1
|
Zimna M, Krol E. Leishmania tarentolae as a platform for the production of vaccines against viral pathogens. NPJ Vaccines 2024; 9:212. [PMID: 39505865 PMCID: PMC11541885 DOI: 10.1038/s41541-024-01005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective. The protein expression system based on the protozoan Leishmania tarentolae offers several advantages, validated by numerous studies, making it a good platform for producing vaccine antigens. This review provides a comprehensive overview into the potential applications of L. tarentolae for the safe production of effective viral antigens.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
2
|
Bandi C, Mendoza-Roldan JA, Otranto D, Alvaro A, Louzada-Flores VN, Pajoro M, Varotto-Boccazzi I, Brilli M, Manenti A, Montomoli E, Zuccotti G, Epis S. Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasit Vectors 2023; 16:35. [PMID: 36703216 PMCID: PMC9879565 DOI: 10.1186/s13071-023-05651-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections.
Collapse
Affiliation(s)
- Claudio Bandi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Domenico Otranto
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Alessandro Alvaro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Massimo Pajoro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Matteo Brilli
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Emanuele Montomoli
- grid.511037.1VisMederi, Siena, Italy ,grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gianvincenzo Zuccotti
- grid.4708.b0000 0004 1757 2822Department of Biomedical and Clinical Sciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy ,Department of Pediatrics, Ospedale dei Bambini-Buzzi, Milan, Italy
| | - Sara Epis
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| |
Collapse
|
3
|
Zimna M, Brzuska G, Salát J, Svoboda P, Baranska K, Szewczyk B, Růžek D, Krol E. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antiviral Res 2023; 209:105511. [PMID: 36581050 DOI: 10.1016/j.antiviral.2022.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a major cause of neurological infections in many regions of central, eastern and northern Europe and northern Asia. In approximately 15% of cases, TBEV infections lead to the development of severe encephalitis or meningitis. The main route of TBEV transmission is tick bites; however, ingestion of dairy products from infected animals (goats, cattle and sheep) is also a frequent cause of the disease. Therefore, vaccination of livestock in virus endemic regions could also contribute to the decrease in TBEV infection among humans. Although few vaccines against TBEV based on inactivated viruses are available for humans, due to high costs, vaccination is not mandatory in most of the affected countries. Moreover, there is still no vaccine for veterinary use. Here, we present a characterization and immunogenicity study of a new potential TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells. VLPs, which mimic native viral particles but do not contain genetic material, show good immunogenic potential. For the first time, we showed that the protozoan L. tarentolae expression system can be successfully used for the production of TBEV virus-like particles with highly efficient production. We confirmed that TBEV recombinant structural proteins (prM/M and E) from VLPs are highly recognized by neutralizing antibodies in in vitro analyses. Therefore, VLPs in combination with AddaVax adjuvant were used in immunization studies in a mouse model. VLPs proved to be highly immunogenic and induced the production of high levels of neutralizing antibodies. In a challenge experiment, immunization with VLPs provided full protection from lethal TBE in mice. Thus, we suggest that Leishmania-derived VLPs may be a good candidate for a safe alternative human vaccine with high efficiency of production. Moreover, this potential vaccine candidate may constitute a low-cost candidate for veterinary use.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Jiří Salát
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic.
| | - Pavel Svoboda
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ, 62500, Brno, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 61242, Brno, Czech Republic.
| | - Klaudia Baranska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ, 62500, Brno, Czech Republic.
