1
|
Utrilla-Trigo S, Jiménez-Cabello L, Marín-López A, Illescas-Amo M, Andrés G, Calvo-Pinilla E, Lorenzo G, van Rijn PA, Ortego J, Nogales A. Engineering recombinant replication-competent bluetongue viruses expressing reporter genes for in vitro and non-invasive in vivo studies. Microbiol Spectr 2024; 12:e0249323. [PMID: 38353566 PMCID: PMC10923215 DOI: 10.1128/spectrum.02493-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024] Open
Abstract
Bluetongue virus (BTV) is the causative agent of the important livestock disease bluetongue (BT), which is transmitted via Culicoides bites. BT causes severe economic losses associated with its considerable impact on health and trade of animals. By reverse genetics, we have designed and rescued reporter-expressing recombinant (r)BTV expressing NanoLuc luciferase (NLuc) or Venus fluorescent protein. To generate these viruses, we custom synthesized a modified viral segment 5 encoding NS1 protein with the reporter genes located downstream and linked by the Porcine teschovirus-1 (PTV-1) 2A autoproteolytic cleavage site. Therefore, fluorescent signal or luciferase activity is only detected after virus replication and expression of non-structural proteins. Fluorescence or luminescence signals were detected in cells infected with rBTV/Venus or rBTV/NLuc, respectively. Moreover, the marking of NS2 protein confirmed that reporter genes were only expressed in BTV-infected cells. Growth kinetics of rBTV/NLuc and rBTV/Venus in Vero cells showed replication rates similar to those of wild-type and rBTV. Infectivity studies of these recombinant viruses in IFNAR(-/-) mice showed a higher lethal dose for rBTV/NLuc and rBTV/Venus than for rBTV indicating that viruses expressing the reporter genes are attenuated in vivo. Interestingly, luciferase activity was detected in the plasma of viraemic mice infected with rBTV/NLuc. Furthermore, luciferase activity quantitatively correlated with RNAemia levels of infected mice throughout the infection. In addition, we have investigated the in vivo replication and dissemination of BTV in IFNAR (-/-) mice using BTV/NLuc and non-invasive in vivo imaging systems.IMPORTANCEThe use of replication-competent viruses that encode a traceable fluorescent or luciferase reporter protein has significantly contributed to the in vitro and in vivo study of viral infections and the development of novel therapeutic approaches. In this work, we have generated rBTV that express fluorescent or luminescence proteins to track BTV infection both in vitro and in vivo. Despite the availability of vaccines, BTV and other related orbivirus are still associated with a significant impact on animal health and have important economic consequences worldwide. Our studies may contribute to the advance in orbivirus research and pave the way for the rapid development of new treatments, including vaccines.
Collapse
Affiliation(s)
- Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Germán Andrés
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
2
|
Zimnyakov DA, Alonova MV, Lavrukhin MS, Lyapina AM, Feodorova VA. Polarization- and Chaos-Game-Based Fingerprinting of Molecular Targets of Listeria Monocytogenes Vaccine and Fully Virulent Strains. Curr Issues Mol Biol 2023; 45:10056-10078. [PMID: 38132474 PMCID: PMC10742786 DOI: 10.3390/cimb45120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Two approaches to the synthesis of 2D binary identifiers ("fingerprints") of DNA-associated symbol sequences are considered in this paper. One of these approaches is based on the simulation of polarization-dependent diffraction patterns formed by reading the modeled DNA-associated 2D phase-modulating structures with a coherent light beam. In this case, 2D binarized distributions of close-to-circular extreme polarization states are applied as fingerprints of analyzed nucleotide sequences. The second approach is based on the transformation of the DNA-associated chaos game representation (CGR) maps into finite-dimensional binary matrices. In both cases, the differences between the structures of the analyzed and reference symbol sequences are quantified by calculating the correlation coefficient of the synthesized binary matrices. A comparison of the approaches under consideration is carried out using symbol sequences corresponding to nucleotide sequences of the hly gene from the vaccine and wild-type strains of Listeria monocytogenes as the analyzed objects. These strains differ in terms of the number of substituted nucleotides in relation to the vaccine strain selected as a reference. The results of the performed analysis allow us to conclude that the identification of structural differences in the DNA-associated symbolic sequences is significantly more efficient when using the binary distributions of close-to-circular extreme polarization states. The approach given can be applicable for genetic differentiation immunized from vaccinated animals (DIVA).
