1
|
Di M, Gong X, Zhu Y, Guo S, Pan Z, Li M, Wu Z, Zhang W, Liu X, Liu Y, Li Y, Li J, Fang F. Active immunization with a novel recombinant GnRH vaccine inhibits reproductive function in male goats. Domest Anim Endocrinol 2024; 91:106908. [PMID: 39708581 DOI: 10.1016/j.domaniend.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Gonadotropin-releasing hormone (GnRH) vaccines have been widely used to effectively inhibit gonadal development and reproductive function. To improve the immunogenicity of GnRH, we developed and evaluated the effects of GnRH6-kisspeptin-CRM197 immunization on the reproductive function in male goats. Thirty 3-month-old male goats (n = 30) were randomly assigned to control, surgical, and immunized groups. The immunized group received a 2 mL injection of the GnRH6-kisspeptin-CRM197 with a booster administered four weeks later. The control group was administered a white oil adjuvant. Blood samples were collected at regular intervals, and at week 20, the animals were euthanized for tissue collection. Serum antibody titers and testosterone levels were measured using ELISA and CLIA, respectively. Testicular parameters and histology were evaluated. The mRNA levels of reproductive-related genes in the HPG axis were measured using RT-qPCR. The results showed that the immunized goats had significantly increased serum GnRH and kisspeptin antibodies (P < 0.05) but decreased testosterone concentrations (P < 0.05) compared to the control group. Testicular size and histology were significantly affected in the immunized group, with notable reductions in testicular weight and dimensions (P < 0.01), and evidence of vacuolar degeneration and suppressed sperm production. The mRNA levels of FSHβ and LHβ in the pituitary, as well as FSHR, LHR, 3βHSD, and 17βHSD in the testis, were significantly lower in the immunized group compared to controls (P < 0.05). These findings suggest that GnRH6-kisspeptin-CRM197 is a safe antigen and a promising immunocastration vaccine with enhanced efficacy.
Collapse
Affiliation(s)
- Moyan Di
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Yanyun Zhu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Shibao Guo
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Zhihao Pan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Mengxian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Zhuoya Wu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Xuelan Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Li
- Biological and Food Engineering College, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236037, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Hess RA, Park CJ, Soto S, Reinacher L, Oh JE, Bunnell M, Ko CJ. Male animal sterilization: history, current practices, and potential methods for replacing castration. Front Vet Sci 2024; 11:1409386. [PMID: 39027909 PMCID: PMC11255590 DOI: 10.3389/fvets.2024.1409386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Sterilization and castration have been synonyms for thousands of years. Making an animal sterile meant to render them incapable of producing offspring. Castration or the physical removal of the testes was discovered to be the most simple but reliable method for managing reproduction and sexual behavior in the male. Today, there continues to be global utilization of castration in domestic animals. More than six hundred million pigs are castrated every year, and surgical removal of testes in dogs and cats is a routine practice in veterinary medicine. However, modern biological research has extended the meaning of sterilization to include methods that spare testis removal and involve a variety of options, from chemical castration and immunocastration to various methods of vasectomy. This review begins with the history of sterilization, showing a direct link between its practice in man and animals. Then, it traces the evolution of concepts for inducing sterility, where research has overlapped with basic studies of reproductive hormones and the discovery of testicular toxicants, some of which serve as sterilizing agents in rodent pests. Finally, the most recent efforts to use the immune system and gene editing to block hormonal stimulation of testis function are discussed. As we respond to the crisis of animal overpopulation and strive for better animal welfare, these novel methods provide optimism for replacing surgical castration in some species.