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
4
|
Panasiuk M, Zimmer K, Czarnota A, Narajczyk M, Peszyńska-Sularz G, Chraniuk M, Hovhannisyan L, Żołędowska S, Nidzworski D, Żaczek AJ, Gromadzka B. Chimeric virus-like particles presenting tumour-associated MUC1 epitope result in high titers of specific IgG antibodies in the presence of squalene oil-in-water adjuvant: towards safe cancer immunotherapy. J Nanobiotechnology 2022; 20:160. [PMID: 35351156 PMCID: PMC8961490 DOI: 10.1186/s12951-022-01357-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immunotherapy is emerging as a powerful treatment approach for several types of cancers. Modulating the immune system to specifically target cancer cells while sparing healthy cells, is a very promising approach for safer therapies and increased survival of cancer patients. Tumour-associated antigens are favorable targets for cancer immunotherapy, as they are exclusively expressed by the cancer cells, minimizing the risk of an autoimmune reaction. The ability to initiate the activation of the immune system can be achieved by virus-like particles (VLPs) which are safe and potent delivery tools. VLP‐based vaccines have evolved dramatically over the last few decades and showed great potential in preventing infectious diseases. Immunogenic potency of engineered VLPs as a platform for the development of effective therapeutic cancer vaccines has been studied extensively. This study involves recombinant VLPs presenting multiple copies of tumour-specific mucin 1 (MUC1) epitope as a potentially powerful tool for future immunotherapy. Results In this report VLPs based on the structural protein of Norovirus (NoV VP1) were genetically modified to present multiple copies of tumour-specific MUC1 epitope on their surface. Chimeric MUC1 particles were produced in the eukaryotic Leishmania tarentolae expression system and used in combination with squalene oil-in-water emulsion MF59 adjuvant to immunize BALB/c mice. Sera from vaccinated mice demonstrated high titers of IgG and IgM antibodies which were specifically recognizing MUC1 antigen. Conclusions The obtained results show that immunization with recombinant chimeric NoV VP1- MUC1 VLPs result in high titers of MUC1 specific IgG antibodies and show great therapeutic potential as a platform to present tumour-associated antigens. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Mirosława Panasiuk
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.,NanoExpo Sp. z o.o., Kładki 24, 80-822, Gdańsk, Poland.,Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.,Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa 2, 43-309, Bielsko-Biala, Poland
| | - Anna Czarnota
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Milena Chraniuk
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Lilit Hovhannisyan
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Sabina Żołędowska
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Medical University of Gdańsk, Dębinki 1, 80-210, Gdańsk, Poland
| | - Beata Gromadzka
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland. .,NanoExpo Sp. z o.o., Kładki 24, 80-822, Gdańsk, Poland. .,Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
| |
Collapse
|
5
|
A novel lamprey antibody sequence to multimerize and increase the immunogenicity of recombinant viral and bacterial vaccine antigens. Vaccine 2020; 38:7905-7915. [PMID: 33153770 DOI: 10.1016/j.vaccine.2020.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Hemagglutinin, the major surface protein of influenza viruses, was recombinantly expressed in eukaryotic cells as a monomer instead of its native trimer, and was only immunogenic when administered with an adjuvant [Pion et al. 2014]. In order to multimerize this antigen to increase its immunogenicity, a cysteine-rich peptide sequence found at the extreme C-terminus of lamprey variable lymphocyte receptor (VLR)-B antibodies was fused to various recombinant hemagglutinin (rHA) proteins from A and B influenza virus strains. The rHA-Lamp fusion (rHA fused to the lamprey sequence) protein was expressed in Leishmania tarentolae and Chinese hamster ovary (CHO) cells and shown to produce several multimeric forms. The multimers produced were very stable and more immunogenic in mice than monomeric rHA. The lamprey VLR-B sequence was also used to multimerize the neuraminidase (NA) of influenza viruses expressed in CHO cells. For some viral strains, the NA was expressed as a tetramer like the native viral NA form. In addition, the lamprey VLR-B sequence was fused with two surface antigens of Shigella flexneri 2a, the invasion plasmid antigen D and a double mutated soluble form of the membrane expression of the invasion plasmid antigen H namely MxiH. The fusion proteins were expressed in Escherichia coli to produce the respective multimer protein forms. The resulting proteins had similar multimeric forms as rHA-Lamp protein and were more immunogenic in mice than the monomer forms. In conclusion, the VLR-B sequence can be used to increase the immunogenicity of recombinant viral and bacterial antigens, thus negating the need for adjuvants.
