1
|
Cheng Y, Wang R, Wu Q, Chen J, Wang A, Wu Z, Sun F, Zhu S. Advancements in Research on Duck Tembusu Virus Infections. Viruses 2024; 16:811. [PMID: 38793692 PMCID: PMC11126125 DOI: 10.3390/v16050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.
Collapse
Affiliation(s)
- Yuting Cheng
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Ruoheng Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Qingguo Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Jinying Chen
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Anping Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Zhi Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| |
Collapse
|
2
|
Ni Z, Yun T, Chen L, Ye W, Hua J, Zhu Y, Liu G, Zhang C. Study on the Protective Immunity Induced by Pseudotyped Baculovirus Expressing the E Protein of Tembusu Virus in Ducklings. Genes (Basel) 2023; 14:1316. [PMID: 37510221 PMCID: PMC10378915 DOI: 10.3390/genes14071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The Duck Tembusu virus (DTMUV), a pathogenic flavivirus, has been causing significant economic losses in the Chinese poultry industry since 2010. This virus can severely decrease egg production and inhibit the growth of laying ducks and ducklings. While many vaccines have been developed to prevent DTMUV infection, fresh outbreaks continue to occur, as few effective vaccines are available. The E glycoprotein of DTMUV is the primary target for inducing protective immunity in the natural host. Therefore, we conducted an investigation and successfully developed a recombinant baculovirus containing the DTMUV E gene. Ducklings were then vaccinated with the purified protein derived from this virus as a potential vaccine candidate. Our findings demonstrated that the E glycoprotein of DTMUV was highly expressed in Sf9 cells. The vaccination of ducklings with the recombinant baculovirus Bac-E resulted in the induction of strong humoral and cellular immune responses. Most significantly, we observed that the vaccine provided 100% protective immunity against lethal challenges with the DTMUV YY5 strain.
Collapse
Affiliation(s)
- Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy at Agricultural Sciences, Shanghai 200241, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Yang B, Meng R, Feng C, Huang J, Li Q, Wang X, Zhang D. An Antibody Neutralization Determinant on Domain III and the First α-Helical Domain in the Stem-Anchor Region of Tembusu Virus Envelope Protein. THE JOURNAL OF IMMUNOLOGY 2022; 209:684-695. [DOI: 10.4049/jimmunol.2200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Previous studies identified three neutralizing epitopes on domains I, II, and III of the Tembusu virus (TMUV) envelope (E). More evidence is needed to understand the molecular basis of Ab-mediated neutralization and protection against TMUV. In this study, we observed a neutralizing mAb, 6C8, that neutralized TMUV infection primarily by inhibiting cell attachment. In immunofluorescence assays, 6C8 recognized the premembrane and E proteins coexpressed in HEK-293T cells, but failed to react with premembrane or E expressed individually. Epitope mapping identified nine E protein residues positioned on BC/EF loops and F/G strands in domain III and the first α-helical domain in the stem region. Further investigation with mutant viruses showed that 6C8 pressure resulted in mutations at residues 330 of BC loop and 409 of the first α-helical domain, although 6C8 only exhibited a moderate neutralizing activity in BHK-21 cells and a weak protective activity in BALB/c mice and Shaoxing duck models. Mutations A330S and T409M conferred high- and low-level 6C8 resistance, respectively, whereas the combination of A330S and T409M mutations conferred moderate-level 6C8 resistance. As a result, a quasispecies comprising three groups of antigenic variants appeared in BHK-21 cell–derived viral stocks after repeated passages of TMUV strain Y in the presence of 6C8 treatment. Taken together, these findings have raised a concern about Ab-induced antigenic variations in vivo, and they have revealed information concerning the conformational structure of the 6C8 epitope and its role in constraint on antigenic variations. The present work contributes to a better understanding of the complexity of the TMUV immunogen.
Collapse
Affiliation(s)
- Baolin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Meng R, Yang B, Feng C, Huang J, Wang X, Zhang D. The difference in CD4+ T cell immunity between high- and low-virulence Tembusu viruses is mainly related to residues 151 and 304 in the envelope protein. Front Immunol 2022; 13:890263. [PMID: 36016955 PMCID: PMC9395619 DOI: 10.3389/fimmu.2022.890263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Tembusu virus (TMUV) can result in a severe disease affecting domestic ducks. The role of T cells in protection from TMUV infection and the molecular basis of T cell-mediated protection against TMUV remain largely uncharacterized. Here, we used the high-virulence TMUV strain Y and the low-virulence TMUV strain PS to investigate the protective role for TMUV-specific CD4+ and CD8+ T cells. When tested in a 5-day-old Pekin duck model, Y and PS induced comparable levels of neutralizing antibody, whereas Y elicited significantly stronger cellular immune response relative to PS. Using a duck adoptive transfer model, we showed that both CD4+ and CD8+ T cells provided significant protection from TMUV-related disease, with CD8+ T cell conferring more robust protection to recipient ducklings. For TMUV, CD4+ T cells mainly provided help for neutralizing antibody response, whereas CD8+ T cells mainly mediated viral clearance from infected tissues. The difference in T cell immunity between Y and PS was primarily attributed to CD4+ T cells; adoptive transfer of Y-specific CD4+ T cells resulted in significantly enhanced protective ability, neutralizing antibody response, and viral clearance from the brain relative to PS-specific CD4+ T cells. Further investigations with chimeric viruses, mutant viruses, and their parental viruses identified two mutations (T151A and R304M) in the envelope (E) protein that contributed significantly to TMUV-specific CD4+ T cell-mediated protective ability and neutralizing antibody response, with more beneficial effects being conferred by R304M. These data indicate T cell-mediated immunity is important for protection from disease, for viral clearance from tissues, and for the production of neutralizing antibodies, and that the difference in CD4+T cell immunity between high- and low-virulence TMUV strains is primarily related to residues 151 and 304 in the E protein.
Collapse
|
5
|
Yang F, Liu P, Li X, Liu R, Gao L, Cui H, Zhang Y, Liu C, Qi X, Pan Q, Liu A, Wang X, Gao Y, Li K. Recombinant Duck Enteritis Virus-Vectored Bivalent Vaccine Effectively Protects Against Duck Hepatitis A Virus Infection in Ducks. Front Microbiol 2021; 12:813010. [PMID: 35003046 PMCID: PMC8727602 DOI: 10.3389/fmicb.2021.813010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Duck enteritis virus (DEV) and duck hepatitis A virus (DHAV) are prevalent duck pathogens, causing significant economic losses in the duck industry annually. Using a fosmid-based rescue system, we generated two DEV recombinants, rDEV-UL26/27-P13C and rDEV-US7/8-P13C, in which the P1 and 3C genes from DHAV type 3 (DHAV-3) were inserted into the DEV genome between genes UL26 and UL27 or genes US7 and US8. We inserted a self-cleaving 2A-element between P1 and 3C, allowing the production of both proteins from a single open reading frame. P1 and 3C were simultaneously expressed in infected chicken embryo fibroblasts, with no difference in growth kinetics between cells infected with the recombinant viruses and those infected with the parent DEV. Both recombinant viruses induced neutralizing antibodies against DHAV-3 and DEV in ducks. A single dose of the recombinant viruses induced solid protection against lethal DEV challenge and completely prevented DHAV-3 infection as early as 7 days post-vaccination. These recombinant P1- and 3C-expressing DEVs provide potential bivalent vaccines against DEV and DHAV-3 infection in ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021; 10:pathogens10081010. [PMID: 34451474 PMCID: PMC8398659 DOI: 10.3390/pathogens10081010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
Collapse
|
7
|
Chen L, Ni Z, Hua J, Ye W, Liu K, Yun T, Zhu Y, Zhang C. Simultaneous tracking of capsid VP26, envelope protein gC localization in living cells infected with double fluorescent duck enteritis virus. Virus Res 2021; 297:198393. [PMID: 33727092 DOI: 10.1016/j.virusres.2021.198393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/04/2023]
Abstract
Duck enteritis virus (DEV) can cause an acute, contagious and lethal disease of many species of waterfowl. An infectious bacterial artificial chromosome clone of DEV vaccine strain pE1 (pDEV-EF1) has been constructed in our previous study. Based on pE1, a recombinant mutated clone pDL (pVP26CFP-gCRFP), which carries a red fluorescent protein (mRFP) gene fused to the viral envelope protein gC in combination with a cyan fluorescent protein (CFP) gene fused to the viral capsid VP26, was constructed by two-step Red/ET recombination and the recombinant virus rDL (rVP26CFP-gCRFP) was rescued from chicken embryo fibroblasts (CEFs) by calcium phosphate transfection. Western blot analysis revealed that VP26-CFP and gC-mRFP were both expressed in fusion forms in rDL-infected CEFs, and subcellular localization study showed that gC-mRFP was mainly localized in whole cell at 36, 48 h post infection (p.i.); and then mostly migrated to the cytoplasm after 60 h.p.i., ; whereas VP26-CFP was localized in the nucleus in all stages of virus infection. Additionally, viral particles at different stages of morphogenesis (A capsids, B capsids, C capsids) were observed in virus-infected cells by transmission electron microscopy, indicating that exogenous gene insertion has no effect on virus assembly. This study has laid a foundation for visually studying localization, transportation of DEV capsid proteins and envelope glycoproteins as well as virus assembly, virion movement and virus-cell interaction.