Collapse
Affiliation(s)
- Dmitry A. Zimnyakov
- Physics Department, Yury Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Str., 410054 Saratov, Russia;
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia; (M.S.L.); (A.M.L.); (V.A.F.)
| | - Marina V. Alonova
- Physics Department, Yury Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Str., 410054 Saratov, Russia;
| | - Maxim S. Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia; (M.S.L.); (A.M.L.); (V.A.F.)
| | - Anna M. Lyapina
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia; (M.S.L.); (A.M.L.); (V.A.F.)
| | - Valentina A. Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia; (M.S.L.); (A.M.L.); (V.A.F.)
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia
| |
Collapse
|
3
|
van Rijn PA, Maris-Veldhuis MA, Spedicato M, Savini G, van Gennip RGP. Pentavalent Disabled Infectious Single Animal (DISA)/DIVA Vaccine Provides Protection in Sheep and Cattle against Different Serotypes of Bluetongue Virus. Vaccines (Basel) 2021; 9:vaccines9101150. [PMID: 34696258 PMCID: PMC8537505 DOI: 10.3390/vaccines9101150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Bluetongue (BT) is a midge-borne OIE-notifiable disease of ruminants caused by the bluetongue virus (BTV). There are at least 29 BTV serotypes as determined by serum neutralization tests and genetic analyses of genome segment 2 encoding serotype immunodominant VP2 protein. Large parts of the world are endemic for multiple serotypes. The most effective control measure of BT is vaccination. Conventionally live-attenuated and inactivated BT vaccines are available but have their specific pros and cons and are not DIVA compatible. The prototype Disabled Infectious Single Animal (DISA)/DIVA vaccine based on knockout of NS3/NS3a protein of live-attenuated BTV, shortly named DISA8, fulfills all criteria for modern veterinary vaccines of sheep. Recently, DISA8 with an internal in-frame deletion of 72 amino acid codons in NS3/NS3a showed a similar ideal vaccine profile in cattle. Here, the DISA/DIVA vaccine platform was applied for other serotypes, and pentavalent DISA/DIVA vaccine for “European” serotypes 1, 2, 3, 4, 8 was studied in sheep and cattle. Protection was demonstrated for two serotypes, and neutralization Ab titers indicate protection against other included serotypes. The DISA/DIVA vaccine platform is flexible in use and generates monovalent and multivalent DISA vaccines to combat specific field situations with respect to Bluetongue.
Collapse
Affiliation(s)
- Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom 2520, South Africa
- Correspondence: ; Tel.: +31-320-238-686
| | - Mieke A. Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
| | - Massimo Spedicato
- Public Health Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (M.S.); (G.S.)
| | - Giovanni Savini
- Public Health Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (M.S.); (G.S.)
| | - René G. P. van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
| |
Collapse
|
4
|
van Rijn PA, Boonstra J. Critical parameters of real time reverse transcription polymerase chain reaction (RT-PCR) diagnostics: Sensitivity and specificity for bluetongue virus. J Virol Methods 2021; 295:114211. [PMID: 34126108 DOI: 10.1016/j.jviromet.2021.114211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/18/2022]
Abstract
A new variant of bluetongue virus serotype 3, BTV3 ITL 2018 (here named: BTV3), was included in serial dilutions in the BT Proficiency Test 2020. Although the OIE-recommended panBTV real time RT-PCR test targeting genome segment 10 (Seg-10) detected this variant, we showed that reverse transcription (RT) at 61 °C instead of 50 °C completely abolished detection. Another Seg-10 panBTV real time RT-PCR test detected BTV3, irrespective of the temperature of RT. In silico validation showed that each of the OIE-recommended PCR primers using IVI-primers contain single mismatches at the -3 position for BTV3. In contrast, WBVR-primers of a second test completely match to the BTV3 variant. Our results suggest that single mismatches caused false negative PCR results for BTV3 at high RT temperature. Indeed, correction of both IVI-primers for BTV3 led to positive results for BTV3 but negative results for all other samples of the BT Proficiency Test 2020. Apparently, variability of the -3 position is sufficient for discriminative PCR detection, although the single mismatch in the IVI-reverse primer was the most important for this phenomenon. Extensive in silico validation showed that targets of both Seg-10 panBTV RT-PCR tests are not completely conserved, and the detailed effect of single mismatches are hard to predict. Therefore, we recommend at least two panBTV RT-PCR tests to minimize the risk of false negatives. Preferably, their PCR targets should be located at completely different and highly conserved regions of the BTV genome to guarantee adequate detection of future BTV infections.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa.
