1
|
Maruyama J, Mateer EJ, Manning JT, Sattler R, Seregin AV, Bukreyeva N, Jones FR, Balint JP, Gabitzsch ES, Huang C, Paessler S. Adenoviral vector-based vaccine is fully protective against lethal Lassa fever challenge in Hartley guinea pigs. Vaccine 2019; 37:6824-6831. [PMID: 31561999 DOI: 10.1016/j.vaccine.2019.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/18/2022]
Abstract
Lassa virus (LASV), the causative agent of Lassa fever (LF), was first identified in 1969. Since then, outbreaks in the endemic countries of Nigeria, Liberia, and Sierra Leone occur on an annual basis resulting in a case-fatality rate of 15-70% in hospitalized patients. There is currently no licensed vaccine and there are limited animal models to test vaccine efficacy. An estimated 37.7 million people are at risk of contracting LASV; therefore, there is an urgent need for the development of a safe, effective vaccine against LASV infection. The LF endemic countries are also inflicted with HIV, Ebola, and malaria infections. The safety in immunocompromised populations must be considered in LASV vaccine development. The novel adenovirus vector-based platform, Ad5 (E1-,E2b-) has been used in clinical trial protocols for treatment of immunocompromised individuals, has been shown to exhibit high stability, low safety risk in humans, and induces a strong cell-mediated and pro-inflammatory immune response even in the presence of pre-existing adenovirus immunity. To this nature, our lab has developed an Ad5 (E1-,E2b-) vector-based vaccine expressing the LASV-NP or LASV-GPC. We found that guinea pigs vaccinated with two doses of Ad5 (E1-,E2b-) LASV-NP and Ad5 (E1-,E2b-) LASV-GPC were protected against lethal LASV challenge. The Ad5 (E1-,E2b-) LASV-NP and LASV-GPC vaccine represents a potential vaccine candidate against LF.
Collapse
Affiliation(s)
- Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Elizabeth J Mateer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - John T Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rachel Sattler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexey V Seregin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalya Bukreyeva
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Du S, Jiang Y, Xu W, Bai J, Tian M, Wang M, Wang Y, Cao T, Song L, Jiang Y, Chen J, Fu T, Hao P, Li T, Wu S, Ren L, Jin N, Li C. Construction, expression and antiviral activity analysis of recombinant adenovirus expressing human IFITM3 in vitro. Int J Biol Macromol 2019; 131:925-932. [PMID: 30914370 PMCID: PMC7112391 DOI: 10.1016/j.ijbiomac.2019.03.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/07/2023]
Abstract
Interferon-inducible transmembrane protein 3 (IFITM3) inhibits the replication of multiple pathogenic viruses by blocking their entry. In this study, we constructed a shuttle plasmid, harboring human IFITM3. Thereafter, recombinant adenovirus rAd5-IFITM3 was obtained by co-transfection of the linearized viral backbone vector pAd5 and the shuttle plasmid. The results showed that human IFITM3 did not affect the assembly and morphogenesis of progeny adenovirus. Human IFITM3 can be expressed in both A549 and MDCK cells in a time dependent manner. Furthermore, cells infected with rAd5-IFITM3 at a multiplicity of infection (MOI) of 100 for 24 h were challenged with avian influenza virus (AIV) H5N1 at an MOI of 1 for 6, 12 and 24 h. Rates of H5N1 infection in rAd5-IFITM3 cells were significantly decreased at 24 h post-infection (hpi), in a time dependent manner, compared with that of wild type wtAd5-infected cells. The expressions of viral genes were significantly inhibited at transcriptional and translational levels at 6 and 12 hpi. These results suggest that IFITM3 can suppress H5N1 replication in the early stage of the infection, which may be used as a promise agent against H5N1 infection in vivo.
Collapse
Affiliation(s)
- Shouwen Du
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China; 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yinyue Jiang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Wang Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Jieying Bai
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Mingyao Tian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Maopeng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Yuhang Wang
- 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Tingting Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Lina Song
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Yuhang Jiang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Jing Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Tingting Fu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Penfeng Hao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Tiyuan Li
- 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Shipin Wu
- 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China.
| | - Chang Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China.
| |
Collapse
|
3
|
Gabitzsch ES, Tsang KY, Palena C, David JM, Fantini M, Kwilas A, Rice AE, Latchman Y, Hodge JW, Gulley JL, Madan RA, Heery CR, Balint JP, Jones FR, Schlom J. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic. Oncotarget 2016; 6:31344-59. [PMID: 26374823 PMCID: PMC4741610 DOI: 10.18632/oncotarget.5181] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies.