Collapse
Affiliation(s)
- Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Keshu Liu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
8
|
Lv J, Liu X, Cui S, Yang L, Qu S, Meng R, Yang B, Feng C, Wang X, Zhang D. The Neutralizing Antibody Response Elicited by Tembusu Virus Is Affected Dramatically by a Single Mutation in the Stem Region of the Envelope Protein. Front Microbiol 2020; 11:585194. [PMID: 33193231 PMCID: PMC7642334 DOI: 10.3389/fmicb.2020.585194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Tembusu virus (TMUV) is a mosquito-borne flavivirus that most commonly affects adult breeder and layer ducks. However, a TMUV-caused neurological disease has also been found in ducklings below 7 weeks of age, highlighting the need to develop a safe vaccine for young ducklings. In this study, a plaque-purified PS TMUV strain was attenuated by serial passage in BHK-21 cells. Using 1-day-old Pekin ducklings as a model, the virus was confirmed to be attenuated sufficiently after 180 passages, whereas the neutralizing antibody response elicited by the 180th passage virus (PS180) was substantially impaired compared with PS. The findings suggest that sufficient attenuation results in loss of immunogenicity in the development of the live-attenuated TMUV vaccine. Comparative sequence analysis revealed that PS180 acquired one mutation (V41M) in prM and four mutations (T70A, Y176H, K313R, and F408L) in the envelope (E) protein. To identify the amino acid substitution(s) associated with loss of immunogenicity of PS180, we rescued parental viruses, rPS and rPS180, and produced mutant viruses, rPS180-M41V, rPS180-A70T, rPS180-H176Y, rPS180-R313K, rPS180-L408F, and rPS180-M5, which contained residue 41V in prM, residues 70T, 176Y, 313K, and 408F in E, and combination of the five residues, respectively, of PS in the backbone of the rPS180 genome. The neutralizing antibody response elicited by rPS180-L408F and rPS180-M5 was significantly higher than those by other mutant viruses and comparable to that by rPS. Furthermore, we produced mutant virus rPS-F408L, which contained residue 408L of PS180 in the backbone of the rPS genome. The F408L mutation conferred significantly decreased neutralizing antibody response to rPS-F408L, which was comparable to that elicited by rPS180. Based on homologous modeling, residue 408 was predicted to be located within the first helical domain of the stem region of the E protein (EH1). Together, these data demonstrate that a single mutation within the EH1 domain exerts a dramatical impact on the TMUV neutralizing antibody response. The present work may enhance our understanding of molecular basis of the TMUV neutralizing antibody response, and provides an important step for the development of a safe and efficient live-attenuated TMUV vaccine.
Collapse
Affiliation(s)
- Junfeng Lv
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoxiao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shulin Cui
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lixin Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shenghua Qu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baolin Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Yang Z, Wang J, Wang X, Duan H, He P, Yang G, Liu L, Cheng H, Wang X, Pan J, Zhao J, Yu H, Yang B, Liu Y, Lin J. Immunogenicity and protective efficacy of an EB66 ® cell culture-derived duck Tembusu virus vaccine. Avian Pathol 2020; 49:448-456. [PMID: 32374185 DOI: 10.1080/03079457.2020.1763914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The avian EB66® cell line, derived from duck embryonic stem cells, has been widely used for producing human and animal therapeutic proteins and vaccines. In current study we evaluated the potential use of EB66® cell line in a cell culture-derived duck Tembusu virus (DTMUV) vaccine development. After optimizing the growth conditions of DTMUV HB strain in EB66® cells, we successfully generated three batches of viruses with ELD50 titres of 105.9/0.1 ml, 105.3/0.1 ml and 105.5/0.1 ml, respectively, for using in the preparation of inactivated vaccines. The immunogenicity and protective efficacy of these EB66® cells-derived inactivated vaccines were examined in ducks. Results indicated that all three batches of vaccines induced haemagglutination-inhibition (HI) antibody response in immunized birds at 2 weeks after a single immunization. Immunized ducks and ducklings were protected against a virulent challenge at 4 weeks after a booster immunization. The duration of immunity was for 3-4 months after a booster immunization. These results demonstrated the feasibility of using EB66® cell line to grow up DTMUV for vaccine preparation. RESEARCH HIGHLIGHTS Duck Tembusu virus can be propagated in EB66® cells. EB66® cell-derived inactivated DTMUV vaccines are immunogenic and can provide protection against a virulent challenge. A long-lasting immunity is induced after a booster immunization.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jiaqi Wang
- Gansu Jianshun Biosciences Co., Ltd, Lanzhou, People's Republic of China
| | - Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Huijuan Duan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Pingyou He
- Ringpu (Baoding) Biological Pharmaceutical Co., Ltd, Baoding, People's Republic of China
| | - Guijun Yang
- Gansu Jianshun Biosciences Co., Ltd, Lanzhou, People's Republic of China
| | - Lixin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Huimin Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Xiaolei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jie Pan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jicheng Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Hongwei Yu
- Ringpu (Baoding) Biological Pharmaceutical Co., Ltd, Baoding, People's Republic of China
| | - Baoshou Yang
- Ringpu (Baoding) Biological Pharmaceutical Co., Ltd, Baoding, People's Republic of China
| | - Yuehuan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jian Lin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Identification of a Neutralizing Monoclonal Antibody That Recognizes a Unique Epitope on Domain III of the Envelope Protein of Tembusu Virus. Viruses 2020; 12:v12060647. [PMID: 32549221 PMCID: PMC7354527 DOI: 10.3390/v12060647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Domain III of the envelope protein (EDIII) is the major target of flavivirus neutralizing antibody. To date, little is known regarding antibody-mediated neutralization of Tembusu virus (TMUV), a novel flavivirus emerging in duck in 2010. Here, a novel monoclonal antibody (MAb), designated 12F11, was prepared by immunization of mice with recombinant EDIII (rEDIII) protein. Using virus neutralization test, 12F11 in undiluted ascites neutralized the TMUV infectivity to induce the development of cytopathic effects in BHK-21 cells, indicating that 12F11 exhibits a neutralizing activity. The neutralizing activity of 12F11 was confirmed by plaque reduction neutralization test, in which 12F11 reduced significantly the number of plaques produced by TMUV in BHK-21 cells. Western blot analyses of a series of truncated rEDIII proteins showed that the epitope recognized by 12F11 includes amino acids between residues 8 and 77 of EDIII protein. Function analysis demonstrated that 12F11 neutralizes TMUV infection at virus adsorption and at a step after adsorption to a certain extent. The present study provides an important step towards elucidating antibody-mediated neutralization of TMUV.