Collapse
Affiliation(s)
- Rex A. Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| | | | | | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - CheMyong J. Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Epivara, Inc, Champaign, IL, United States
| |
Collapse
|
3
|
Ding Y, Jiang X, Sun L, Sha Y, Xu Z, Sohail A, Liu G. Multiple-Pathway Synergy Alters Steroidogenesis and Spermatogenesis in Response to an Immunocastration Vaccine in Goat. Cells 2023; 13:6. [PMID: 38201210 PMCID: PMC10778245 DOI: 10.3390/cells13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Animal reproduction performance is crucial in husbandry. Immunocastrated animals serve as an ideal animal model for studying testicular function. During androgen suppression, the testis undergoes dramatic developmental and structural changes, including the inhibition of hormone secretion and spermatogenesis. METHODS To characterize this process, we investigated the effects of castration using a recombinant B2L and KISS1 DNA vaccine, and then identified functional genes in the testes of Yiling goats using RNA-seq and WGS. The experimental animals were divided into three groups: the PVAX-asd group (control), PBK-asd-immunized group, and surgically castrated group. RESULTS The results demonstrated that the administration of the recombinant PBK-asd vaccine in goats elicited a significant antibody response, and reduced serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH), resulting in smaller scrotal circumferences and decreased sexual desire compared to the control group. In addition, RNA transcriptome sequencing (RNA-seq) analysis of the testes revealed that the biological processes after immunocastration mainly focused on the regulation of cell matrix adhesion, histone acetylation, negative regulation of developmental processes, apoptosis, and activation of the complement system and the thrombin cascade reaction system. Then, we integrated the whole-genome sequencing and testis transcriptome, and identified several candidate genes (FGF9, FST, KIT, TH, TCP1, PLEKHA1, TMEM119, ESR1, TIPARP, LEP) that influence steroidogenesis secretion and spermatogenesis. CONCLUSIONS Multiple pathways and polygenic co-expression participate in the response to castration vaccines, altering hormone secretion and spermatogenesis. Taken together, our atlas of the immunocastration goat testis provides multiple insights into the developmental changes and key factors accompanying androgen suppression, and thus may contribute to understanding the genetic mechanism of testis function. Joint analysis of whole genome sequencing and RNA-seq enables reliable screening of candidate genes, benefiting future genome-assisted breeding of goats.
Collapse
Affiliation(s)
- Yi Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiyu Sha
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhan Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ahmed Sohail
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guiqiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Tesema B, Liu GQ, Jiang XP. Active kisspeptin DNA vaccines oral immunization disrupt mRNA hormone receptors expression in ram lambs. Anim Biotechnol 2023; 34:2285-2294. [PMID: 35714982 DOI: 10.1080/10495398.2022.2087665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To evaluate the efficacy of oral immunization with active kisspeptin DNA vaccine on the expression of hormone receptor mRNA. For this study, ten 56-day-old Hu breed ram lambs were randomly assigned to the treatment and control groups (n = 5). Treatment Experimental group received C500/pKS-asd and the control group received C500/pVAX-asd (aspartate-β semialdehyde dehydrogenase orally on days 0, 28, and 56, and blood samples were taken at each immunization interval (14-day) and tissues samples were collected at the end of the experimental period (day 98). The collected samples were stored in the refrigerator at -20 °C and liquid nitrogen, respectively, for laboratory examination. Total RNA was extracted from samples using TRIzol reagent and quantitative real-time polymerase chain reaction (QPCR) was used to quantify the levels of KISS1, G protein-coupled receptor-54 (Kiss1r), and gonadotrophin-releasing hormone (GnRH) mRNA in the hypothalamus. Levels of luteinizing hormone receptor (LHR) and luteinizing hormone beta (LHβ) mRNA, and follicle-stimulating hormone receptor (FSHR) and follicle-stimulating hormone beta (FSHβ) mRNA in the testes and pituitary were analyzed, respectively. Further, gonadotropin-releasing hormone receptor (GnRHR) mRNA expression level in the pituitary was measured. Moreover, the Kiss1r concentration level in the blood was measured using an indirect ELISA. The concentration of Kiss1r in the blood was lower in the treatment group than in the control group (p < 0.05). The levels of testicular FSHR and LHR mRNA were significantly lower in the treatment group (p < 0.05) when compared to the control group. Furthermore, the treatment group's levels of hypothalamic KISS1, Kiss1r, and GnRH mRNA were significantly lower (p < 0.05) than the controls. LH, FSH, and GnRHR mRNA expression in the pituitary were also significantly lower in the treatment group (p < 0.01 and p < 0.05, respectively). These findings imply that oral immunization with active kisspeptin DNA vaccine suppresses hormone receptor mRNA expression in the ram lambs.