Collapse
Affiliation(s)
| | - Kwong Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Fantini
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Kwilas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Balint JP, Gabitzsch ES, Rice A, Latchman Y, Xu Y, Messerschmidt GL, Chaudhry A, Morse MA, Jones FR. Extended evaluation of a phase 1/2 trial on dosing, safety, immunogenicity, and overall survival after immunizations with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine in late-stage colorectal cancer. Cancer Immunol Immunother 2015; 64:977-87. [PMID: 25956394 PMCID: PMC4506904 DOI: 10.1007/s00262-015-1706-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/25/2015] [Indexed: 01/20/2023]
Abstract
A phase 1/2 clinical trial evaluating dosing, safety, immunogenicity, and overall survival on metastatic colorectal cancer (mCRC) patients after immunotherapy with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine was performed. We report our extended observations on long-term overall survival and further immune analyses on a subset of treated patients including assessment of cytolytic T cell responses, T regulatory (Treg) to T effector (Teff) cell ratios, flow cytometry on peripheral blood mononuclear cells (PBMCs), and determination of HLA-A2 status. An overall survival of 20 % (median survival 11 months) was observed during long-term follow-up, and no long-term adverse effects were reported. Cytolytic T cell responses increased after immunizations, and cell-mediated immune (CMI) responses were induced whether or not patients were HLA-A2 positive or Ad5 immune. PBMC samples from a small subset of patients were available for follow-up immune analyses. It was observed that the levels of carcinoembryonic antigen (CEA)-specific CMI activity decreased from their peak values during follow-up in five patients analyzed. Preliminary results revealed that activated CD4+ and CD8+ T cells were detected in a post-immunization sample exhibiting high CMI activity. Treg to Teff cell ratios were assessed, and samples from three of five patients exhibited a decrease in Treg to Teff cell ratio during the treatment protocol. Based upon the favorable safety and immunogenicity data obtained, we plan to perform an extensive immunologic and survival analysis on mCRC patients to be enrolled in a randomized/controlled clinical trial that investigates Ad5 [E1-, E2b-]-CEA(6D) as a single agent with booster immunizations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael A. Morse
- Department of Medicine, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
5
|
The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014. Antiviral Res 2015; 117:75-98. [PMID: 25746173 DOI: 10.1016/j.antiviral.2015.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022]
Abstract
Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer's study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research.
Collapse
|
6
|
Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:156-64. [PMID: 24307239 DOI: 10.1128/cvi.00560-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.
Collapse
|
7
|
Bridle BW, Clouthier D, Zhang L, Pol J, Chen L, Lichty BD, Bramson JL, Wan Y. Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8 + T-cell responses to anticancer vaccines. Oncoimmunology 2013; 2:e26013. [PMID: 24083086 PMCID: PMC3782525 DOI: 10.4161/onci.26013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/02/2013] [Indexed: 12/31/2022] Open
Abstract
The ability of heterologous prime-boost vaccination to elicit robust CD8+ T cell responses has been well documented. In contrast, relatively little is known about how this immunotherapeutic strategy impacts the functional qualities of expanded T cells in the course of effector and memory responses. Using vesicular stomatitis virus (VSV) as a boosting vector in mice, we demonstrate that a massive secondary expansion of CD8+ T cells can be achieved shortly after priming with recombinant adenoviral vectors. Importantly, VSV-boosted CD8+ T cells were more potent than those primed by adenoviruses only, as measured by cytokine production, granzyme B expression, and functional avidity. Upon adoptive transfer, equivalent numbers of VSV-expanded CD8+ T cells were more effective (on a per-cell basis) in mediating antitumor and antiviral immunity than T cells only primed with adenoviruses. Furthermore, VSV boosting accelerated the progression of expanded CD8+ T lymphocytes to a central memory phenotype, thereby altering the effector memory profile typically associated with adenoviral vaccination. Finally, the functional superiority of VSV-expanded T cells remained evident 100 d after boosting, suggesting that VSV-driven immunological responses are of sufficient duration for therapeutic applications. Our data strongly support the choice of VSV as a boosting vector in prime-boost vaccination strategies, enabling a rapid amplification of CD8+ T cells and improving the quality of expanded T cells during both early and late immunological responses.
Collapse
Affiliation(s)
- Byram W Bridle
- Department of Pathobiology University of Guelph Guelph, ON Canada
| | | | | | | | | | | | | | | |
Collapse
|