Collapse
|
11
|
Chen L, Yu B, Hua J, Ni Z, Ye W, Yun T, Zhang C. Optimized Expression of Duck Tembusu Virus E Gene Delivered by a Vectored Duck Enteritis Virus In Vitro. Mol Biotechnol 2020; 61:783-790. [PMID: 31482466 DOI: 10.1007/s12033-019-00206-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In our previous study, a recombinant duck enteritis virus (DEV) delivering codon-optimized E gene (named as E-ch) of duck Tembusu virus (DTMUV) optimized referring to chicken's codon bias has been obtained based on the infectious bacterial artificial chromosome (BAC) clone of duck enteritis virus vaccine strain pDEV-EF1, but the expression level of E-ch in recombinant virus rDEV-E-ch-infected cells was very low. To optimize DTMUV E gene expression delivered by the vectored DEV, different forms of E gene (collectively called EG) including origin E gene (E-ori), truncated E451-ori gene, codon-optimized E-dk gene optimized referring to duck's codon bias, as well as the truncated E451-ch and E451-dk, Etpa-ori and Etpa-451-ori, which contain prefixing chick TPA signal peptide genes, were cloned into transfer vector pEP-BGH-end, and several recombinant plasmids pEP-BGH-EG were constructed. Then the expression cassettes pCMV-EG-polyABGH amplified from pEP-BGH-EG by PCR were inserted into US7/US8 gene intergenic region of pDEV-EF1 by two-step Red/ET recombination, 7 strain recombinant mutated BAC clones pDEV-EG carrying different E genes were constructed. Next, the recombinant viruses rDEV-EG were reconstituted from chicken embryo fibroblasts (CEFs) by calcium phosphate precipitation. Western blot analysis showed that E or E451 protein is expressed in rDEV-E-ori, rDEV-E-ch, rDEV-Etpa-ori, rDEV-E451-ori, rDEV-E451-dk, and rDEV-E451-ch-infected CEFs, and protein expression level in rDEV-E451-dk-infected CEFs is the highest. These studies have laid a foundation for developing bivalent vaccine controlling DEV and DTMUV infection.
Collapse
Affiliation(s)
- Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Jonggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| |
Collapse
|
12
|
Lv J, Yang L, Qu S, Meng R, Li Q, Liu H, Wang X, Zhang D. Detection of Neutralizing Antibodies to Tembusu Virus: Implications for Infection and Immunity. Front Vet Sci 2019; 6:442. [PMID: 31921903 PMCID: PMC6914806 DOI: 10.3389/fvets.2019.00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/26/2019] [Indexed: 11/14/2022] Open
Abstract
Neutralizing antibodies are the key mediators of protective immune response to flaviviruses after both infection and vaccination. Plaque reduction neutralization test (PRNT) is considered the “gold standard” for measurement of the immunity. To date, little is known regarding neutralizing antibody response to Tembusu virus (TMUV), a novel flavivirus emerging in ducks in 2010. Here, we developed a PRNT for detection of TMUV neutralizing antibodies. Following optimization and validation, the PRNT was applied to test serum samples from different flocks of ducks. Using sera prepared in experimental conditions, the levels of 50% end point titer (neutralizing dose, ND50) generated from positive sera (5,012–79,433) were significantly higher than those from mock-infected sera (10 to 126), indicating that the test can be used in the detection of TMUV-specific neutralizing antibodies. Dose-dependent efficacy test of a cell-derived 180th passage of a plaque-purified virus of the PS TMUV isolate (PS180) in combined with immunization-challenge experiments revealed that ND50 titer of ~1,258 is the minimum capable of providing adequate protection against challenge with virulent TMUV. In the investigation of serum samples collected from three flocks infected by TMUV and four flocks vaccinated with a licensed attenuated vaccine (the 120th passage virus), ND50 titers peaked at 1 week after both disease onset (7,943–125,893) and vaccination (3,612–79,432), and high levels of ND50 titer were detected in sera collected at 15 weeks after disease onset (5,012–63,095) and 17 weeks after vaccination (3,981–25,119). Together these findings demonstrated that spontaneous and experimental infections by TMUV and vaccination with the licensed TMUV attenuated vaccine elicit high, long-lasting neutralizing antibodies. The highest ND50 titer of neutralizing antibodies elicited by PS180 was determined to be 3,162, suggesting that attenuation of TMUV by more passages has a dramatic impact on the neutralizing antibody response of the virus.
Collapse
Affiliation(s)
- Junfeng Lv
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lixin Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shenghua Qu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingxiangzi Li
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huicong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
The truncated E protein of DTMUV provide protection in young ducks. Vet Microbiol 2019; 240:108508. [PMID: 31902493 DOI: 10.1016/j.vetmic.2019.108508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
Duck Tembusu virus (DTMUV) is a major pathogen of duck industry in China. In the current study, we generated different constructs containing envelope (E) protein, pre-membrane-envelope (prM-E) protein, and C-terminally truncated E protein of the DTMUV. The constructed proteins could induce specific antibody responses in young ducks. When ducklings were immunized with the constructed proteins, they were 100% protected against DTMUV infection. Furthermore, the fluorescent signal of the truncated E protein was stronger than other constructed proteins, when Bac-to-Bac baculovirus expression system was applied. Our data demonstrated that the truncated E protein used in the current study could be applied as a potential vaccine candidate to control DTMUV infection in young ducks.
Collapse
|
14
|
Wu S, Wu Z, Wu Y, Wang T, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Heparin sulfate is the attachment factor of duck Tembus virus on both BHK21 and DEF cells. Virol J 2019; 16:134. [PMID: 31718685 PMCID: PMC6852980 DOI: 10.1186/s12985-019-1246-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Duck tembusu virus (DTMUV, genus Flaviviruses, family Flaviviridae) is an emerging flavivirus that can infect a wide range of cells and cell lines in vitro, though the initial step of virus invasion remains obscure. METHODS In this study, drug treatments that including heparin, chondroitin sulfate, heparinase I, chondroitinase ABC and trypsin were applied to detect the influence of DTMUV absorption, subsequently, the copy number of viral genome RNA was analyzed by quantitative real-time PCR. The inhibition process of viral absorption or entry by heparin was determined by western blotting, and the cytotoxicity of drug treated cells was detected by cell counting kit-8. RESULTS We found that the desulfation of glycosaminoglycans (GAGs) with sodium chlorate had a significant effect on the adsorption of DTMUV in both BHK21 and DEF cells. Based on this result, we incubated cells with a mixture of DTMUV and GAGs competition inhibitors or pre-treated cells with inhibitors, after incubation with the virus, the NS5 expression of DTMUV and viral titers were detected. The data suggested that heparin can significantly inhibit the absorption of DTMUV in a dose dependent manner but not at the step of viral entry in BHK21 and DEF cells. Meanwhile, heparinase I can significantly inhibit DTMUV attachment step. CONCLUSIONS Our results clearly proved that heparin sulfate plays an important role in the first step of DTMUV entry, viral attachment, in both BHK21 and DEF cells, which sheds light on the entry mechanism of DTMUV.