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| |
Collapse
|
5
|
The Bluetongue Disabled Infectious Single Animal (DISA) Vaccine Platform Based on Deletion NS3/NS3a Protein Is Safe and Protective in Cattle and Enables DIVA. Viruses 2021; 13:v13050857. [PMID: 34067226 PMCID: PMC8151055 DOI: 10.3390/v13050857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), an OIE-notifiable disease of ruminants. At least 29 BTV serotypes are described as determined by the outer shell proteins VP2 and VP5. Vaccination is the most effective control measure. Inactivated and live-attenuated vaccines (LAVs) are currently available. These vaccines have their specific pros and cons, and both are not DIVA vaccines. The BT Disabled Infectious Single Animal (DISA) vaccine platform is based on LAV without nonessential NS3/NS3a expression and is applicable for many serotypes by the exchange of outer shell proteins. The DISA vaccine is effective and completely safe. Further, transmission of the DISA vaccine by midges is blocked (DISA principle). Finally, the DISA vaccine enables DIVA because of a lack of antibodies against the immunogenic NS3/NS3a protein (DIVA principle). The deletion of 72 amino acids (72aa) in NS3/NS3a is sufficient to block virus propagation in midges. Here, we show that a prototype DISA vaccine based on LAV with the 72aa deletion enables DIVA, is completely safe and induces a long-lasting serotype-specific protection in cattle. In conclusion, the in-frame deletion of 72-aa codons in the BT DISA/DIVA vaccine platform is sufficient to fulfil all the criteria for modern veterinary vaccines.
Collapse
|
6
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
van Weezep E, Kooi EA, van Rijn PA. PCR diagnostics: In silico validation by an automated tool using freely available software programs. J Virol Methods 2019; 270:106-112. [PMID: 31095975 PMCID: PMC7113775 DOI: 10.1016/j.jviromet.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Accepted: 05/11/2019] [Indexed: 11/15/2022]
Abstract
In silico validation of PCR tests using exponentially expanding databases. The need of regular in silico validation of PCR tests by expanding databases. Fulfilling quality standards of in silico validation of molecular diagnostics.
PCR diagnostics are often the first line of laboratory diagnostics and are regularly designed to either differentiate between or detect all pathogen variants of a family, genus or species. The ideal PCR test detects all variants of the target pathogen, including newly discovered and emerging variants, while closely related pathogens and their variants should not be detected. This is challenging as pathogens show a high degree of genetic variation due to genetic drift, adaptation and evolution. Therefore, frequent re-evaluation of PCR diagnostics is needed to monitor its usefulness. Validation of PCR diagnostics recognizes three stages, in silico, in vitro and in vivo validation. In vitro and in vivo testing are usually costly, labour intensive and imply a risk of handling dangerous pathogens. In silico validation reduces this burden. In silico validation checks primers and probes by comparing their sequences with available nucleotide sequences. In recent years the amount of available sequences has dramatically increased by high throughput and deep sequencing projects. This makes in silico validation more informative, but also more computing intensive. To facilitate validation of PCR tests, a software tool named PCRv was developed. PCRv consists of a user friendly graphical user interface and coordinates the use of the software programs ClustalW and SSEARCH in order to perform in silico validation of PCR tests of different formats. Use of internal control sequences makes the analysis compliant to laboratory quality control systems. Finally, PCRv generates a validation report that includes an overview as well as a list of detailed results. In-house developed, published and OIE-recommended PCR tests were easily (re-) evaluated by use of PCRv. To demonstrate the power of PCRv, in silico validation of several PCR tests are shown and discussed.
Collapse
Affiliation(s)
- Erik van Weezep
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands.
| | - Engbert A Kooi
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands.
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands; Department of Biochemistry, North West University, Potchefstroom, South Africa.