Collapse
|
6
|
Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine 2019; 37:6857-6867. [DOI: 10.1016/j.vaccine.2019.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
|
7
|
Khan AH, Noordin R. Strategies for humanizing glycosylation pathways and producing recombinant glycoproteins in microbial expression systems. Biotechnol Prog 2018; 35:e2752. [DOI: 10.1002/btpr.2752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Amjad Hayat Khan
- Inst. for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 11800 Penang Malaysia
| | - Rahmah Noordin
- Inst. for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
8
|
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80:31-47. [PMID: 30172933 PMCID: PMC7105045 DOI: 10.1016/j.actbio.2018.08.033] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Engineering vaccine-based therapeutics for infectious diseases is highly challenging, as trial formulations are often found to be nonspecific, ineffective, thermally or hydrolytically unstable, and/or toxic. Vaccines have greatly improved the therapeutic landscape for treating infectious diseases and have significantly reduced the threat by therapeutic and preventative approaches. Furthermore, the advent of recombinant technologies has greatly facilitated growth within the vaccine realm by mitigating risks such as virulence reversion despite making the production processes more cumbersome. In addition, seroconversion can also be enhanced by recombinant technology through kinetic and nonkinetic approaches, which are discussed herein. Recombinant technologies have greatly improved both amino acid-based vaccines and DNA-based vaccines. A plateau of interest has been reached between 2001 and 2010 for the scientific community with regard to DNA vaccine endeavors. The decrease in interest may likely be attributed to difficulties in improving immunogenic properties associated with DNA vaccines, although there has been research demonstrating improvement and optimization to this end. Despite improvement, to the extent of our knowledge, there are currently no regulatory body-approved DNA vaccines for human use (four vaccines approved for animal use). This article discusses engineering DNA vaccines against infectious diseases while discussing advantages and disadvantages of each, with an emphasis on applications of these DNA vaccines. Statement of Significance This review paper summarizes the state of the engineered/recombinant DNA vaccine field, with a scope entailing “Engineering DNA vaccines against infectious diseases”. We endeavor to emphasize recent advances, recapitulating the current state of the field. In addition to discussing DNA therapeutics that have already been clinically translated, this review also examines current research developments, and the challenges thwarting further progression. Our review covers: recombinant DNA-based subunit vaccines; internalization and processing; enhancing immune protection via adjuvants; manufacturing and engineering DNA; the safety, stability and delivery of DNA vaccines or plasmids; controlling gene expression using plasmid engineering and gene circuits; overcoming immunogenic issues; and commercial successes. We hope that this review will inspire further research in DNA vaccine development.
Collapse
|
9
|
Fischer K, Diederich S, Smith G, Reiche S, Pinho dos Reis V, Stroh E, Groschup MH, Weingartl HM, Balkema-Buschmann A. Indirect ELISA based on Hendra and Nipah virus proteins for the detection of henipavirus specific antibodies in pigs. PLoS One 2018; 13:e0194385. [PMID: 29708971 PMCID: PMC5927399 DOI: 10.1371/journal.pone.0194385] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/03/2018] [Indexed: 02/06/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990’s causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
Collapse
Affiliation(s)
- Kerstin Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Greg Smith
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Sven Reiche
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Experimental Animal Facilities and Biorisk Management, Greifswald-Insel Riems, Germany
| | - Vinicius Pinho dos Reis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Eileen Stroh
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Hana M. Weingartl
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
10
|
Langer T, Corvey C, Kroll K, Boscheinen O, Wendrich T, Dittrich W. Expression and purification of the extracellular domains of human glycoprotein VI (GPVI) and the receptor for advanced glycation end products (RAGE) from Rattus norvegicus in Leishmania tarentolae. Prep Biochem Biotechnol 2017; 47:1008-1015. [PMID: 28857681 DOI: 10.1080/10826068.2017.1365252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosylation is one of the most complex post-translational modifications and may have significant influence on the proper function of the corresponding proteins. Bacteria and yeast are, because of easy handling and cost reasons, the most frequently used systems for recombinant protein expression. Bacteria generally do not glycosylate proteins and yeast might tend to hyperglycosylate. Insect cell- and mammalian cell-based expression systems are able to produce complex N-glycosylation structures but are more complex to handle and more expensive. The nonpathogenic protozoa Leishmania tarentolae is an easy-to-handle alternative expression system for production of proteins requiring the eukaryotic protein folding machinery and post-translational modifications. We used and evaluated the system for the secretory expression of extracellular domains from human glycoprotein VI and the receptor for advanced glycation end products from rat. Both proteins were well expressed and homogeneously glycosylated. Analysis of the glycosylation pattern identified the structure as the conserved core pentasaccharide Man3GlcNac2.