Collapse
Affiliation(s)
- Shaoxiong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Yuanyuan Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Tao Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, 611130, Sichuan Province, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu City, 611130, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, 611130, Sichuan Province, China.
| |
Collapse
|
15
|
Zhang L, Sun M, Zhang Q, Wang J, Cao Y, Cui S, Su J. Long-term passage of duck Tembusu virus in BHK-21 cells generates a completely attenuated and immunogenic population with increased genetic diversity. Vaccine 2019; 38:933-941. [PMID: 31708180 DOI: 10.1016/j.vaccine.2019.10.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022]
Abstract
Duck Tembusu virus (TMUV) is an emerging pathogenic flavivirus that causes severe egg-drop and fatal encephalitis in domestic ducks and geese. Although a live-attenuated virus vaccine is effective for disease control, the stability of the attenuation has not been clearly evaluated due to a poor understanding of the attenuation mechanism. Here, a virulent duck TMUV isolate was successively passaged in BHK-21 cells, leading to an approximately 100-fold increase of virus production in cell culture and a complete attenuation of virulence for ducks. The passaged virus induced high titers of TMUV-specific antibody and provided efficient protection against a virulent TMUV challenge after a single-dose vaccination. One hundred and two, and eighteen single-nucleotide polymorphisms (SNPs) at a frequency of >1% were respectively identified in the attenuated virus population and the original isolate by deep sequencing. The increased SNPs numbers suggested that the accumulated variants of virus population may have conferred the phenotypic changes. We cloned and characterized a dominant variant exhibiting similar fitness to the mixed population, and 23 amino acid substitutions were identified across the viral open reading frame. Using reverse genetics, two chimeric viruses were generated by introducing the mutated E or NS5 gene into the backbone of virulent TMUV. We found that mutations in the E gene conferred a fitness advantage in BHK-21 cells and decreased the virus pathogenicity, whereas NS5 mutations reduced the virus infectivity in ducklings without altering the in vitro fitness. In conclusion, increased mutations in a virulent TMUV strain did substantially reduce the virus virulence, and mutations in multiple genes co-contribute to TMUV attenuation.
Collapse
Affiliation(s)
- Lijiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mengxu Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qingshui Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanxin Cao
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shangjin Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Observation Station for Veterinary Biological Technique, Ministry of Agricultural, Beijing 100193, China.
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Evaluation of immunogenicity and protective efficacy of a CpG-adjuvanted DNA vaccine against Tembusu virus. Vet Immunol Immunopathol 2019; 218:109953. [PMID: 31590073 DOI: 10.1016/j.vetimm.2019.109953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 11/24/2022]
Abstract
Tembusu virus (TMUV) is a contagious pathogen of waterfowl including ducks and geese, which causes symptoms of high fever, loss of appetite and reduced egg production. The development of an effective vaccine is important for the prevention and control of the disease. We evaluated a DNA vaccine based on a recombinant pre-membrane (prM) and envelope (E) protein, using CpG oligodeoxynucleotide (ODN) as an adjuvanted, and tested it for protection efficacy. BHK21 cells were transfected with the recombinant plasmid pVAX1-prM/E-CpG, and the antigenicity of the expressed protein was detected using an indirect immunofluorescence assay (IFA) and western blot assay. One-day-old ducklings were intramuscularly injected with 200 μg doses of pVAX1-prM/E-CpG or pVAX1-CpG, or PBS at ten day intervals. The neutralizing antibodies and cell-mediated immune responses elicited by the DNA vaccine were detected using serum neutralization tests (SNTs) and ELISAs. At 20 days old, the ducks were challenged with 103EID50 doses of TMUV SD/02 strain and observed for 15 days post challenge. After the second DNA vaccination and during the monitoring period, the levels of TMUV neutralizing antibodies increased in the pVAX1-prM/E-CpG vaccinated ducks. Vaccination with pVAX1-prM/E-CpG resulted in 100.0% protection of the ducks, whereas approximately 40% of ducks vaccinated with pVAX-CpG or PBS manifested clinical symptoms. Expressions of IFN-γ and IL-6 in the pVAX1-prM/E-CpG group were significantly increased (p < 0.01) compared with the control groups during the entire experimental period. The results revealed that a vaccine co-expressing prM and E, and using a CpG-ODN motif as an adjuvant, could elicit effective neutralizing antibody titers and provide efficient protection to ducks against TMUV infection.
Collapse
|
17
|
Li L, Zhang Y, Dong J, Zhang J, Zhang C, Qin J, Sun M, Xu Z. Development of chimeric virus-like particles containing the E glycoprotein of duck Tembusu virus. Vet Microbiol 2019; 238:108425. [PMID: 31648723 DOI: 10.1016/j.vetmic.2019.108425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
Abstract
Duck Tembusu virus (DTMUV) has caused enormous economic losses to the poultry industry in China. In the current study, we generated chimeric virus-like particles (VLPs) containing E protein of the DTMUV and HA2 protein of the H3N2 avian influenza virus (AIV). The chimeric VLPs could induce specific antibody responses in both mice (n = 5/group) and ducks (n = 10/group). After immunizing ducklings with the chimeric VLPs, all immunized ducks (n = 10/group) were 100% (10/10) protected against homologous DTMUV strain and virus shedding was not detected on day 5 post-challenge, whereas 60% (6/10) of the ducklings immunized with PBS presented typical symptoms with a virus shedding rate of 90% (9/10). Furthermore, viral loads were significantly decreased in the birds of the chimeric VLPs immunized group, comparing to that of the PBS immunized group. Our data demonstrated that the chimeric VLPs used in the current study could be applied as a potential vaccine candidate to control DTMUV infections in young ducks.
Collapse
Affiliation(s)
- Linlin Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiawen Dong
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Junqing Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Chunhong Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Jianru Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Minhua Sun
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China.
| | - Zhihong Xu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Therapeutic effects of duck Tembusu virus capsid protein fused with staphylococcal nuclease protein to target Tembusu infection in vitro. Vet Microbiol 2019; 235:295-300. [PMID: 31383316 DOI: 10.1016/j.vetmic.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
Tembusu virus (TMUV), a member of the genus flavivirus, primarily causes egg-drop syndrome in ducks and is associated with low disease mortality but high morbidity. The commercially available live vaccines for treating TMUV currently include the main WF100, HB, and FX2010-180P strains, and efficient treatment and/or preventative measures are still urgently needed. Capsid-targeted viral inactivation (CTVI) is a conceptually powerful new antiviral strategy that is based on two proteins from the capsid protein of a virus and a crucial effector molecule. The effector molecule can destroy the viral DNA/RNA or interfere with the proper folding of key viral proteins, while the capsid protein mainly plays a role in viral integration and assembly; the fusion proteins are incorporated into virions during packaging. This study aimed to explore the potential use of this strategy in duck TMUV. Our results revealed that these fusion proteins can be expressed in susceptible BHK21 cells without cytotoxicity and possess excellent Ca2+-dependent nuclease activity, and their expression is also detectable in DF-1 cells. Compared to those in the negative controls (BHK21 and BHK21/pcDNA3.1(+) cells), the numbers of viral RNA copies in TMUV-infected BHK21/Cap-SNase and BHK21/Cap-Linker-SNase cells were reduced by 48 h, and the effect of Cap-Linker-SNase was superior to that of Cap-SNase. As anticipated, these results suggest that these fusion proteins contribute to viral resistance to treatment. Thus, CTVI might be applicable for TMUV inhibition as a novel antiviral therapeutic candidate during viral infection.
Collapse
|
19
|
Ding L, Chen P, Bao X, Li A, Jiang Y, Hu Y, Ge J, Zhao Y, Wang B, Liu J, Chen H. Recombinant duck enteritis viruses expressing the Newcastle disease virus (NDV) F gene protects chickens from lethal NDV challenge. Vet Microbiol 2019; 232:146-150. [PMID: 31030839 DOI: 10.1016/j.vetmic.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023]
Abstract
Newcastle disease virus (NDV) is a major threat to poultry worldwide. Virulent Newcastle disease virus infection can cause 100% morbidity and mortality in chickens. Vaccination is the most effective way to prevent and control NDV outbreaks in poultry. Previously, we demonstrated that a duck enteritis virus (DEV) vaccine strain is a promising vector to generate recombinant vaccines in chickens. Here, we constructed two recombinant DEVs expressing the F protein (rDEV-F) or HN protein (rDEV-HN) of NDV. We then evaluated the protective efficacy of these recombinant DEVs in specific-pathogen-free chickens. rDEV-F induced 100% protection of chickens from lethal NDV challenge after a single dose of 104 TCID50, whereas rDEV-HN did not induce effective protection. rDEV-F may therefore serve as a promising vaccine candidate for chickens. This is the first report of a DEV-vectored vaccine providing robust protection against lethal NDV infection in chickens.
