1
|
Sauter-Louis CM, Staubach C, Reichmann F, Stoll A, Rademacher G, Cussler K, Bastian M, Pfitzner-Friedrich A. Spatial distribution and incidence of bovine neonatal pancytopenia in Bavaria, Germany. BMC Vet Res 2020; 16:155. [PMID: 32448386 PMCID: PMC7245873 DOI: 10.1186/s12917-020-02371-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/12/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bovine neonatal pancytopenia (BNP) is a haemorrhagic disease of neonatal calves. BNP was first described in Germany in 2009, later on also in other European countries, and in New Zealand in 2011. The disease is characterised by spontaneous bleeding, pancytopaenia in the bone marrow, and a high case fatality ratio. The causal role of a specific bovine viral diarrhoea virus (BVDV) vaccine (PregSure®BVD, then Pfizer Animal Health, now Zoetis, Berlin, Germany) has been established over the last years, causing the production of alloantibodies in some vaccinated cattle, which in the case of pregnant cattle, are transferred to the newborn calf via the colostrum. However, striking regional differences in the incidence of the disease were observed within Germany and other countries, but as the disease was not notifiable, no representative data on the spatial distribution are available. In this study, we address the spatial distribution and incidence of BNP using the results of two representative surveys amongst cattle practitioners in Bavaria, Germany. The surveys, asking about the occurrence of BNP, were conducted in 2009 and 2010. Answers were analysed spatially by testing for clusters using space-time models. Practitioners were also asked how many cows they serve in their practice and this number was used to estimate the incidence of BNP. Furthermore, in the survey of 2010, practitioners were also asked about usage of vaccine against BVDV. RESULTS From the results of the surveys, three clusters were identified in Bavaria. These clusters also coincided with the usage of the specific BVDV vaccine as indicated by the veterinary practices. Furthermore, the representative surveys allow the estimation of the incidence of BNP to be in the order of 4 cases per 10,000 calves at risk. CONCLUSIONS The study is the only representative survey conducted on BNP. Despite the fact that BNP is a non-infectious disease, regional clusters were identified.
Collapse
Affiliation(s)
- Carola M. Sauter-Louis
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Isle of Riems Germany
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - Christoph Staubach
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Isle of Riems Germany
| | - Frederike Reichmann
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - Alexander Stoll
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - Günter Rademacher
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - Klaus Cussler
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Max Bastian
- Stikovet, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Isle of Riems Germany
| | - Annette Pfitzner-Friedrich
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| |
Collapse
|
2
|
Lutterberg K, Kleinwort KJH, Hobmaier BF, Hauck SM, Nüske S, Scholz AM, Deeg CA. A Functionally Different Immune Phenotype in Cattle Is Associated With Higher Mastitis Incidence. Front Immunol 2018; 9:2884. [PMID: 30574152 PMCID: PMC6291514 DOI: 10.3389/fimmu.2018.02884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/23/2018] [Indexed: 01/10/2023] Open
Abstract
A novel vaccine against bovine viral diarrhea (BVD) induced pathogenic antibody production in 5-10% of BVD-vaccinated cows. Transfer of these antibodies via colostrum caused Bovine neonatal pancytopenia (BNP) in calves, with a lethality rate of 90%. The exact immunological mechanisms behind the onset of BNP are not fully understood to date. To gain further insight into these mechanisms, we analyzed the immune proteome from alloreactive antibody producers (BNP cows) and non-responders. After in vitro stimulation of peripheral blood derived lymphocytes (PBL), we detected distinctly deviant expression levels of several master regulators of immune responses in BNP cells, pointing to a changed immune phenotype with severe dysregulation of immune response in BNP cows. Interestingly, we also found this response pattern in 22% of non-BVD-vaccinated cows, indicating a genetic predisposition of this immune deviant (ID) phenotype in cattle. We additionally analyzed the functional correlation of the ID phenotype with 10 health parameters and 6 diseases in a retrospective study over 38 months. The significantly increased prevalence of mastitis among ID cows emphasizes the clinical relevance of this deviant immune response and its potential impact on the ability to fight infections.