Collapse
Affiliation(s)
- Birhanu Tesema
- Key Laboratory of Agricultural - Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Department of Animal Science, College of Agricultural Sciences, Bule Hora University, Bule Hora, Ethiopia
| | - Gui-Qiang Liu
- Key Laboratory of Agricultural - Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xun-Ping Jiang
- Key Laboratory of Agricultural - Animal Genetics, Breeding, and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Ding Y, Liu G, Zeng F, Yan Y, Jing H, Jiang X. Adrenal gland responses surgical castration and immunocastration by different compensatory manners to increase DHEA secretion. Anim Biotechnol 2023; 34:966-973. [PMID: 34904516 DOI: 10.1080/10495398.2021.2007116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Androgen from the testis and weak androgens from the adrenal cortex may interact with each other and affect their synthesis and secretion due to their similar functions. The purpose of this study was to investigate the compensatory effect of adrenal in rats after immunocastration and surgical castration, and the interaction between the hypothalamic-pituitary-testis (HPT) axis and the hypothalamic-pituitary-adrenal (HPA) axis. 24 male SD rats aged 8 weeks were randomly divided into three groups and accepted treatments: surgical castration group, immunocastration group and control group. In both surgical castration and immunocastration groups, the secretion of adrenocorticotropic hormone (ACTH) and dehydroepiandrosterone (DHEA) hormones was significantly increased compared with the control group (p < 0.05). In the HPT axis of the immunocastration group, the KISS1 expression was up-regulated, whereas GPR54, LH and LHR expression were down-regulated (p < 0.05). The expression levels of CRH, POMC and MC2R genes were also significantly up-regulated (p < 0.05). In addition, in the immunocastration group, the expression of adrenal LHR mRNA expression was decreased (p < 0.05). The expression of HPT axis genes and adrenal LHR were up-regulated in the surgical castration group (p < 0.05). These results show that in both immunocastration and surgical castration, adrenal androgen is increased, suggesting that the adrenal gland plays a compensatory role. Moreover, it also shows that different castration treatments have effects on adrenal steroid secretion through different mechanisms.
Collapse
Affiliation(s)
- Yi Ding
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fanmei Zeng
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yinan Yan
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Haijing Jing
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xunping Jiang
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Montes-Garrido R, Anel-Lopez L, Riesco MF, Neila-Montero M, Palacin-Martinez C, Soriano-Úbeda C, Boixo JC, de Paz P, Anel L, Alvarez M. Does Size Matter? Testicular Volume and Its Predictive Ability of Sperm Production in Rams. Animals (Basel) 2023; 13:3204. [PMID: 37893928 PMCID: PMC10603633 DOI: 10.3390/ani13203204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Over the years, testicular volume has been used to evaluate the reproductive capacity of rams and the effects of different factors related to reproductive performance. The aim of this study was to determine the most suitable tool and formula to calculate testicular volume under field conditions to guarantee a more accurate determination of sperm production. First, testicles from 25 rams (n = 50) were measured in vivo and postmortem using calipers and ultrasonography during the breeding season (BS). The accurate testicular volume (ATV) was calculated through water displacement. In addition, the sexual status of donor rams was evaluated during a period of four years in a reproduction center, and the three most crucial groups in terms of genetic value and seminal collections were studied in the second part of this experiment: ER-NBS (Elite rams during the non-breeding season), ER-BS-S (Elite rams with a standard frequency of seminal collection), and ER-BS-O (Elite rams with a high frequency of seminal collection). The total testicular volume (TTV), testosterone (T), and total spermatozoa obtained from two consecutive ejaculates in the same day (SPERM) were measured, and the relationship between SPERM and TTV and T was analyzed to predict SPERM. Although all published formulas revealed statistically significant differences (p ≤ 0.05) from the ATV, our proposed formula (ItraULE) (Testicular volume = L × W × D × 0.61) did not show significant differences. In the second part of the study, in the ER as a model donor ram for its high genetic value and high demand from farmers, TTV and T showed strong positive correlations with SPERM (r = 0.587, p = 0.007 NBS; r = 0.684, p = 0.001 BS-S; r = 0.773, p < 0.0001 BS-O). Moreover, formulas were established to predict SPERM in these practical scenarios. In conclusion, the use of ultrasonography and a new formula adapted to rams could improve the prediction of SPERM considering crucial factors such as season and semen collection frequency.