Collapse
Affiliation(s)
- Leilei Ding
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Xingzhi Bao
- Shapotou Center for Animal Disease Control and Prevention, NingXia, ZhongWei, Shapotou 755000, People's Republic of China
| | - Aixin Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yubo Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
20
|
Wang AP, Liu L, Gu LL, Guo CM, Wu S, Feng Q, Xia WL, Wu Z, Zhu SY. Protection against duck hepatitis a virus type 1 conferred by a recombinant avian adeno-associated virus. Poult Sci 2019; 98:112-118. [PMID: 30053293 DOI: 10.3382/ps/pey325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
The avian adeno-associated virus (AAAV) has been proved to be an efficient gene transfer vector for human gene therapy and vaccine research. In this experiment, an AAAV-based vaccine was evaluated for the development of a vaccine against duck hepatitis a virus type 1 (DHAV-1). The major capsid VP1 gene was amplified and subcloned into pFBGFP containing the inverted terminal repeats of AAAV, and then the recombinant baculovirus rBac-VP1 was generated. The recombinant AAAV expressing the VP1 protein (rAAAV-VP1) was produced by co-infecting Sf9 cells with rBac-VP1 and the other 2 baculoviruses containing AAAV functional genes and structural genes respectively, and confirmed by electron microscopy, Western blotting and immunofluorescence assays. Quantitative real-time PCR revealed that the titer of rAAAV-VP1 was about 9 × 1012 VG/mL. Immunogenicity was studied in ducklings. One day ducklings were injected intramuscularly once with rAAAV-VP1. Serum from rAAAV-VP1-vaccinated ducklings showed a systemic immune response evidenced by VP1-specific enzyme-linked immunosorbent assay and virus neutralization test. Furthermore, all ducklings inoculated with rAAAV-VP1 were protected against DHAV-1 challenge. The data of quantitative real-time RT-PCR from livers of challenged ducklings also showed that the level of virus copies in rAAAV-VP1 group was significantly lower than that of the PBS group. Collectively, these results demonstrate that the AAAV-based vaccine is a potential vaccine candidate for the control of duck viral hepatitis.
Collapse
Affiliation(s)
- A P Wang
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| | - L Liu
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| | - L L Gu
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| | - C M Guo
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| | - S Wu
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| | - Q Feng
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| | - W L Xia
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| | - Z Wu
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| | - S Y Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, 225300, China
| |
Collapse
|
21
|
Benzarti E, Linden A, Desmecht D, Garigliany M. Mosquito-borne epornitic flaviviruses: an update and review. J Gen Virol 2019; 100:119-132. [PMID: 30628886 DOI: 10.1099/jgv.0.001203] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
West Nile Virus, Usutu virus, Bagaza virus, Israel turkey encephalitis virus and Tembusu virus currently constitute the five flaviviruses transmitted by mosquito bites with a marked pathogenicity for birds. They have been identified as the causative agents of severe neurological symptoms, drop in egg production and/or mortalities among avian hosts. They have also recently shown an expansion of their geographic distribution and/or a rise in cases of human infection. This paper is the first up-to-date review of the pathology of these flaviviruses in birds, with a special emphasis on the difference in susceptibility among avian species, in order to understand the specificity of the host spectrum of each of these viruses. Furthermore, given the lack of a clear prophylactic approach against these viruses in birds, a meta-analysis of vaccination trials conducted to date on these animals is given to constitute a solid platform from which designing future studies.
Collapse
Affiliation(s)
- Emna Benzarti
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Annick Linden
- 2FARAH Research Center, Surveillance Network for Wildlife Diseases, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Daniel Desmecht
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Mutien Garigliany
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| |
Collapse
|
22
|
Tang J, Yin D, Wang R, Zhou Q, Zhou X, Xing X, Liu HM, Liu G, Wang G. A recombinant adenovirus expressing the E protein of duck Tembusu virus induces protective immunity in duck. J Vet Med Sci 2018; 81:314-320. [PMID: 30584200 PMCID: PMC6395196 DOI: 10.1292/jvms.18-0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Duck Tembusu virus disease, caused by the duck Tembusu virus (DTMUV), can lead to a
severe reduction in egg production and growth retardation in laying ducks and ducklings,
respectively. In this study, we engineered a novel recombinant adenovirus expressing the E
protein of DTMUV (rAd-E) in AAV-293 cells (analyzed by western blot and indirect
immunofluorescence assays). Intramuscular immunization of Cherry Valley ducks with rAd-E
was performed to evaluate host cellular and humoral immune responses. Compared to the
phosphate-buffered saline administered group and the negative control wild-type adenovirus
(wtAd) group, the rAd-E vaccinated group showed increased cellular and humoral responses.
The results from the cytokine release and lymphocyte proliferation assays showed that
rAd-E induced a stronger cellular immune response than the control group
(P<0.01), 4 weeks after primary immunization. The results of
enzyme-linked immunosorbent and virus neutralization assays showed that rAd-E induced
higher titers of specific neutralizing antibodies, 2 weeks after primary immunization. The
DTMUV challenge experiment showed a higher survival rate (80%) of ducks in the rAd-E
group, when challenged with 0.5 ml
(ELD50=10−2.67/0.2 ml) of the DTMUV strain AH-F10.
These results indicate that rAd-E effectively protects ducks against DTMUV infection.
Therefore, rAd-E could be a vaccine candidate to provide an effective and safe method for
prevention and control of DTMUV infection.
Collapse
Affiliation(s)
- Jingyu Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Dongdong Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| | - Rui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qi Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoya Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xue Xing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong-Mei Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China
| |
Collapse
|
23
|
Oral Delivery of a DNA Vaccine Expressing the PrM and E Genes: A Promising Vaccine Strategy against Flavivirus in Ducks. Sci Rep 2018; 8:12360. [PMID: 30120326 PMCID: PMC6098003 DOI: 10.1038/s41598-018-30258-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
A flavivirus, named duck tembusu virus (DTMUV), emerged in China in 2010. This virus has caused great economic losses in the poultry industry in China and may pose a threat to public health. As a safe, efficient and convenient vaccine development strategy, DNA-based vaccines have become a popular approach for both human and veterinary applications. Attenuated bacteria have been widely used as vehicles to deliver heterologous antigens to the immune system. Thus, an efficient and low-cost oral delivery DNA vaccine SL7207 (pVAX1-SME) based on envelope proteins (prM and E) of DTMUV and attenuated Salmonella typhimurium aroA- strain SL7207 was developed and evaluated in this study. The prM and E antigen proteins were successfully expressed from the vaccine SL7207 (pVAX1-SME) both in vitro and in vivo. High titers of the specific antibody against the DTMUV-E protein and the neutralizing antibody against the DTMUV virus were both detected after vaccination with SL7207 (pVAX1-SME). Ducks orally vaccinated with the SL7207 (pVAX-SME) vaccine were efficiently protected from lethal DTMUV infection in this study. Taken together, we demonstrated that prM and E proteins of DTMUV possess strong immunogenicity against the DTMUV infection. Moreover, an oral delivery of the DNA vaccine SL7207 (pVAX1-SME) utilizing Salmonella SL7207 was an efficient way to protect the ducks against DTMUV infection and provides an economic and fast vaccine delivery strategy for a large-scale clinical use.
