1
|
Chuaychu SB, Sirisereewan C, Techakriengkrai N, Tummaruk P, Thanawongnuwech R, Nedumpun T. Enhancement of systemic virus-specific T lymphocyte responses in pigs supplemented with algae-derived β-glucan. Vet J 2024; 306:106182. [PMID: 38897378 DOI: 10.1016/j.tvjl.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Algae-derived β-glucan has been widely used as a feed additive in the swine industry. The supplementation of β-glucan aims to improve growth performance and modulate the immunity of pigs. However, the potential effects of supplementing β-glucan from algae on immune responses in pigs-specifically antigen-specific immunity-must be determined. In this study, the effects of algae-derived β-glucan supplementation on growth performance, virus neutralising antibody and virus-specific T lymphocytes responses were investigated in pigs. Piglets (n=112 per treatment) were assigned to three treatments including non-supplemented group (control), β-glucan 100 g/ton supplemented group (BG100), and β-glucan 200 g/ton supplemented group (BG200). In this study, production performance of pigs was not found to be different between the experimental groups. Pigs supplemented with β-glucan exhibited high levels of classical swine fever virus (CSFV)-specific producing T lymphocytes and neutralising antibody titer, compared to the control group. Interestingly, supplementation of β-glucan significantly enhanced porcine reproductive and respiratory syndrome virus (PRRSV)-specific interferon-gamma (IFN-γ) producing T lymphocytes, including CD4+, CD8+, and CD4+CD8+ T lymphocyte subpopulations. Moreover, PRRS modified live vaccine (MLV) viremia was reduced in earlier for β-glucan-supplemented pigs compared to the control group. The findings indicate that the algae-derived β-glucan possesses biological potential as an immunomodulatory substance to enhance antiviral immunity, which may contribute to disease resistance in pigs.
Collapse
Affiliation(s)
- Sh B Chuaychu
- International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - C Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - N Techakriengkrai
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - P Tummaruk
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - R Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - T Nedumpun
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Zheng Y, Li G, Luo Q, Sha H, Zhang H, Wang R, Kong W, Liao J, Zhao M. Research progress on the N protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2024; 15:1391697. [PMID: 38741730 PMCID: PMC11089252 DOI: 10.3389/fmicb.2024.1391697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions. This review summarizes the structural characteristics, genetic evolution, impact on PRRSV replication and virulence, interactions between viral and host proteins, modulation of host immunity, detection techniques targeting the N protein, and progress in vaccine development. The discussion provides a theoretical foundation for understanding the pathogenic mechanisms underlying PRRSV virulence, developing diagnostic techniques, and designing effective vaccines.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Zhang H, Ren J, Li J, Zhai C, Mao F, Yang S, Zhang Q, Liu Z, Fu X. Comparison of heterologous prime-boost immunization strategies with DNA and recombinant vaccinia virus co-expressing GP3 and GP5 of European type porcine reproductive and respiratory syndrome virus in pigs. Microb Pathog 2023; 183:106328. [PMID: 37661073 DOI: 10.1016/j.micpath.2023.106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Vaccination is principally used to control and treat porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study investigated immunogenicity and protective efficacy of heterologous prime-boost regimens in pigs, including recombinant DNA and vaccinia virus vectors coexpressing PRRSV European genotype (EU) isolate GP3 and GP5: group A, pVAX1-EU-GP3-GP5 prime and rddVTT-EU-GP3-GP5 boost; group B, rddVTT-EU-GP3-GP5 prime and pVAX1-EU-GP3-GP5 boost; group C, empty vector pVAX1; group D, E3L gene-deleted vaccinia virus E3L- VTT. Vaccine efficacy was tested in an EU-type PRRSV (Lelystad virus strain) challenge pig model based on evaluating PRRSV-specific antibody responses, neutralizing antibodies, cytokines, T lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, clinical symptoms, viremia and tissue virus loads. Plasmid DNA was delivered as chitosan-DNA nanoparticles, and Quil A (Quillaja) was used to increase vaccine efficiency. All piglets were boosted 21 days post the initial inoculation (dpi) and then challenged 14 days later. At 14, 21, 28 and 35 dpi, groups A and B developed significantly higher PRRSV-specific antibody responses compared with control groups C and D. Two weeks after the boost, significant differences in neutralizing antibody and IFN-γ levels were observed between groups A, C, D and B. At 49 dpi, groups A and B had markedly increased peripheral blood CD3+CD4+ T cell levels. Following virus challenge, group A showed viremia, but organ virus loads were lower than those in other groups. Thus, a heterologous prime-boost vaccine regimen (rddVTT-EU-GP3-GP5 prime, pVAX1-EU-GP3-GP5 boost) can improve humoral- and cell-mediated immune responses to provide resistance to EU-type PRRSV infection in vivo.