Collapse
Affiliation(s)
- Rafael Montes-Garrido
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Luis Anel-Lopez
- ITRAULE, Anatomy, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain
| | - Marta F. Riesco
- ITRAULE, Cellular Biology, Department of Molecular Biology, University of León, 24071 León, Spain; (M.F.R.); (P.d.P.)
| | - Marta Neila-Montero
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Cristina Palacin-Martinez
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Cristina Soriano-Úbeda
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Juan Carlos Boixo
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Paulino de Paz
- ITRAULE, Cellular Biology, Department of Molecular Biology, University of León, 24071 León, Spain; (M.F.R.); (P.d.P.)
| | - Luis Anel
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| | - Mercedes Alvarez
- ITRAULE, Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery, and Anatomy, University of León, 24071 León, Spain; (R.M.-G.); (M.N.-M.); (C.P.-M.); (C.S.-Ú.); (J.C.B.); (L.A.); (M.A.)
| |
Collapse
|
7
|
Nestor CC, Merkley CM, Lehman MN, Hileman SM, Goodman RL. KNDy neurons as the GnRH pulse generator: Recent studies in ruminants. Peptides 2023; 164:171005. [PMID: 36990389 PMCID: PMC10164117 DOI: 10.1016/j.peptides.2023.171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
This review considers three aspects of recent work on the role of KNDy neurons in GnRH pulse generation in ruminants. First, work on basic mechanisms of pulse generation includes several tests of this hypothesis, all of which support it, and evidence that Kiss1r-containing neurons form a positive feedback circuit with the KNDy neural network that strengthen the activity of this network. The second section on pathways mediating external inputs focuses on the influence of nutrition and photoperiod, and describes the evidence supporting roles for proopiomelanocortin (POMC) and agouti-related peptide (AgRP) afferents to KNDy cells in each of these. Finally, we review studies exploring the potential applications of manipulating signaling by kisspeptin, and the other KNDy peptides, to control reproductive function in domestic animals and conclude that, although these approaches show some promise, they do not have major advantages over current practices at this time.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | | - Michael N Lehman
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
8
|
Ding Y, Jiang X, Jing H, Liu G, Cheng J. Recombinant HBsAg-S and RFRP-3 DNA vaccine promotes reproduction hormone secretion in sheep. Theriogenology 2023; 201:68-75. [PMID: 36842263 DOI: 10.1016/j.theriogenology.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
RF-amide related peptides (RFRP) have been proposed as critical regulators of gonadotropin secretion in mammals. This study was designed to construct a DNA vaccine and investigate the effect of vaccine encoding RFRP-3 on reproduction physiology in ewe. A recombinant vaccine was constructed using two copies of the RFRP-3 gene and HBsAg-S that generate a fusion protein to induce an immunology response. Results showed this recombinant vaccine could produce a significant antibody titer in the treated animals (P < 0.05). The specific RFRP-3 antibody response induced by the vaccine was detected at week 2 with a peak at week 6 after the initial immunization. Furthermore, we found that ewes inoculated with pVAX-tPA-HBsAg-S-2RFRP-asd vaccine significantly raised the concentration of GnRH, LH and E2 in serum compared to the control group. LH and E2 concentration in the treated ewes (Group T) was significantly higher than that in control ewes (Group C) at weeks 10, 12 and 14 after the initial immunization, respectively (P < 0.05). Therefore, RFRP-3 can be used as a target for DNA immunization to promote reproductive hormone secretion in ewes and RFRP-3 gene immunization might be a candidate tool to regulate mammal reproduction.