Collapse
|
24
|
Chen S, Zeng M, Liu P, Yang C, Wang M, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Cheng A. The 125th Lys and 145th Thr Amino Acids in the GTPase Domain of Goose Mx Confer Its Antiviral Activity against the Tembusu Virus. Viruses 2018; 10:v10070361. [PMID: 29986463 PMCID: PMC6070871 DOI: 10.3390/v10070361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
The Tembusu virus (TMUV) is an avian pathogenic flavivirus that causes a highly contagious disease and catastrophic losses to the poultry industry. The myxovirus resistance protein (Mx) of innate immune effectors is a key antiviral “workhorse” of the interferon (IFN) system. Although mammalian Mx resistance against myxovirus and retrovirus was witnessed for decades, whether or not bird Mx has anti-flavivirus activity remains unknown. In this study, we found that the transcription of goose Mx (goMx) was obviously driven by TMUV infection, both in vivo and in vitro, and that the titers and copies of TMUV were significantly reduced by goMx overexpression. In both primary (goose embryo fibroblasts, GEFs) and passaged cells (baby hamster kidney cells, BHK21, and human fetal kidney cells, HEK 293T), it was shown that goMx was mainly located in the cytoplasm, and sporadically distributed in the nucleus. The intracellular localization of this protein is attributed to the predicted bipartite nuclear localization signal (NLS; 30 residues: the 441st–471st amino acids of goMx). Intuitively, it seems that the cells with a higher level of goMx expression tend to have lower TMUV loads in the cytoplasm, as determined by an immunofluorescence assay. To further explore the antiviral determinants, a panel of variants was constructed. Two amino acids at the 125th (Lys) and 145th (Thr) positions in GTP-binding elements, not in the L4 loop (40 residues: the 532nd–572nd amino acids of goMx), were vital for the antiviral function of goMx against TMUV in vitro. These findings will contribute to our understanding of the functional significance of the antiviral system in aquatic birds, and the development of goMx could be a valuable therapeutic agent against TMUV.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Miao Zeng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Peng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Chao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
25
|
Oral Vaccination with a DNA Vaccine Encoding Capsid Protein of Duck Tembusu Virus Induces Protection Immunity. Viruses 2018; 10:v10040180. [PMID: 29642401 PMCID: PMC5923474 DOI: 10.3390/v10040180] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022] Open
Abstract
The emergence of duck tembusu virus (DTMUV), a new member of the Flavivirus genus, has caused great economical loss in the poultry industry in China. Since the outbreak and spread of DTMUV is hard to control in a clinical setting, an efficient and low-cost oral delivery DNA vaccine SL7207 (pVAX1-C) based on the capsid protein of DTMUV was developed and evaluated in this study. The antigen capsid protein was expressed from the DNA vaccine SL7207 (pVAX1-C), both in vitro and in vivo. The humoral and cellular immune responses in vivo were observed after oral immunization with the SL7207 (pVAX1-C) DNA vaccine. High titers of the specific antibody against the capsid protein and the neutralizing antibody against the DTMUV virus were both detected after inoculation. The ducks were efficiently protected from lethal DTMUV exposure by the SL7207 (pVAX1-C) vaccine in this experiment. Taken together, we demonstrated that the capsid protein of DTMUV possesses a strong immunogenicity against the DTMUV infection. Moreover, an oral delivery of the DNA vaccine SL7207 (pVAX1-C) utilizing Salmonella SL7207 was an efficient way to protect the ducks against DTMUV infection and provides an economic and fast vaccine delivery strategy for a large scale clinical use.
Collapse
|
26
|
Sun M, Dong J, Li L, Lin Q, Sun J, Liu Z, Shen H, Zhang J, Ren T, Zhang C. Recombinant Newcastle disease virus (NDV) expressing Duck Tembusu virus (DTMUV) pre-membrane and envelope proteins protects ducks against DTMUV and NDV challenge. Vet Microbiol 2018; 218:60-69. [PMID: 29685222 PMCID: PMC7117350 DOI: 10.1016/j.vetmic.2018.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Firstly generated a NDV-vectored Duck Tembusu Virus (DTMUV) bivalent vaccine that expressing the pre-membrane and envelope proteins of DTMUV. Evaluated the efficacy of the NDV-vectored Duck Tembusu Virus bivalent vaccine. Provided a new method for NDV and DTMUV controlling in waterfowl.
The newly emerged Duck Tembusu virus (DTMUV) is responsible for considerable economic loss in waterfowl-raising areas in China since 2010. Meanwhile, the virulent Newcastle disease virus (NDV) has also caused sporadic outbreaks in waterfowl. The individual vaccines against both diseases are available, however, there is no bivalent or combined vaccine for either disease. Here, we constructed a recombinant NDV-vectored vaccine candidate that expresses the pre-membrane (prM) and envelope (E) genes from DTMUV, designated as aGM/prM + E. The foreign prM and E proteins were stably expressed in aGM/prM + E and exhibited similar pathogenicity but higher growth kinetics than those of the parental virus. The aGM/prM + E carries a fusion cleavage site in accordance with avirulent viruses that have been frequently isolated from waterfowl, and induced remarkably (p < 0.001) higher NDV-specific hemagglutination inhibition (HI) titers than commercially available live NDV vaccines (LaSota strain). The aGM/prM + E also elicited significantly higher (p < 0.05) virus neutralization (VN) titers than commercially available DTMUV inactivated vaccines (HB strain). The aGM/prM + E not only provided complete protection against NDV challenge but also reduced the gross lesions on ovarian folliculi and provided 80% protection against DTMUV in ducks. We note that the aGM/prM + E vaccine can prevent challenged ducks from shedding of NDV and DTMUV. Our results suggest that the candidate vaccine aGM/prM + E would help decrease NDV and DTMUV transmissions in waterfowl raising areas in China.
Collapse
Affiliation(s)
- Minhua Sun
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Jiawen Dong
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Linlin Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, China
| | - Junying Sun
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Zhicheng Liu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Haiyan Shen
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Jianfeng Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, China.
| | - Chunhong Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Ninvilai P, Nonthabenjawan N, Limcharoen B, Tunterak W, Oraveerakul K, Banlunara W, Amonsin A, Thontiravong A. The presence of duck Tembusu virus in Thailand since 2007: A retrospective study. Transbound Emerg Dis 2018. [PMID: 29520997 DOI: 10.1111/tbed.12859] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Duck Tembusu virus (DTMUV), a newly emerging virus in ducks, was first reported in China in 2010. However, an unknown severe contagious disease associated with severe neurological signs and egg production losses in ducks, resembling to DTMUV infection, was observed in Thailand since 2007. To determine the presence of DTMUV in 2007, the clinical samples from affected ducks collected in 2007 were tested for DTMUV using pathological and virological analyses. Gross and histopathological lesions of affected ducks were mostly restricted to the ovary, brain and spinal cord, and correlated with the presence of flavivirus antigen in the brain and spinal cord samples. Subsequently, DTMUV was identified by RT-PCR and nucleotide sequencing of the polyprotein gene. Phylogenetic analysis of the polyprotein gene sequence revealed that the 2007 Thai DTMUV was a unique virus, belonged within DTMUV cluster 1, but distinctively separated from the Malaysian DTMUV, which was the most closely related DTMUV. It is interesting to note that the 2007 Thai DTMUV was genetically different from the currently circulating Thai and Chinese DTMUVs, which belonged to cluster 2. Our findings indicated that the 2007 Thai DTMUV emerged earlier from a common ancestor with the recently reported DTMUVs; however, it was genetically distinctive to any of the currently circulating DTMUVs. In conclusion, our data demonstrated the presence of DTMUV in the Thai ducks since 2007, prior to the first report of DTMUV in China in 2010. This study indicates that DTMUV may have circulated in the region long before 2010 and highlights high genetic diversity of DTMUVs in Asia.