Collapse
Affiliation(s)
- Hewei Zhang
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Jingqiang Ren
- Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou, 325035, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China; Key Laboratory of Special Animal Epidemic Disease, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Jiachen Li
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Chongkai Zhai
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Fuchao Mao
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Shaozhe Yang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Qingwei Zhang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Zhongyu Liu
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| | - Xiuhong Fu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| |
Collapse
|
4
|
Démoulins T, Schulze K, Ebensen T, Techakriengkrai N, Nedumpun T, Englezou PC, Gerber M, Hlushchuk R, Toledo D, Djonov V, von Gunten S, McCullough KC, Liniger M, Guzmán CA, Suradhat S, Ruggli N. Coatsome-replicon vehicles: Self-replicating RNA vaccines against infectious diseases. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102655. [PMID: 36681171 DOI: 10.1016/j.nano.2023.102655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.
Collapse
Affiliation(s)
- Thomas Démoulins
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Teerawut Nedumpun
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Pavlos C Englezou
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Darien Toledo
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | | | - Kenneth C McCullough
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Zhou L, Ge X, Yang H. Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A "Leaky" Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 2021; 9:vaccines9040362. [PMID: 33918580 PMCID: PMC8069561 DOI: 10.3390/vaccines9040362] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most economically important diseases, that has significantly impacted the global pork industry for over three decades, since it was first recognized in the United States in the late 1980s. Attributed to the PRRSV extensive genetic and antigenic variation and rapid mutability and evolution, nearly worldwide epidemics have been sustained by a set of emerging and re-emerging virus strains. Since the first modified live virus (MLV) vaccine was commercially available, it has been widely used for more than 20 years, for preventing and controlling PRRS. On the one hand, MLV can induce a protective immune response against homologous viruses by lightening the clinical signs of pigs and reducing the virus transmission in the affected herd, as well as helping to cost-effectively increase the production performance on pig farms affected by heterologous viruses. On the other hand, MLV can still replicate in the host, inducing viremia and virus shedding, and it fails to confer sterilizing immunity against PRRSV infection, that may accelerate viral mutation or recombination to adapt the host and to escape from the immune response, raising the risk of reversion to virulence. The unsatisfied heterologous cross-protection and safety issue of MLV are two debatable characterizations, which raise the concerns that whether it is necessary or valuable to use this leaky vaccine to protect the field viruses with a high probability of being heterologous. To provide better insights into the immune protection and safety related to MLV, recent advances and opinions on PRRSV attenuation, protection efficacy, immunosuppression, recombination, and reversion to virulence are reviewed here, hoping to give a more comprehensive recognition on MLV and to motivate scientific inspiration on novel strategies and approaches of developing the next generation of PRRS vaccine.
Collapse
|
6
|
Elizondo-Quiroga D, Zapata-Cuellar L, Uribe-Flores JA, Gaona-Bernal J, Camacho-Villegas TA, Manuel-Cabrera CA, Trujillo-Ortega ME, Ramírez-Hernández G, Herradora-Lozano MA, Mercado-García MDC, Gutiérrez Ortega A. An Escherichia coli-Expressed Porcine Reproductive and Respiratory Syndrome Virus Chimeric Protein Induces a Specific Immunoglobulin G Response in Immunized Piglets. Viral Immunol 2019; 32:370-382. [PMID: 31644382 DOI: 10.1089/vim.2019.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) still poses a threat to the swine industry worldwide. Currently, commercial vaccines against PRRSV, which consist of modified live or inactivated virus, reduce symptoms and viremia in immunized pigs, but efficacy against heterologous strains is variable. This has led to the development of subunit vaccines that contain viral antigens that show the highest variability. In this work, a chimeric protein comprising short amino acid sequences from glycoprotein 3 (GP3), glycoprotein 4 (GP4), glycoprotein 5 (GP5), and M (matrix protein) proteins of PRRSV was designed and expressed in Escherichia coli. This protein, designated as PRRSVchim, was purified by immobilized metal affinity chromatography and evaluated. PRRSVchim was identified by immunoglobulin G (IgG) presence in serum samples from PRRSV-positive pigs. Also, the protein probed to be antigenic in immunized mice and piglets and provided some degree of protection against challenge with a PRRSV field isolate. These results show the potential of PRRSVchim protein for both PRRSV diagnostic and immunoprophylaxis.