Collapse
Affiliation(s)
- Karina Lutterberg
- Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Bernhard F. Hobmaier
- Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Zentrum Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Stefan Nüske
- Livestock Center of the Faculty of Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Armin M. Scholz
- Livestock Center of the Faculty of Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Cornelia A. Deeg
- Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Lokhandwala S, Fang X, Waghela SD, Bray J, Njongmeta LM, Herring A, Abdelsalam KW, Chase C, Mwangi W. Priming Cross-Protective Bovine Viral Diarrhea Virus-Specific Immunity Using Live-Vectored Mosaic Antigens. PLoS One 2017; 12:e0170425. [PMID: 28099492 PMCID: PMC5242483 DOI: 10.1371/journal.pone.0170425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/04/2017] [Indexed: 02/04/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) plays a key role in bovine respiratory disease complex, which can lead to pneumonia, diarrhea and death of calves. Current vaccines are not very effective due, in part, to immunosuppressive traits and failure to induce broad protection. There are diverse BVDV strains and thus, current vaccines contain representative genotype 1 and 2 viruses (BVDV-1 & 2) to broaden coverage. BVDV modified live virus (MLV) vaccines are superior to killed virus vaccines, but they are susceptible to neutralization and complement-mediated destruction triggered by passively acquired antibodies, thus limiting their efficacy. We generated three novel mosaic polypeptide chimeras, designated NproE2123; NS231; and NS232, which incorporate protective determinants that are highly conserved among BVDV-1a, 1b, and BVDV-2 genotypes. In addition, strain-specific protective antigens from disparate BVDV strains were included to broaden coverage. We confirmed that adenovirus constructs expressing these antigens were strongly recognized by monoclonal antibodies, polyclonal sera, and IFN-γ-secreting T cells generated against diverse BVDV strains. In a proof-of-concept efficacy study, the multi-antigen proto-type vaccine induced higher, but not significantly different, IFN-γ spot forming cells and T-cell proliferation compared to a commercial MLV vaccine. In regards to the humoral response, the prototype vaccine induced higher BVDV-1 specific neutralizing antibody titers, whereas the MLV vaccine induced higher BVDV-2 specific neutralizing antibody titers. Following BVDV type 2a (1373) challenge, calves immunized with the proto-type or the MLV vaccine had lower clinical scores compared to naïve controls. These results support the hypothesis that a broadly protective subunit vaccine can be generated using mosaic polypeptides that incorporate rationally selected and validated protective determinants from diverse BVDV strains. Furthermore, regarding biosafety of using a live vector in cattle, we showed that recombinant human adenovirus-5 was cleared within one week following intradermal inoculation.
Collapse
Affiliation(s)
- Shehnaz Lokhandwala
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Xin Fang
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Leo M. Njongmeta
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Andy Herring
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Karim W. Abdelsalam
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Christopher Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Benedictus L, Bell CR. The risks of using allogeneic cell lines for vaccine production: the example of Bovine Neonatal Pancytopenia. Expert Rev Vaccines 2016; 16:65-71. [PMID: 27744721 DOI: 10.1080/14760584.2017.1249859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Bovine neonatal pancytopenia (BNP) is a hemorrhagic disease that emerged in calves across Europe in 2007. Its occurrence is attributed to immunization of the calf's mother with a vaccine produced using an allogeneic cell line. Vaccine-induced alloantibodies specific for major-histocompatibility class I antigens are transferred from the mother to the calf via colostrum, leading to profound depletion of peripheral blood and bone marrow cells that is often fatal. Areas covered: Pubmed and Web of Science were used to search for literature relevant to BNP and the use of allogeneic vaccine cell lines. Following a review of the pathology and pathogenesis of this novel condition, we discuss potential risks associated with the use of allogeneic vaccine cell lines. Expert commentary: Although BNP is associated with a specific vaccine, it highlights safety concerns common to all vaccines produced using allogeneic cell lines. Measures to prevent similar vaccine-induced alloimmune-mediated adverse events in the future are discussed.