Collapse
Affiliation(s)
- P Ninvilai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - N Nonthabenjawan
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - B Limcharoen
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - W Tunterak
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - K Oraveerakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - W Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - A Amonsin
- Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - A Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections. Viruses 2017; 9:v9110338. [PMID: 29137162 PMCID: PMC5707545 DOI: 10.3390/v9110338] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/26/2022] Open
Abstract
Flaviviruses are enveloped, single-stranded RNA viruses that widely infect many animal species. The envelope protein, a structural protein of flavivirus, plays an important role in host cell viral infections. It is composed of three separate structural envelope domains I, II, and III (EDI, EDII, and EDIII). EDI is a structurally central domain of the envelope protein which stabilizes the overall orientation of the protein, and the glycosylation sites in EDI are related to virus production, pH sensitivity, and neuroinvasiveness. EDII plays an important role in membrane fusion because of the immunodominance of the fusion loop epitope and the envelope dimer epitope. Additionally, EDIII is the major target of neutralization antibodies. The envelope protein is an important target for research to develop vaccine candidates and antiviral therapeutics. This review summarizes the structures and functions of ED I/II/III, and provides practical applications for the three domains, with the ultimate goal of implementing strategies to utilize the envelope protein against flavivirus infections, thus achieving better diagnostics and developing potential flavivirus therapeutics and vaccines.
Collapse
|
29
|
Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Kumar MA, Palanivelu M, Shabbir MZ, Malik YS, Singh RK. Duck virus enteritis (duck plague) - a comprehensive update. Vet Q 2017; 37:57-80. [PMID: 28320263 DOI: 10.1080/01652176.2017.1298885] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duck virus enteritis (DVE), also called duck plague, is one of the major contagious and fatal diseases of ducks, geese and swan. It is caused by duck enteritis virus (DEV)/Anatid herpesvirus-1 of the genus Mardivirus, family Herpesviridae, and subfamily Alpha-herpesvirinae. Of note, DVE has worldwide distribution, wherein migratory waterfowl plays a crucial role in its transmission within and between continents. Furthermore, horizontal and/ or vertical transmission plays a significant role in disease spread through oral-fecal discharges. Either of sexes from varying age groups of ducks is vulnerable to DVE. The disease is characterized by sudden death, vascular damage and subsequent internal hemorrhage, lesions in lymphoid organs, digestive mucosal eruptions, severe diarrhea and degenerative lesions in parenchymatous organs. Huge economic losses are connected with acute nature of the disease, increased morbidity and mortality (5%-100%), condemnations of carcasses, decreased egg production and hatchability. Although clinical manifestations and histopathology can provide preliminary diagnosis, the confirmatory diagnosis involves virus isolation and detection using serological and molecular tests. For prophylaxis, both live-attenuated and killed vaccines are being used in broiler and breeder ducks above 2 weeks of age. Since DEV is capable of becoming latent as well as shed intermittently, recombinant subunit and DNA vaccines either alone or in combination (polyvalent) are being targeted for its benign prevention. This review describes DEV, epidemiology, transmission, the disease (DVE), pathogenesis, and advances in diagnosis, vaccination and antiviral agents/therapies along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Naveen Kumar
- b National Center for Veterinary Type Cultures, ICAR-National Research Center on Equines , Hisar , India
| | - Mani Saminathan
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Kumaragurubaran Karthik
- d Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - M Asok Kumar
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - M Palanivelu
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Muhammad Zubair Shabbir
- e Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Yashpal Singh Malik
- f Division of Biological Standardization , ICAR - Indian Veterinary Research Institute , Bareilly , India
| | - Raj Kumar Singh
- g ICAR - Indian Veterinary Research Institute , Izatnagar , India
| |
Collapse
|
30
|
Significant inhibition of Tembusu virus envelope and NS5 gene using an adenovirus-mediated short hairpin RNA delivery system. INFECTION GENETICS AND EVOLUTION 2017; 54:387-396. [PMID: 28780191 DOI: 10.1016/j.meegid.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
Abstract
Tembusu virus (TMUV) is a mosquito-borne flavivirus, which was first isolated in the tropics during the 1970s. Recently, a disease characterized by ovarian haemorrhage and neurological symptoms was observed in ducks in China, which threatens poultry production. However, there is no suitable vaccination strategy or effective antiviral drugs to combat TMUV infections. Consequently, there is an urgent need to develop a new anti-TMUV therapy. In this study, we report an efficient short hairpin RNA (shRNA) delivery strategy for the inhibition of TMUV production using an adenovirus vector system. Using specifically designed shRNAs based on the E and NS5 protein genes of TMUV, the vector-expressed viral genes, TMUV RNA replication and infectious virus production were downregulated at different levels in Vero cells, where the shRNA (NS52) was highly effective in inhibiting TMUV. Using the human adenovirus type 5 shRNA delivery system, the recombinant adenovirus (rAd-NS52) inhibited TMUV multiplication with high efficiency. Furthermore, the significant dose-dependent inhibition of viral RNA copies induced by rAd-NS52 was found in TMUV-infected cells, which could last for at least 96h post infection. Our results indicated that the adenovirus-mediated delivery of shRNAs could play an active role in future TMUV antiviral therapeutics.
Collapse
|
31
|
Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection. Sci Rep 2017; 7:1478. [PMID: 28469192 PMCID: PMC5431151 DOI: 10.1038/s41598-017-01554-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 01/05/2023] Open
Abstract
Duck enteritis virus (DEV), duck tembusu virus (DTMUV), and highly pathogenic avian influenza virus (HPAIV) H5N1 are the most important viral pathogens in ducks, as they cause significant economic losses in the duck industry. Development of a novel vaccine simultaneously effective against these three viruses is the most economical method for reducing losses. In the present study, by utilizing a clustered regularly interspaced short palindromic repeats (CRISPR)/associated 9 (Cas9)-mediated gene editing strategy, we efficiently generated DEV recombinants (C-KCE-HA/PrM-E) that simultaneously encode the hemagglutinin (HA) gene of HPAIV H5N1 and pre-membrane proteins (PrM), as well as the envelope glycoprotein (E) gene of DTMUV, and its potential as a trivalent vaccine was also evaluated. Ducks immunized with C-KCE-HA/PrM-E enhanced both humoral and cell-mediated immune responses to H5N1 and DTMUV. Importantly, a single-dose of C-KCE-HA/PrM-E conferred solid protection against virulent H5N1, DTMUV, and DEV challenges. In conclusion, these results demonstrated for the first time that the CRISPR/Cas9 system can be applied for modification of the DEV genome rapidly and efficiently, and that recombinant C-KCE-HA/PrM-E can serve as a potential candidate trivalent vaccine to prevent H5N1, DTMUV, and DEV infections in ducks.
Collapse
|
32
|
Epitope Identification and Application for Diagnosis of Duck Tembusu Virus Infections in Ducks. Viruses 2016; 8:v8110306. [PMID: 27834908 PMCID: PMC5127020 DOI: 10.3390/v8110306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 01/19/2023] Open
Abstract
Duck Tembusu virus (DTMUV) causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs) 1F3 and 1A5. Two minimal epitopes were mapped to 221LD/NLPW225 and 87YAEYI91 by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas 221LD/NLPW225 was a cross-reactive epitope for West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D) II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.