| |
Collapse
|
8
|
van Rijn PA, Maris-Veldhuis MA, Boonstra J, van Gennip RGP. Diagnostic DIVA tests accompanying the Disabled Infectious Single Animal (DISA) vaccine platform for African horse sickness. Vaccine 2018; 36:3584-3592. [PMID: 29759377 DOI: 10.1016/j.vaccine.2018.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
African Horse Sickness Virus (AHSV) (Orbivirus genus, Reoviridae family) causes high mortality in naïve domestic horses with enormous economic and socio-emotional impact. There are nine AHSV serotypes showing limited cross neutralization. AHSV is transmitted by competent species of Culicoides biting midges. AHS is a serious threat beyond the African continent as endemic Culicoides species in moderate climates transmit the closely related prototype bluetongue virus. There is a desperate need for safe and efficacious vaccines, while DIVA (Differentiating Infected from Vaccinated) vaccines would accelerate control of AHS. Previously, we have shown that highly virulent AHSV with an in-frame deletion of 77 amino acids (aa) in NS3/NS3a is completely safe, does not cause viremia and shows protective capacity. This deletion mutant is a promising DISA (Disabled Infectious Single Animal) vaccine platform, since exchange of serotype specific virus proteins has been shown for all nine serotypes. Here, we show that a prototype NS3 competitive ELISA is DIVA compliant to AHS DISA vaccine platforms. Epitope mapping of NS3/NS3a shows that more research is needed to evaluate this prototype serological DIVA assay regarding sensitivity and specificity, in particular for AHSVs expressing antigenically different NS3/NS3a proteins. Further, an experimental panAHSV PCR test targeting genome segment 10 is developed that detects reference AHSV strains, whereas AHS DISA vaccine platforms were not detected. This DIVA PCR test completely guarantees genetic DIVA based on in silico and in vitro validation, although test validation regarding diagnostic sensitivity and specificity has not been performed yet. In conclusion, the prototype NS3 cELISA and the PCR test described here enable serological and genetic DIVA accompanying AHS DISA vaccine platforms.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mieke A Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|
9
|
Structural Protein VP2 of African Horse Sickness Virus Is Not Essential for Virus Replication In Vitro. J Virol 2017; 91:JVI.01328-16. [PMID: 27903804 DOI: 10.1128/jvi.01328-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022] Open
Abstract
The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family. IMPORTANCE Members of the Reoviridae family cause major health problems worldwide, ranging from lethal diarrhea caused by rotavirus in humans to economic losses in livestock production caused by different orbiviruses. The Orbivirus genus contains many virus species, of which bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus (AHSV) cause notifiable diseases according to the World Organization of Animal Health. Recently, it has been shown that nonstructural proteins NS3/NS3a and NS4 are not essential for virus replication in vitro, whereas it is generally assumed that structural proteins VP1 to -7 of these nonenveloped, architecturally complex virus particles are essential. Here we demonstrate for the first time that structural protein VP2 of AHSV is not essential for virus replication in vitro Our findings are very important for virologists working in the field of nonenveloped viruses, in particular reoviruses.
Collapse
|
10
|
Davidson I, Raibstein I, Altory-Natour A, Simanov M, Khinich Y. Development of duplex dual-gene and DIVA real-time RT-PCR assays and use of feathers as a non-invasive sampling method for diagnosis of Turkey Meningoencephalitis Virus. Avian Pathol 2017; 46:256-264. [DOI: 10.1080/03079457.2016.1256471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Israel Raibstein
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Michael Simanov
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Yevgeny Khinich
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| |
Collapse
|
11
|
van Rijn PA, Daus FJ, Maris-Veldhuis MA, Feenstra F, van Gennip RGP. Bluetongue Disabled Infectious Single Animal (DISA) vaccine: Studies on the optimal route and dose in sheep. Vaccine 2016; 35:231-237. [PMID: 27916409 DOI: 10.1016/j.vaccine.2016.11.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/20/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV) transmitted by biting midges of the Culicoides genus. Outbreaks have been controlled successfully by vaccination, however, currently available BT vaccines have several shortcomings. Recently, we have developed BT Disabled Infectious Single Animal (DISA) vaccines based on live-attenuated BTV without expression of dispensable non-structural NS3/NS3a protein. DISA vaccines are non-pathogenic replicating vaccines, do not cause viremia, enable DIVA and are highly protective. NS3/NS3a protein is involved in virus release, cytopathogenic effect and suppression of Interferon-I induction, suggesting that the vaccination route can be of importance. A standardized dose of DISA vaccine for serotype 8 has successfully been tested by subcutaneous vaccination. We show that 10 and 100times dilutions of this previously tested dose did not reduce the VP7 humoral response. Further, the vaccination route of DISA vaccine strongly determined the induction of VP7 directed antibodies (Abs). Intravenous vaccination induced high and prolonged humoral response but is not practical in field situations. VP7 seroconversion was stronger by intramuscular vaccination than by subcutaneous vaccination. For both vaccination routes and for two different DISA vaccine backbones, IgM Abs were rapidly induced but declined after 14days post vaccination (dpv), whereas the IgG response was slower. Interestingly, intramuscular vaccination resulted in an initial peak followed by a decline up to 21dpv and then increased again. This second increase is a steady and continuous increase of IgG Abs. These results indicate that intramuscular vaccination is the optimal route. The protective dose of DISA vaccine has not been determined yet, but it is expected to be significantly lower than of currently used BT vaccines. Therefore, in addition to the advantages of improved safety and DIVA compatibility, the novel DISA vaccines will be cost-competitive to commercially available live attenuated and inactivated vaccines for Bluetongue.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa.