Collapse
Affiliation(s)
- Yi Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haijing Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guiqiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Junjun Cheng
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
9
|
New trends in immunocastration and its potential to improve animal welfare: a mini review. Trop Anim Health Prod 2022; 54:369. [DOI: 10.1007/s11250-022-03348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
10
|
Ahmed S, Dongdong B, Jiayu Z, Liu G, Ding Y, Jiang X, Teketay W, Jing H. Immunocastration with gene vaccine (KISS1) induces a cell-mediated immune response in ram testis: A transcriptome evaluation. Reprod Domest Anim 2022; 57:653-664. [PMID: 35247007 DOI: 10.1111/rda.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
Immunocastration vaccines achieve their effects through neutralization of the endogenous hormone by the humoral antibody produced against the immunized genes. But there is little information regarding cell-mediated immune response on the gonadal function of the immunized model is available. In this study, we used ram as a model animal to identify the cellular immune response in testicular tissues of rams immunized with intranasal KISS1 gene vaccine. The immune castration model was evaluated by sexual behaviors, spermatogenesis, and serum hormone profiles after the KISS1 gene immunization. Transcriptome analysis of testicular tissues was carried out to identify the expressions of protein-coding genes involved in cellular immunity. The results showed that we successfully constructed the KISS1 immune castration ram model, in which testicular growth and development, testosterone and kisspeptin-54 levels, and sexual function were suppressed in immunized rams (P <0.05). Using HiseqTM 2000 high sequencing for ram testicular, we identified 21 differentially expressed genes (DEGs) related to cellular immunity, of which, 14 genes were up-regulated and seven genes were down-regulated in the testis of the immunized group (P<0.05). The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that these differentially expressed genes were enriched in the antigen presentation process mediated by MHC class I and the cytotoxic pathway mediated by natural killer cells. It is concluded that KISS1 gene vaccine induced the cell-mediated immune response in testicular tissue to suppress reproductive activities in rams.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bo Dongdong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhao Jiayu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yi Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wassie Teketay
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haijing Jing
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
11
|
Rocha LF, Santana ALA, Souza RS, Machado-Neves M, Oliveira Filho JC, Santos ESCD, Araujo MLD, Cruz TBD, Barbosa LP. Testicular morphometry as a tool to evaluate the efficiency of immunocastration in lambs. Anim Reprod 2022; 19:e20210041. [PMID: 35712444 PMCID: PMC9169990 DOI: 10.1590/1984-3143-ar2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the efficiency of immunocastration in lambs using testicular morphometry. Thirty lambs were randomly divided into two treatments (subcutaneous administration of 1.0 mL and 0.5 mL of an anti-GnRH vaccine) and a control group (1.0 mL saline solution). The animals were vaccinated at four months of age, received a second dose 30 days later, and were slaughtered 90 days after the first vaccine dose. After slaughter, testicles were collected, and samples were removed for histological processing and evaluation of testicular morphometric parameters. Analysis of variance, Tukey’s test, and Kruskal–Wallis test were performed, with a 5% level of significance. There was a reduction in testicular weight, gonadosomatic index, seminiferous tubule diameter, germinal epithelium height, leydigosomatic index, and total tubule length. The total length per testicular gram increased in the immunocastrated group. Intrinsic spermatogenesis yield, Sertoli cell indices, and estimates of sperm and Sertoli cell production were reduced in the immunized groups (P < 0.05). The anti-GnRH vaccine in lambs at doses of 1.0 mL and 0.5 mL is sufficient to promote immunocastration, verified through severe changes in testicular morphometry from animals.