Collapse
Affiliation(s)
- Darwin Elizondo-Quiroga
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Lorena Zapata-Cuellar
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - José Alberto Uribe-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Tanya Amanda Camacho-Villegas
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - María Elena Trujillo-Ortega
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gerardo Ramírez-Hernández
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marco Antonio Herradora-Lozano
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - María Del Cármen Mercado-García
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Abel Gutiérrez Ortega
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
7
|
Bernelin-Cottet C, Urien C, Fretaud M, Langevin C, Trus I, Jouneau L, Blanc F, Leplat JJ, Barc C, Boulesteix O, Riou M, Dysart M, Mahé S, Studsrub E, Nauwynck H, Bertho N, Bourry O, Schwartz-Cornil I. A DNA Prime Immuno-Potentiates a Modified Live Vaccine against the Porcine Reproductive and Respiratory Syndrome Virus but Does Not Improve Heterologous Protection. Viruses 2019; 11:E576. [PMID: 31242645 PMCID: PMC6631340 DOI: 10.3390/v11060576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus inducing abortion in sows and respiratory disease in young pigs, is a leading infectious cause of economic losses in the swine industry. Modified live vaccines (MLVs) help in controlling the disease, but their efficacy is often compromised by the high genetic diversity of circulating viruses, leading to vaccine escape variants in the field. In this study, we hypothesized that a DNA prime with naked plasmids encoding PRRSV antigens containing conserved T-cell epitopes may improve the protection of MLV against a heterologous challenge. Plasmids were delivered with surface electroporation or needle-free jet injection and European strain-derived PRRSV antigens were targeted or not to the dendritic cell receptor XCR1. Compared to MLV-alone, the DNA-MLV prime- boost regimen slightly improved the IFNγ T-cell response, and substantially increased the antibody response against envelope motives and the nucleoprotein N. The XCR1-targeting of N significantly improved the anti-N specific antibody response. Despite this immuno-potentiation, the DNA-MLV regimen did not further decrease the serum viral load or the nasal viral shedding of the challenge strain over MLV-alone. Finally, the heterologous protection, achieved in absence of detectable effective neutralizing antibodies, was not correlated to the measured antibody or to the IFNγ T-cell response. Therefore, immune correlates of protection remain to be identified and represent an important gap of knowledge in PRRSV vaccinology. This study importantly shows that a naked DNA prime immuno-potentiates an MLV, more on the B than on the IFNγ T-cell response side, and has to be further improved to reach cross-protection.
Collapse
Affiliation(s)
- Cindy Bernelin-Cottet
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Céline Urien
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Maxence Fretaud
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Christelle Langevin
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
- VIM, EMERG'IN-Plateforme d'Infectiologie Expérimentale IERP, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France.
| | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Luc Jouneau
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Fany Blanc
- GABI, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Jean-Jacques Leplat
- GABI, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Céline Barc
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRA, 37380 Nouzilly, France.
| | - Olivier Boulesteix
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRA, 37380 Nouzilly, France.
| | - Mickaël Riou
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRA, 37380 Nouzilly, France.
| | - Marilyn Dysart
- Pharmajet, 400 Corporate Circle Suite N, Golden, CO 80401, USA.
| | - Sophie Mahé
- Unité Virologie et Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, Anses, BP 53, 22440 Ploufragan, France.
| | | | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Nicolas Bertho
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Olivier Bourry
- Unité Virologie et Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, Anses, BP 53, 22440 Ploufragan, France.