| | - Franz J Daus
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Femke Feenstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
12
|
van Rijn PA, van de Water SG, Maris-Veldhuis MA, van Gennip RG. Experimental infection of small ruminants with bluetongue virus expressing Toggenburg Orbivirus proteins. Vet Microbiol 2016; 192:145-151. [DOI: 10.1016/j.vetmic.2016.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022]
|
13
|
van Rijn PA, van de Water SGP, Feenstra F, van Gennip RGP. Requirements and comparative analysis of reverse genetics for bluetongue virus (BTV) and African horse sickness virus (AHSV). Virol J 2016; 13:119. [PMID: 27368544 PMCID: PMC4930614 DOI: 10.1186/s12985-016-0574-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Bluetongue virus (BTV) and African horse sickness virus (AHSV) are distinct arthropod borne virus species in the genus Orbivirus (Reoviridae family), causing the notifiable diseases Bluetongue and African horse sickness of ruminants and equids, respectively. Reverse genetics systems for these orbiviruses with their ten-segmented genome of double stranded RNA have been developed. Initially, two subsequent transfections of in vitro synthesized capped run-off RNA transcripts resulted in the recovery of BTV. Reverse genetics has been improved by transfection of expression plasmids followed by transfection of ten RNA transcripts. Recovery of AHSV was further improved by use of expression plasmids containing optimized open reading frames. RESULTS Plasmids containing full length cDNA of the 10 genome segments for T7 promoter-driven production of full length run-off RNA transcripts and expression plasmids with optimized open reading frames (ORFs) were used. BTV and AHSV were rescued using reverse genetics. The requirement of each expression plasmid and capping of RNA transcripts for reverse genetics were studied and compared for BTV and AHSV. BTV was recovered by transfection of VP1 and NS2 expression plasmids followed by transfection of a set of ten capped RNAs. VP3 expression plasmid was also required if uncapped RNAs were transfected. Recovery of AHSV required transfection of VP1, VP3 and NS2 expression plasmids followed by transfection of capped RNA transcripts. Plasmid-driven expression of VP4, 6 and 7 was also needed when uncapped RNA transcripts were used. Irrespective of capping of RNA transcripts, NS1 expression plasmid was not needed for recovery, although NS1 protein is essential for virus propagation. Improvement of reverse genetics for AHSV was clearly demonstrated by rescue of several mutants and reassortants that were not rescued with previous methods. CONCLUSIONS A limited number of expression plasmids is required for rescue of BTV or AHSV using reverse genetics, making the system much more versatile and generally applicable. Optimization of reverse genetics enlarge the possibilities to rescue virus mutants and reassortants, and will greatly benefit the control of these important diseases of livestock and companion animals.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, Lelystad, 8200 AB, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Sandra G P van de Water
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| | - Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, Lelystad, 8200 AB, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, Lelystad, 8200 AB, The Netherlands
| |
Collapse
|
14
|
Wu X, Liu Q, He J, Zang M, Wang H, Li Y, Tang L. Preparation and Characterization of a Monoclonal Antibody Against the Core Protein VP7 of the 25th Serotype of Bluetongue Virus. Monoclon Antib Immunodiagn Immunother 2016; 34:116-21. [PMID: 25897610 DOI: 10.1089/mab.2014.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bluetongue virus (BTV) is a member of the genus Orbivirus, within the family Reoviridae. The VP7 protein of BTV is used for developing group-specific serological assays. To prepare monoclonal antibody (MAb) against VP7 of the 25th serotype BTV, the RNA S7 encoding VP7 was cloned into prokaryotic expression vectors pET-28a (+) and pGEX-6P-1 to generate recombinant plasmids. The recombinant protein VP7 was expressed in Escherichia coli BL21 (DE3), respectively. The results of SDS-PAGE revealed that the VP7 was expressed and the molecular mass of recombinant fusion protein pET-28a (+)/VP7 and pGEX-6P-1/VP7 was approximately 44 kDa and 64 kDa, respectively. The Western blot analysis indicated that the recombinant VP7 possessed good immunoreactivity. After purification, pET-28a (+)/VP7 was used to immunize BALB/c mice, while pGEX-6P-1/VP7 was used to screen for well-to-well MAb-secreting hybridomas. The hybridoma cell line 3H7 against recombinant VP7 that secreted MAbs was obtained. The isotype of 3H7 was identified as IgG1. The purification of recombinant VP7 protein and the monoclonal antibody will have potential applications on competitive ELISA format for BT-specific serum detection method.