Collapse
Affiliation(s)
- Thomas Langer
- a R&D Biologics Research, Sanofi-Aventis Deutschland GmbH , Frankfurt am Main , Germany
| | - Carsten Corvey
- a R&D Biologics Research, Sanofi-Aventis Deutschland GmbH , Frankfurt am Main , Germany
| | - Katja Kroll
- a R&D Biologics Research, Sanofi-Aventis Deutschland GmbH , Frankfurt am Main , Germany
| | - Oliver Boscheinen
- b C&BD Frankfurt Biotechnology, Sanofi-Aventis Deutschland GmbH , Frankfurt am Main , Germany
| | - Thomas Wendrich
- b C&BD Frankfurt Biotechnology, Sanofi-Aventis Deutschland GmbH , Frankfurt am Main , Germany
| | - Werner Dittrich
- a R&D Biologics Research, Sanofi-Aventis Deutschland GmbH , Frankfurt am Main , Germany
| |
Collapse
|
11
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
12
|
Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A. Humanizing glycosylation pathways in eukaryotic expression systems. World J Microbiol Biotechnol 2016; 33:4. [DOI: 10.1007/s11274-016-2172-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/04/2016] [Indexed: 01/27/2023]
|
13
|
Tombari W, Ghram A. Production of a truncated recombinant HA1 for influenza A H9 subtype screening. Biologicals 2016; 44:546-555. [PMID: 27666434 DOI: 10.1016/j.biologicals.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/23/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
Hemagglutinin is the major component of membrane protein and plays a major role in virus entry into host cells through their receptors and it is predicted to elicit the production neutralizing antibodies. Our aim is to assess the potential of a truncated rHA1 domain, encoding residues 157-260 to detect influenza A H9 specific antibodies. The predicted characteristics of this protein revealed that it is a hydrophobic protein possessing predominant antigenicity and composed of random coils (48%) and extended strand (28%) but few α-helix (6.33%) and β-sheet (7%). A 312 pb HA1 gene was amplified and cloned in pET23b(+) vector including an C-terminal polyHis as a fusion partner, transformed and expressed in Escherichia coli cells as inclusion bodies. The truncated protein was solubilized with 8 M urea, purified by immobilized metal affinity chromatography and then detected by western blot with anti-His and H9-specific polyclonal antibodies. The test demonstrated high specificity (100%) and sensibility (98%). The immunoreactivity of the truncated rHA1 assessed revealed that only antisera against H9 yielded a specific and strong reactivity, with no cross-reactivity against negative sera. This study demonstrates that the truncated rHA1 may serve as a useful tool for rapid and easy surveillance of H9 infection.
Collapse
Affiliation(s)
- Wafa Tombari
- University Tunis El Manar, Institute Pasteur of Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13, Place Pasteur, BP 74, Tunis-Belvédère, 1002, Tunisia.
| | - Abdeljelil Ghram
- University Tunis El Manar, Institute Pasteur of Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13, Place Pasteur, BP 74, Tunis-Belvédère, 1002, Tunisia
| |
Collapse
|
14
|
Immunogenicity and functional characterization of Leishmania-derived hepatitis C virus envelope glycoprotein complex. Sci Rep 2016; 6:30627. [PMID: 27481352 PMCID: PMC4969751 DOI: 10.1038/srep30627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are the main inducers of a cross-neutralizing antibody response which plays an important role in the early phase of viral infection. Correctly folded and immunologically active E1E2 complex can be expressed in mammalian cells, though the production process might still prove restrictive, even if the immunological response of a vaccine candidate is positive. Here, we report a characterization and immunogenicity study of a full-length (fE1E2) and soluble version of the E1E2 complex (tE1E2) from genotype 1a, successfully expressed in the cells of Leishmania tarentolae. In a functional study, we confirmed the binding of both Leishmania-derived E1E2 complexes to the CD-81 receptor and the presence of the major epitopes participating in a neutralizing antibody response. Both complexes were proved to be highly immunogenic in mice and elicited neutralizing antibody response. Moreover, cross-reactivity of the mouse sera was detected for all tested HCV genotypes with the highest signal intensity observed for genotypes 1a, 1b, 5 and 6. Since the development of a prophylactic vaccine against HCV is still needed to control the global infection, our Leishmania-derived E1E2 glycoproteins could be considered a potential cost-effective vaccine candidate.