Collapse
|
12
|
Rocha LF, Souza RS, Santana ALA, Macedo DS, Santana AMS, da Silva RC, Bezerra PA, de Jesus RDL, Barbosa LP. Reproductive parameters of lambs immunocastrated with anti-GnRH vaccine. Anim Reprod 2021; 18:e20200237. [PMID: 34221143 PMCID: PMC8241210 DOI: 10.1590/1984-3143-ar2020-0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to evaluate the testicular biometric, seminal, and plasma testosterone levels in lambs subjected to an anti-GnRH vaccine as a method of castration. Thirty entire, crossbred Santa Inês male lambs were randomly distributed into three treatment (T): T1 was the control group, with the administration of 1 mL of saline solution subcutaneously (SC); 1.0 and 0.5 mL of an anti-GnRH vaccine were administered SC in T2 and T3, respectively. Testicular biometric variables, physical and morphological variables of semen, and plasma testosterone concentrations were evaluated. At D60, there was a reduction in testicular length, width, thickness, and scrotal circumference of the immunocastrated animals regardless of the vaccine dose used (P < 0.05). A reduction in semen physical variables at both dosages (P < 0.05) was observed, with azoospermia, in 80% and 70% of animals in the T2 and T3 groups, respectively. At D60, the immunocastrated animals also showed an increase in spermatozoa defects (P < 0.05), whereas plasma testosterone concentration decreased (P < 0.05). Immunocastration of lambs using the Bopriva vaccine at doses of 1.0 and 0.5 mL is efficient in inducing azoospermia in up to 80% of animals, although two doses in a 30-day interval are necessary for it to be an effective and safe method. Efficacy was demonstrated through a reduction in serum testosterone levels, testicular biometry, and seminal fluid analysis. Considering the efficacy of both doses in this study, we recommend using the lower dose (0.5 mL), which will allow for a 50% reduction in vaccine costs.
Collapse
Affiliation(s)
- Laiara Fernandes Rocha
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| | - Rosileia Silva Souza
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| | - Ana Lúcia Almeida Santana
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| | - Diego Silva Macedo
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| | - Ariadne Marques Silva Santana
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| | - Roberta Carvalho da Silva
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| | - Poliana Almeida Bezerra
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| | - Ronival Dias Lima de Jesus
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| | - Larissa Pires Barbosa
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brasil
| |
Collapse
|
13
|
Han Y, Si W, Han Y, Na R, Zeng Y, E G, Yang L, Wu J, Zhao Y, Huang Y. Immunization with oral KISS1 DNA vaccine inhibits testicular Leydig cell proliferation mainly via the hypothalamic-pituitary-testicular axis and apoptosis-related genes in goats. Anim Biotechnol 2021; 32:395-399. [PMID: 31805804 DOI: 10.1080/10495398.2019.1697701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to analyze the effect and mechanism of immunization of oral KISS1 DNA vaccine on the proliferation of goat testicular Leydig cells. Ten 8-week-old male goats were randomly divided into KISS1 DNA vaccine and control groups for immunization (five goats each group). These goats were sacrificed at 8 weeks after primary immunization, and the tissue samples of hypothalamus, pituitary, and testis and Leydig cell samples were collected for RT-PCR and CCK8 assay. Immunization with the oral KISS1 DNA vaccine effectively inhibited the proliferation of Leydig cells, the expression of hypothalamus KISS1, GPR54, and GnRH mRNA, pituitary GnRHR and LH mRNA, testicular LHR mRNA, and apoptosis-inhibitory gene Bcl-2 mRNA in Leydig cells. By contrast, the immunization enhanced the mRNA expression of apoptosis-promoting gene Bax and Clusterin in Leydig cells. These findings indicate that immunization with the oral KISS1 DNA vaccine can inhibit the proliferation of goat testicular Leydig cells mainly via the hypothalamic-pituitary-testicular axis and apoptosis-related genes.