Collapse
Affiliation(s)
- Xiao Wu
- 1 College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | | | | | | | | | | | | |
Collapse
|
15
|
Feenstra F, van Gennip RGP, Schreuder M, van Rijn PA. Balance of RNA sequence requirement and NS3/NS3a expression of segment 10 of orbiviruses. J Gen Virol 2015; 97:411-421. [PMID: 26644214 DOI: 10.1099/jgv.0.000359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Orbiviruses are insect-transmitted, non-enveloped viruses with a ten-segmented dsRNA genome of which the bluetongue virus (BTV) is the prototype. Viral non-structural protein NS3/NS3a is encoded by genome segment 10 (Seg-10), and is involved in different virus release mechanisms. This protein induces specific release via membrane disruptions and budding in both insect and mammalian cells, but also the cytopathogenic release that is only seen in mammalian cells. NS3/NS3a is not essential for virus replication in vitro with BTV Seg-10 containing RNA elements essential for virus replication, even if protein is not expressed. Recently, new BTV serotypes with distinct NS3/NS3a sequence and cell tropism have been identified. Multiple studies have hinted at the importance of Seg-10 in orbivirus replication, but the exact prerequisites are still unknown. Here, more insight is obtained with regard to the needs for orbivirus Seg-10 and the balance between protein expression and RNA elements. Multiple silent mutations in the BTV NS3a ORF destabilized Seg-10, resulting in deletions and sequences originating from other viral segments being inserted, indicating strong selection at the level of RNA during replication in mammalian cells in vitro. The NS3a ORFs of other orbiviruses were successfully exchanged in BTV1 Seg-10, resulting in viable chimeric viruses. NS3/NS3a proteins in these chimeric viruses were generally functional in mammalian cells, but not in insect cells. NS3/NS3a of the novel BTV serotypes 25 and 26 affected virus release from Culicoides cells, which might be one of the reasons for their distinct cell tropism.
Collapse
Affiliation(s)
- Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Myrte Schreuder
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| |
Collapse
|
16
|
Tacken MGJ, Daus FJ, Feenstra F, van Gennip RGP, van Rijn PA. Development of a competitive ELISA for NS3 antibodies as DIVA test accompanying the novel Disabled Infectious Single Animal (DISA) vaccine for Bluetongue. Vaccine 2015; 33:5539-5545. [PMID: 26387435 DOI: 10.1016/j.vaccine.2015.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
Abstract
Recently, we have developed a novel vaccine for Bluetongue named BT Disabled Infectious Single Animal (DISA) vaccine. Due to the lack of non-essential NS3/NS3a protein, BT DISA vaccine is a replicating vaccine, but without the inherent risks of live-attenuated vaccines, such as residual virulence or reversion to virulence by mutations, reassortment with field virus, horizontal spread by vectors and vertical transmission. The immune response induced by BT DISA vaccines is rapidly induced, highly protective and serotype specific which is dependent on the immunodominant and serotype determining VP2 protein. The BT DISA vaccine platform provides the replacement of exclusively VP2 from different serotypes in order to safely formulate multivalent cocktail vaccines. The lack of NS3/NS3a directed antibodies by BT DISA vaccination enables differentiation of infected from vaccinated animals (DIVA principle). A highly conserved immunogenic site corresponding to the late domain was mapped in the N-terminal region of NS3. We here established an NS3-specific competitive ELISA (NS3 cELISA) as serological DIVA test accompanying BT DISA vaccines. To this end, NS3 protein missing putative transmembrane regions was produced in large amounts in bacteria and used as antigen in the NS3 cELISA which was investigated with a variety of sera. The NS3 cELISA displayed a high sensitivity and specificity similar to the commercially available VP7-specific cELISA. Results of previously performed vaccination-challenge trials with BT DISA vaccines clearly demonstrate the DIVA system based on the NS3 cELISA and BT vaccine free of NS3 protein.
Collapse
Affiliation(s)
- Mirriam G J Tacken
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Franz J Daus
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
17
|
VP2 Exchange and NS3/NS3a Deletion in African Horse Sickness Virus (AHSV) in Development of Disabled Infectious Single Animal Vaccine Candidates for AHSV. J Virol 2015; 89:8764-72. [PMID: 26063433 PMCID: PMC4524073 DOI: 10.1128/jvi.01052-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023] Open
Abstract
African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African horse sickness (AHS) in equids, with a mortality rate of up to 95% in naive horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates appear to be competent vectors for the related bluetongue virus (BTV). To control AHS, live-attenuated vaccines (LAVs) are used in Africa. We used reverse genetics to generate “synthetic” reassortants of AHSV for all nine serotypes by exchange of genome segment 2 (Seg-2). This segment encodes VP2, which is the serotype-determining protein and the dominant target for neutralizing antibodies. Single Seg-2 AHSV reassortants showed similar cytopathogenic effects in mammalian cells but displayed different growth kinetics. Reverse genetics for AHSV was also used to study Seg-10 expressing NS3/NS3a proteins. We demonstrated that NS3/NS3a proteins are not essential for AHSV replication in vitro. NS3/NS3a of AHSV is, however, involved in the cytopathogenic effect in mammalian cells and is very important for virus release from cultured insect cells in particular. Similar to the concept of the bluetongue disabled infectious single animal (BT DISA) vaccine platform, an AHS DISA vaccine platform lacking NS3/NS3a expression was developed. Using exchange of genome segment 2 encoding VP2 protein (Seg-2[VP2]), we will be able to develop AHS DISA vaccine candidates for all current AHSV serotypes. IMPORTANCE African horse sickness virus is transmitted by species of Culicoides biting midges and causes African horse sickness in equids, with a mortality rate of up to 95% in naive horses. African horse sickness has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are supposed to be competent vectors. By using reverse genetics, viruses of all nine serotypes were constructed by the exchange of Seg-2 expressing the serotype-determining VP2 protein. Furthermore, we demonstrated that the nonstructural protein NS3/NS3a is not essential for virus replication in vitro. However, the potential spread of the virus by biting midges is supposed to be blocked, since the in vitro release of the virus was strongly reduced due to this deletion. VP2 exchange and NS3/NS3a deletion in African horse sickness virus were combined in the concept of a disabled infectious single animal vaccine for all nine serotypes.