Collapse
|
33
|
Zou Z, Ma J, Huang K, Chen H, Liu Z, Jin M. Live Attenuated Vaccine Based on Duck Enteritis Virus against Duck Hepatitis A Virus Types 1 and 3. Front Microbiol 2016; 7:1613. [PMID: 27777571 PMCID: PMC5056193 DOI: 10.3389/fmicb.2016.01613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
As causative agents of duck viral hepatitis, duck hepatitis A virus type 1 (DHAV-1) and type 3 (DHAV-3) causes significant economic losses in the duck industry. However, a licensed commercial vaccine that simultaneously controls both pathogens is currently unavailable. Here, we generated duck enteritis virus recombinants (rC-KCE-2VP1) containing both VP1 from DHAV-1 (VP1/DHAV-1) and VP1 from DHAV-3 (VP1/DHAV-3) between UL27 and UL26. A self-cleaving 2A-element of FMDV was inserted between the two different types of VP1, allowing production of both proteins from a single open reading frame. Immunofluorescence and Western blot analysis results demonstrated that both VP1 proteins were robustly expressed in rC-KCE-2VP1-infected chicken embryo fibroblasts. Ducks that received a single dose of rC-KCE-2VP1 showed potent humoral and cellular immune responses and were completely protected against challenges of both pathogenic DHAV-1 and DHAV-3 strains. The protection was rapid, achieved as early as 3 days after vaccination. Moreover, viral replication was fully blocked in vaccinated ducks as early as 1 week post-vaccination. These results demonstrated, for the first time, that recombinant rC-KCE-2VP1 is potential fast-acting vaccine against DHAV-1 and DHAV-3.
Collapse
Affiliation(s)
- Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of AgricultureWuhan, China
| | - Ji Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of AgricultureWuhan, China
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; College of Life Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of AgricultureWuhan, China
| |
Collapse
|
34
|
Sun Y, Yang C, Li J, Li L, Cao M, Li Q, Li H. Construction of a recombinant duck enteritis virus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks. Arch Virol 2016; 162:171-179. [PMID: 27709401 DOI: 10.1007/s00705-016-3077-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
Abstract
H9 subtype avian influenza viruses (AIVs) remain a significant burden in the poultry industry and are considered to be one of the most likely causes of any new influenza pandemic in humans. As ducks play an important role in the maintenance of H9 viruses in nature, successful control of the spread of H9 AIVs in ducks will have significant beneficial effects on public health. Duck enteritis virus (DEV) may be a promising candidate viral vector for aquatic poultry vaccination. In this study, we constructed a recombinant DEV, rDEV-∆UL2-HA, inserting the hemagglutinin (HA) gene from duck-origin H9N2 AIV into the UL2 gene by homologous recombination. One-step growth analyses showed that the HA gene insertion had no effect on viral replication and suggested that the UL2 gene was nonessential for virus growth in vitro. In vivo tests further showed that the insertion of the HA gene in place of the UL2 gene did not affect the immunogenicity of the virus. Moreover, a single dose of 103 TCID50 of rDEV-∆UL2-HA induced solid protection against lethal DEV challenge and completely prevented H9N2 AIV viral shedding. To our knowledge, this is the first report of a DEV-vectored vaccine providing robust protection against both DEV and H9N2 AIV virus infections in ducks.
Collapse
Affiliation(s)
- Ying Sun
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Junping Li
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ling Li
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Minghui Cao
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Qihong Li
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Huijiao Li
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
35
|
Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, Qin CF. In vitro and in vivo characterization of chimeric duck Tembusu virus based on Japanese encephalitis live vaccine strain SA14-14-2. J Gen Virol 2016; 97:1551-1556. [PMID: 27100268 DOI: 10.1099/jgv.0.000486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
Collapse
Affiliation(s)
- Hong-Jiang Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Long Liu
- Graduate School, Anhui Medical University, Hefei 230032, PR China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,Graduate School, Anhui Medical University, Hefei 230032, PR China
| |
Collapse
|
36
|
Ma T, Liu Y, Cheng J, Liu Y, Fan W, Cheng Z, Niu X, Liu J. Liposomes containing recombinant E protein vaccine against duck Tembusu virus in ducks. Vaccine 2016; 34:2157-63. [PMID: 27016654 DOI: 10.1016/j.vaccine.2016.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
To obtain an effective vaccine candidate against duck Tembusu viral (DTMUV) disease which causes egg-drop and great economical loss in the Chinese duck industry, liposome vaccines containing recombinant E protein were prepared and assessed in this study. The recombinant plasmid (PET28a-E) was constructed and transformed into BL21 (DE3) cells to produce E proteins. The recombinant E proteins were purified and entrapped by liposomes through reverse-phase evaporation. Eighty-four cherry valley ducks were randomly divided into seven groups and inoculated intramuscularly at one- or seven-day-old with liposomes-E protein or Freund's adjuvant-E protein vaccine. Blood samples were collected from the first week to the tenth week for serum antibody, plasma for viremia, as well as oropharyngeal and cloacal swabs for virus shedding analyses after being challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of duck Tembusu virus. Results showed that serum antibody level of the liposomes vaccine was higher than the Freund's adjuvant vaccine, and inoculating twice was superior to once; furthermore, the viremia and virus shedding tests also proved that the liposomes vaccine can provide complete protection against DTMUV challenge. These results demonstrated that the liposomes-E protein vaccine could be used as a potential candidate vaccine to prevent DTMUV infection in ducks.
Collapse
Affiliation(s)
- Tengfei Ma
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jia Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yanhan Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wentao Fan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xudong Niu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
37
|
Zhao D, Huang X, Han K, Liu Y, Yang J, Liu Q, An F, Li Y. Protective immune response against newly emerging goose tembusu virus infection induced by immunization with a recombinant envelope protein. Lett Appl Microbiol 2015; 61:318-24. [DOI: 10.1111/lam.12459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/28/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
Affiliation(s)
- D. Zhao
- Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology; Ministry of Agriculture; Nanjing Jiangsu Province China
| | - X. Huang
- Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology; Ministry of Agriculture; Nanjing Jiangsu Province China
| | - K. Han
- Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology; Ministry of Agriculture; Nanjing Jiangsu Province China
| | - Y. Liu
- Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology; Ministry of Agriculture; Nanjing Jiangsu Province China
| | - J. Yang
- Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology; Ministry of Agriculture; Nanjing Jiangsu Province China
| | - Q. Liu
- Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology; Ministry of Agriculture; Nanjing Jiangsu Province China
| | - F. An
- Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology; Ministry of Agriculture; Nanjing Jiangsu Province China
| | - Y. Li
- Institute of Veterinary Medicine; Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology; Ministry of Agriculture; Nanjing Jiangsu Province China
| |
Collapse
|
38
|
Wang J, Ge A, Xu M, Wang Z, Qiao Y, Gu Y, Liu C, Liu Y, Hou J. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens. Virol J 2015; 12:126. [PMID: 26263920 PMCID: PMC4533785 DOI: 10.1186/s12985-015-0354-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
Background Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. Methods To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEVC-KCE). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. Results The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 106 TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 107 TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 106 TCID50 DEV-vectored vaccine. Conclusions We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEVC-KCE. (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEVC-KCE affects neither the growth kinetics of the virus nor its protection against DEV. (iii) DEV-H5(UL55) can generate a strong humoral immune response in 3-week-old chickens, despite the virulence of this virus observed in 1-week-old chickens. (iv) DEV-H5(UL55) induces a weak HI titer in ducks. An increase in the HI titers induced by DEV-vectored HA(H5) will be required prior to its wide application.
Collapse
Affiliation(s)
- Jichun Wang
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Aimin Ge
- Shandong Vocational Animal Science and Veterinary College, Weifang, 261061, China.
| | - Mengwei Xu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Zhisheng Wang
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Yongfeng Qiao
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Yiqi Gu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chang Liu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yamei Liu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Jibo Hou
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| |
Collapse
|
39
|
Zou Z, Hu Y, Liu Z, Zhong W, Cao H, Chen H, Jin M. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Vet Res 2015; 46:42. [PMID: 25889564 PMCID: PMC4397706 DOI: 10.1186/s13567-015-0174-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/23/2015] [Indexed: 01/01/2023] Open
Abstract
Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.
Collapse
Affiliation(s)
- Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, China.
| | - Zhigang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Life Sciences, AnQing Normal University, AnQing, 246011, China.
| | - Wei Zhong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hangzhou Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|