Collapse
MESH Headings
- Animals
- Male
- Cell Proliferation
- Contraception, Immunologic/veterinary
- Contraceptive Agents, Male
- Gene Expression Regulation/immunology
- Goats
- Kisspeptins/immunology
- Leydig Cells/immunology
- Leydig Cells/physiology
- Receptors, Kisspeptin-1/genetics
- Receptors, Kisspeptin-1/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Testosterone/metabolism
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Yanguo Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Weijiang Si
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yuqing Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Risu Na
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiayuan Wu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| |
Collapse
|
14
|
Bedenbaugh MN, Bowdridge EC, Hileman SM. Role of neurokinin B in ovine puberty. Domest Anim Endocrinol 2020; 73:106442. [PMID: 32209283 DOI: 10.1016/j.domaniend.2020.106442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Puberty is the process whereby an individual acquires the ability to reproduce, and the attainment of puberty in a timely manner is critical for both humans and livestock. For livestock, the initiation of puberty at the appropriate time aids in increasing lifetime productivity, thus maximizing profitability for producers. For humans, particularly females, early or late puberty is associated with several adverse health outcomes, including polycystic ovary syndrome, obesity, metabolic syndrome, osteoporosis, and psychosocial distress. Therefore, characterizing the mechanisms responsible for puberty onset would have a significant impact on human and animal health. It has been postulated that a group of neurons in the arcuate nucleus of the hypothalamus may play a role in puberty onset. These neurons contain kisspeptin, neurokinin B (NKB), and dynorphin and are often called KNDy neurons. Although the role of kisspeptin in puberty onset has been heavily researched, the involvement of NKB and dynorphin is not well defined. This mini-review focuses on the role of NKB in the initiation of puberty in female sheep. Stimulation of the receptor for NKB, NK3R, elicits LH secretion in a GnRH-dependent manner in prepubertal ewes, and both functional and neuroanatomical changes to the NKB system, particularly within the preoptic area, appear to occur as female sheep transition from a prepubertal to an adult state. Thus, NKB is likely an important component of puberty onset in sheep, although its integration with other systems that impact the pubertal process, such as photoperiod and nutrition, remains to be elucidated.
Collapse
Affiliation(s)
- M N Bedenbaugh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | - E C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - S M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA; Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
15
|
Wassie T, Zeng F, Jiang X, Liu G, Kasimu H, Ling S, Girmay S. Effect of Kisspeptin-54 immunization on performance, carcass characteristics, meat quality and safety of Yiling goats. Meat Sci 2020; 166:108139. [PMID: 32289558 DOI: 10.1016/j.meatsci.2020.108139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/08/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to evaluate the effects of kisspeptin-54 immunocastration vaccine on performance, carcass characteristics, meat quality, and safety of Yiling goats. Thirty buck goats were randomly assigned into three groups: PVAX-B2L-Kisspeptin-54-asd immunized (PBK-asd), control, and surgically castrated. PBK-asd immunization significantly stimulated serum anti-kisspeptin antibody production and reduced testosterone hormone compared with the control group (p < .05). Interestingly, PBK-asd plasmid did not integrate into the host genome and had no significant effect on growth hormone, body weight, and average daily gain (ADG). Conversely, surgical castration significantly reduced ADG and carcass weight compared to the control group. Furthermore, PBK-asd immunization did not affect carcass characteristics (dressing percentage, loin area, and fat thickness) and meat quality traits (pH, color, cooking loss, drip loss, and shearing force). These results indicate that the Kisspeptin-54 DNA vaccine is safe and has potential to be used as an alternative to surgical castration for goats without negatively affecting carcass and meat quality.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fanmei Zeng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Guiqiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hailati Kasimu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Sun Ling
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shishay Girmay
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
16
|