Collapse
|
18
|
Feenstra F, Maris-Veldhuis M, Daus FJ, Tacken MGJ, Moormann RJM, van Gennip RGP, van Rijn PA. VP2-serotyped live-attenuated bluetongue virus without NS3/NS3a expression provides serotype-specific protection and enables DIVA. Vaccine 2014; 32:7108-14. [PMID: 25454873 DOI: 10.1016/j.vaccine.2014.10.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/02/2014] [Accepted: 10/16/2014] [Indexed: 12/26/2022]
Abstract
Bluetongue virus (BTV) causes Bluetongue in ruminants and is transmitted by Culicoides biting midges. Vaccination is the most effective measure to control vector borne diseases; however, there are 26 known BTV serotypes showing little cross protection. The BTV serotype is mainly determined by genome segment 2 encoding the VP2 protein. Currently, inactivated and live-attenuated Bluetongue vaccines are available for a limited number of serotypes, but each of these have their specific disadvantages, including the inability to differentiate infected from vaccinated animals (DIVA). BTV non-structural proteins NS3 and NS3a are not essential for virus replication in vitro, but are important for cytopathogenic effect in mammalian cells and for virus release from insect cells in vitro. Recently, we have shown that virulent BTV8 without NS3/NS3a is non-virulent and viremia in sheep is strongly reduced, whereas local in vivo replication leads to seroconversion. Live-attenuated BTV6 without NS3/NS3a expression protected sheep against BTV challenge. Altogether, NS3/NS3a knockout BTV6 is a promising vaccine candidate and has been named Disabled Infectious Single Animal (DISA) vaccine. Here, we show serotype-specific protection in sheep by DISA vaccine in which only genome segment 2 of serotype 8 was exchanged. Similarly, DISA vaccines against other serotypes could be developed, by exchange of only segment 2, and could therefore safely be combined in multi-serotype cocktail vaccines with respect to reassortment between vaccine viruses. Additionally, NS3 antibody responses are raised after natural BTV infection and NS3-based ELISAs are therefore appropriate tools for DIVA testing accompanying the DISA vaccine. To enable DIVA, we developed an experimental NS3 ELISA. Indeed, vaccinated sheep remained negative for NS3 antibodies, whereas seroconversion for NS3 antibodies was associated with viremia after heterologous BTV challenge.
Collapse
Affiliation(s)
- Femke Feenstra
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, P.O. Box 65, 8200 AB, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Mieke Maris-Veldhuis
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| | - Franz J Daus
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| | - Mirriam G J Tacken
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| | - Rob J M Moormann
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, P.O. Box 65, 8200 AB, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| | - Piet A van Rijn
- Central Veterinary Institute of Wageningen UR (CVI), Department of Virology, P.O. Box 65, 8200 AB, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University, South Africa
| |
Collapse
|
19
|
Feenstra F, van Gennip RGP, Maris-Veldhuis M, Verheij E, van Rijn PA. Bluetongue virus without NS3/NS3a expression is not virulent and protects against virulent bluetongue virus challenge. J Gen Virol 2014; 95:2019-2029. [DOI: 10.1099/vir.0.065615-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bluetongue is a disease in ruminants caused by the bluetongue virus (BTV), and is spread by Culicoides biting midges. Bluetongue outbreaks cause huge economic losses and death in sheep in several parts of the world. The most effective measure to control BTV is vaccination. However, both commercially available vaccines and recently developed vaccine candidates have several shortcomings. Therefore, we generated and tested next-generation vaccines for bluetongue based on the backbone of a laboratory-adapted strain of BTV-1, avirulent BTV-6 or virulent BTV-8. All vaccine candidates were serotyped with VP2 of BTV-8 and did not express NS3/NS3a non-structural proteins, due to induced deletions in the NS3/NS3a ORF. Sheep were vaccinated once with one of these vaccine candidates and were challenged with virulent BTV-8 3 weeks after vaccination. The NS3/NS3a knockout mutation caused complete avirulence for all three BTV backbones, including for virulent BTV-8, indicating that safety is associated with the NS3/NS3a knockout phenotype. Viraemia of vaccine virus was not detected using sensitive PCR diagnostics. Apparently, the vaccine viruses replicated only locally, which will minimize spread by the insect vector. In particular, the vaccine based on the BTV-6 backbone protected against disease and prevented viraemia of challenge virus, showing the efficacy of this vaccine candidate. The lack of NS3/NS3a expression potentially enables the differentiation of infected from vaccinated animals, which is important for monitoring virus spread in vaccinated livestock. The disabled infectious single-animal vaccine for bluetongue presented here is very promising and will be the subject of future studies.
