|