Wassie T, Fanmei Z, Jiang X, Liu G, Girmay S, Min Z, Chenhui L, Bo DD, Ahmed S. Recombinant B2L and Kisspeptin-54 DNA Vaccine Induces Immunity Against Orf Virus and Inhibits Spermatogenesis In Rats. Sci Rep 2019; 9:16262. [PMID: 31700161 PMCID: PMC6838309 DOI: 10.1038/s41598-019-52744-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Orf is a highly contagious zoonotic disease of small ruminants caused by Parapoxvirus. Kisspeptin, encoded by the KISS1 gene with its cognate receptor GPR-54 is recognized as an upstream orchestrator in the hypothalamic-pituitary-gonadal axis. This study was designed to construct a DNA vaccine that produces a fused peptide composed of a major immunodominant protein of the orf virus (B2L) and kisspeptin-54, a neuropeptide with recognized roles in mammalian reproductive biology. The administration of this recombinant vaccine is shown to produce a significant antibody and cell-mediated immune response directed against B2L compared to the control group (p < 0.05). Furthermore, we found that rats inoculated with PBK-asd vaccine up-regulated antigen-mediated splenocyte proliferation and significantly raised antigen-specific tumor necrosis factor-alpha (TNFα-), interferon-gamma (IFN-ϒ) and interleukin (IL-2) compared to the control group (p < 0.05). This recombinant vaccine also stimulated antibody responses to kisspeptin and decreased serum luteinizing hormone and testosterone levels. Moreover, the current recombinant vaccine caused testicular atrophy and arrested spermatogenesis. It is concluded that this recombinant B2L and Kisspeptin-54 vaccine could be a promising approach for construction of bivalent orf virus and immunocastration vaccine. Furthermore, we concluded that the orf virus envelope protein (B2L) could be used as an immunomodulator for kisspeptin-54 to produce a strong antibody response.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zeng Fanmei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Guiqiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shishay Girmay
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhang Min
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liu Chenhui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dong Dong Bo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
17
|
Tesema B, Zhao JY, Jiang XP, Liu GQ, Han YG, Wassie T. Kisspeptin recombinant oral vaccine: A master gene vaccine inhibiting the reproductive physiology and behavior of ram lambs. Vaccine 2019; 37:4630-4636. [DOI: 10.1016/j.vaccine.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 12/27/2022]
|
18
|
Wassie T, Liu G, Jiang X, Tesema B, Han Y, Zhao J, Girmay S, Ahmad HI. Immunization against Kisspeptin-54 perturb hypothalamic–pituitary–testicular signaling pathway in ram lambs. Theriogenology 2019; 125:193-202. [DOI: 10.1016/j.theriogenology.2018.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/01/2023]
|
19
|
Potent effect of KISS1-54 DNA vaccine compared with KISS1-10 DNA vaccine in inhibiting the fertility of female rats. Vaccine 2018; 36:6631-6639. [DOI: 10.1016/j.vaccine.2018.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/09/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
|
20
|
Han YG, Liu GQ, Jiang XP, Xiang XL, Huang YF, Nie B, Zhao JY, Nabeel I, Tesema B. Reversibility and safety of KISS1 metastasis suppressor gene vaccine in immunocastration of ram lambs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:835-841. [PMID: 29268573 PMCID: PMC5933981 DOI: 10.5713/ajas.17.0629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 01/27/2023]
Abstract
Objective The aim of this study was to investigate the reversibility and safety of KISS1 metastasis suppressor (KISS1) gene vaccine in immunocastration. Methods Six eight-week old ram lambs were randomly divided into vaccinated and control groups. The vaccine (1 mg/ram lamb) was injected at weeks 0, 3, and 6 of the study. Blood samples were collected from the jugular vein before primary immunization and at weeks 2, 4, 6, 10, 14, 22, and 30 after primary immunization. All ram lambs were slaughtered at 38 weeks of age, and samples were collected. Results The specific anti-KISS1 antibody titers in vaccinated animals were significantly higher and the serum testosterone level was significantly lower than those in the control groups from week 4 to 14 after primary immunization (p<0.05). No significant difference was observed at weeks 22 and 30 after the primary immunization. Similar results were also found for scrotal circumference, testicular weight, length, breadth, and spermatogenesis in seminiferous tubules in week 30 after primary immunization. KS (KISS1-hepatitis B surface antigen S) fusion fragment of KISS1 gene vaccine was not detected in host cell genomic DNA of 9 tissues of the vaccinated ram lambs by polymerase chain reaction. Conclusion The effects of KISS1 gene vaccine in immunocastration were reversible and no integration events were recorded.
Collapse
Affiliation(s)
- Yan-Guo Han
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gui-Qiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun-Ping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing-Long Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Fu Huang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bin Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Yu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ijaz Nabeel
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Birhanu Tesema
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Immunization against lysozyme-like proteins affect sperm function and fertility in the rat. J Reprod Immunol 2016; 118:100-108. [DOI: 10.1016/j.jri.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/22/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023]
|