Collapse
Affiliation(s)
- Femke Feenstra
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - René G. P. van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Mieke Maris-Veldhuis
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Eline Verheij
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Piet A. van Rijn
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| |
Collapse
|
20
|
Feenstra F, van Gennip RGP, van de Water SGP, van Rijn PA. RNA elements in open reading frames of the bluetongue virus genome are essential for virus replication. PLoS One 2014; 9:e92377. [PMID: 24658296 PMCID: PMC3962428 DOI: 10.1371/journal.pone.0092377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Members of the Reoviridae family are non-enveloped multi-layered viruses with a double stranded RNA genome consisting of 9 to 12 genome segments. Bluetongue virus is the prototype orbivirus (family Reoviridae, genus Orbivirus), causing disease in ruminants, and is spread by Culicoides biting midges. Obviously, several steps in the Reoviridae family replication cycle require virus specific as well as segment specific recognition by viral proteins, but detailed processes in these interactions are still barely understood. Recently, we have shown that expression of NS3 and NS3a proteins encoded by genome segment 10 of bluetongue virus is not essential for virus replication. This gave us the unique opportunity to investigate the role of RNA sequences in the segment 10 open reading frame in virus replication, independent of its protein products. Reverse genetics was used to generate virus mutants with deletions in the open reading frame of segment 10. Although virus with a deletion between both start codons was not viable, deletions throughout the rest of the open reading frame led to the rescue of replicating virus. However, all bluetongue virus deletion mutants without functional protein expression of segment 10 contained inserts of RNA sequences originating from several viral genome segments. Subsequent studies showed that these RNA inserts act as RNA elements, needed for rescue and replication of virus. Functionality of the inserts is orientation-dependent but is independent from the position in segment 10. This study clearly shows that RNA in the open reading frame of Reoviridae members does not only encode proteins, but is also essential for virus replication.
Collapse
Affiliation(s)
- Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - René G. P. van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Sandra G. P. van de Water
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
| | - Piet A. van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR (CVI), Lelystad, The Netherlands
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
21
|
Purification, stability, and immunogenicity analyses of five bluetongue virus proteins for use in development of a subunit vaccine that allows differentiation of infected from vaccinated animals. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:443-52. [PMID: 24451327 DOI: 10.1128/cvi.00776-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bluetongue virus (BTV) causes bluetongue disease, a vector-borne disease of ruminants. The recent northerly spread of BTV serotype 8 in Europe resulted in outbreaks characterized by clinical signs in cattle, including unusual teratogenic effects. Vaccination has been shown to be crucial for controlling the spread of vector-borne diseases such as BTV. With the aim of developing a novel subunit vaccine targeting BTV-8 that allows differentiation of infected from vaccinated animals, five His-tagged recombinant proteins, VP2 and VP5 of BTV-8 and NS1, NS2, and NS3 of BTV-2, were expressed in baculovirus or Escherichia coli expression systems for further study. Optimized purification protocols were determined for VP2, NS1, NS2, and NS3, which remained stable for detection for at least 560 to 610 days of storage at +4°C or -80°C, and Western blotting using sera from vaccinated or experimentally infected cattle indicated that VP2 and NS2 were recognized by BTV-specific antibodies. To characterize murine immune responses to the four proteins, mice were subcutaneously immunized twice at a 4-week interval with one of three protein combinations plus immunostimulating complex ISCOM-Matrix adjuvant or with ISCOM-Matrix alone (n = 6 per group). Significantly higher serum IgG antibody titers specific for VP2 and NS2 were detected in immunized mice than were detected in controls. VP2, NS1, and NS2 but not NS3 induced specific lymphocyte proliferative responses upon restimulation of spleen cells from immunized mice. The data suggest that these recombinant purified proteins, VP2, NS1, and NS2, could be an important part of a novel vaccine design against BTV-8.
Collapse
|