Collapse
Affiliation(s)
- Lindert Benedictus
- a Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands.,b Department of Medical Microbiology , University Medical Center Utrecht , Utrecht , The Netherlands
| | - Charlotte R Bell
- c The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh, Easter Bush , Midlothian , Scotland , UK
| |
Collapse
|
5
|
Demasius W, Weikard R, Hadlich F, Buitkamp J, Kühn C. A novel RNAseq-assisted method for MHC class I genotyping in a non-model species applied to a lethal vaccination-induced alloimmune disease. BMC Genomics 2016; 17:365. [PMID: 27188848 PMCID: PMC4869273 DOI: 10.1186/s12864-016-2688-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/30/2016] [Indexed: 12/02/2022] Open
Abstract
Background MHC class I genotyping is essential for a wide range of biomedical, immunological and biodiversity applications. Whereas in human a comprehensive MHC class I allele catalogue is available, respective data in non-model species is scarce in spite of decades of research. Results Taking advantage of the new high-throughput RNA sequencing technology (RNAseq), we developed a novel RNAseq-assisted method (RAMHCIT) for MHC class I typing at nucleotide level. RAMHCIT is performed on white blood cells, which highly express MHC class I molecules enabling reliable discovery of new alleles and discrimination of closely related alleles due to the high coverage of alleles with reads. RAMHCIT is more comprehensive than previous methods, because no targeted PCR pre-amplification of MHC loci is necessary, which avoids preselection of alleles as usually encountered, when amplification with MHC class I primers is performed prior to sequencing. In addition to allele identification, RAMHCIT also enables quantification of MHC class I expression at allele level, which was remarkably consistent across individuals. Conclusions Successful application of RAMHCIT is demonstrated on a data set from cattle with different phenotype regarding a lethal, vaccination-induced alloimmune disease (bovine neonatal pancytopenia), for which MHC class I alleles had been postulated as causal agents. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2688-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wiebke Demasius
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Rosemarie Weikard
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Johannes Buitkamp
- Institute of Animal Breeding, Bavarian State Research Center for Agriculture, 85586, Grub, Germany
| | - Christa Kühn
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany. .,Faculty of Agricultural and Environmental Sciences, University Rostock, 18059, Rostock, Germany.
| |
Collapse
|
6
|
Benedictus L, Rutten VPMG, Koets AP. Pregnancy boosts vaccine-induced Bovine Neonatal Pancytopenia-associated alloantibodies. Vaccine 2016; 34:1002-5. [PMID: 26796141 DOI: 10.1016/j.vaccine.2016.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/01/2016] [Accepted: 01/05/2016] [Indexed: 11/19/2022]
Abstract
Although maternal vaccination is generally considered to be safe, the occurrence of Bovine Neonatal Pancytopenia (BNP) in cattle shows that maternal vaccination may pose a risk to the offspring. Pregsure BVD-induced maternal alloantibodies cause BNP in newborn calves. The occurrence of BNP years after last Pregsure BVD vaccination indicates that alloantibody levels may remain high in dams. Since pregnancy induces alloantibodies we hypothesized that pregnancy boosts the vaccine-induced alloantibody response. Alloantibody levels in Pregsure BVD-vaccinated dams increased from conception towards the end of gestation and declined after parturition. In parallel, BVDV-antibody levels remained constant, indicating that there is specific boosting of alloantibodies. Since the rise in alloantibodies coincides with pregnancy and other alloantigen sources were excluded, we concluded that fetal alloantigens expressed during pregnancy boost the alloimmune response in the dam. These results help explain why BNP cases occur even years after Pregsure BVD has been taken off the market.
Collapse
Affiliation(s)
- Lindert Benedictus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Victor P M G Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Ad P Koets
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|