Collapse
|
15
|
Leishmania-based expression systems. Appl Microbiol Biotechnol 2016; 100:7377-85. [DOI: 10.1007/s00253-016-7712-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
|
16
|
Fischer K, dos Reis VP, Finke S, Sauerhering L, Stroh E, Karger A, Maisner A, Groschup MH, Diederich S, Balkema-Buschmann A. Expression, characterisation and antigenicity of a truncated Hendra virus attachment protein expressed in the protozoan host Leishmania tarentolae. J Virol Methods 2015; 228:48-54. [PMID: 26585033 DOI: 10.1016/j.jviromet.2015.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Hendra virus (HeV) is an emerging zoonotic paramyxovirus within the genus Henipavirus that has caused severe morbidity and mortality in humans and horses in Australia since 1994. HeV infection of host cells is mediated by the membrane bound attachment (G) and fusion (F) glycoproteins, that are essential for receptor binding and fusion of viral and cellular membranes. The eukaryotic unicellular parasite Leishmania tarentolae has recently been established as a powerful tool to express recombinant proteins with mammalian-like glycosylation patterns, but only few viral proteins have been expressed in this system so far. Here, we describe the purification of a truncated, Strep-tag labelled and soluble version of the HeV attachment protein (sHeV G) expressed in stably transfected L. tarentolae cells. After Strep-tag purification the identity of sHeV G was confirmed by immunoblotting and mass spectrometry. The functional binding of sHeV G to the HeV cell entry receptor ephrin-B2 was confirmed in several binding assays. Generated polyclonal rabbit antiserum against sHeV G reacted with both HeV and Nipah virus (NiV) G proteins in immunofluorescence assay and efficiently neutralised NiV infection, thus further supporting the preserved antigenicity of the purified protein.
Collapse
Affiliation(s)
- Kerstin Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Vinicius Pinho dos Reis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Eileen Stroh
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, Greifswald-Insel Riems, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.
| |
Collapse
|
17
|
Li X, Pushko P, Tretyakova I. Recombinant Hemagglutinin and Virus-Like Particle Vaccines for H7N9 Influenza Virus. ACTA ACUST UNITED AC 2015; 6. [PMID: 26523241 DOI: 10.4172/2157-7560.1000287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cases of H7N9 human infection were caused by a novel, avian-origin H7N9 influenza A virus that emerged in eastern China in 2013. Clusters of human disease were identified in many cities in China, with mortality rates approaching 30%. Pandemic concerns were raised, as historically, influenza pandemics were caused by introduction of novel influenza A viruses into immunologically naïve human population. Currently, there are no approved human vaccines for H7N9 viruses. Recombinant protein vaccine approaches have advantages in safety and manufacturing. In this review, we focused on evaluation of the expression of recombinant hemagglutinin (rHA) proteins as candidate vaccines for H7N9 influenza, with the emphasis on the role of oligomeric and particulate structures in immunogenicity and protection. Challenges in preparation of broadly protective influenza vaccines are discussed, and examples of broadly protective vaccines are presented including rHA stem epitope vaccines, as well as recently introduced experimental multi-HA VLP vaccines.
Collapse
Affiliation(s)
- Xiaohui Li
- Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, PR China 200240 ; Genor Biopharma Co., Ltd. 1690 Zhangheng Road, Shanghai, PR China 201203
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, U.S.A
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, U.S.A
| |
Collapse
|