| | | |
Collapse
|
8
|
Sirisereewan C, Woonwong Y, Arunorat J, Kedkovid R, Nedumpun T, Kesdangsakonwut S, Suradhat S, Thanawongnuwech R, Teankum K. Efficacy of a type 2 PRRSV modified live vaccine (PrimePac™ PRRS) against a Thai HP-PRRSV challenge. Trop Anim Health Prod 2018; 50:1509-1518. [PMID: 29696456 DOI: 10.1007/s11250-018-1589-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
Abstract
The Chinese highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has caused a severe threat to the pig population in Southeast Asian countries. The purpose of this study was to investigate the efficacy of a type 2 PRRSV modified live vaccine (PrimePac™ PRRS, lineage 7) against a Thai HP-PRRSV (10PL01, lineage 8). Three-week-old PRRSV-free pigs were randomly assigned into three groups. Vaccinated challenged group (group 1, n = 16) was immunized with PrimePac™ PRRS vaccine at 3 weeks old. The unvaccinated challenged group (group 2, n = 16) was injected with PBS at 3 weeks old, and unvaccinated unchallenged group (group 3, n = 10) was served as a negative control. At 9 weeks old, all groups, except the negative control group, were challenged with the Thai HP-PRRSV. All pigs were monitored daily during 10 days post-infection (dpi) and were necropsied at 10 and 17 dpi. The results revealed that vaccinated challenged pigs showed significantly lower (p < 0.05) mean rectal temperatures, clinical respiratory scores, lung lesion scores, and levels of virus load in serum and lung tissue compared with the unvaccinated challenged pigs. Moreover, vaccinated challenged pigs exhibited PRRSV-specific serum neutralizing antibodies at the end of the experiment. Our findings indicated that the studied type 2 PRRSV vaccine provided partial protection against the Thai HP-PRRSV infection based on the body temperature, levels of viremia, and the severity of lung lesions. These results demonstrated that partial protection of PrimePac™ PRRS vaccine might be useful for controlling HP-PRRSV infection in the endemic area.
Collapse
Affiliation(s)
- Chaitawat Sirisereewan
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand
| | - Yonlayong Woonwong
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand.,Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Jirapat Arunorat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand
| | - Roongtham Kedkovid
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand
| | - Teerawut Nedumpun
- Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sawang Kesdangsakonwut
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand.,Center of Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand.,Center of Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand
| | - Komkrich Teankum
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Sattler T, Pikalo J, Wodak E, Revilla-Fernández S, Steinrigl A, Bagó Z, Entenfellner F, Claude JB, Pez F, Francillette M, Schmoll F. Efficacy of live attenuated porcine reproductive and respiratory syndrome virus 2 strains to protect pigs from challenge with a heterologous Vietnamese PRRSV 2 field strain. BMC Vet Res 2018; 14:133. [PMID: 29673363 PMCID: PMC5907707 DOI: 10.1186/s12917-018-1451-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 04/05/2018] [Indexed: 12/03/2022] Open
Abstract
Background Effective vaccines against porcine reproductive and respiratory syndrome virus (PRRSV), especially against highly pathogenic (HP) PRRSV are still missing. The objective of this study was to evaluate the protective efficacy of an experimental live attenuated PRRSV 2 vaccine, composed of two strains, against heterologous challenge with a Vietnamese HP PRRSV 2 field strain. For this reason, 20 PRRSV negative piglets were divided into two groups. The pigs of group 1 were vaccinated with the experimental vaccine, group 2 remained unvaccinated. All study piglets received an intranasal challenge of the HP PRRSV 2 on day 0 of the study (42 days after vaccination). Blood samples were taken on days 7 and 21 after vaccination and on several days after challenge. On day 28 after challenge, all piglets were euthanized and pathologically examined. Results On days 7 and 21 after vaccination, a PRRSV 2 viraemia was seen in all piglets of group 1 which remained detectable in seven piglets up to 42 days after vaccination. On day 3 after challenge, all piglets from both groups were positive in PRRSV 2 RT-qPCR. From day 7 onwards, viral load and number of PRRSV 2 positive pigs were lower in group 1 than in group 2. All pigs of group 1 seroconverted after PRRSV 2 vaccination. PRRSV antibodies were detected in serum of all study pigs from both groups from day 14 after challenge onwards. In group 2, moderate respiratory symptoms with occasional coughing were seen following the challenge with HP PRRSV 2. Pigs of group 1 remained clinically unaffected. Interstitial pneumonia was found in four piglets of group 1 and in all ten piglets of group 2. Histopathological findings were more severe in group 2. Conclusions It was thus concluded that the used PRRSV 2 live experimental vaccine provided protection from clinical disease and marked reduction of histopathological findings and viral load in pigs challenged with a Vietnamese HP PRRSV 2 field strain.
Collapse
Affiliation(s)
- Tatjana Sattler
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria. .,Clinic for Ruminants and Swine, University of Leipzig, An den Tierkliniken 11, 04103, Leipzig, Germany.
| | - Jutta Pikalo
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| | - Eveline Wodak
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| | | | - Adi Steinrigl
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| | - Zoltán Bagó
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| | | | | | - Floriane Pez
- BioSellal, Bâtiment Accinov, 317 avenue Jean Jaurès, 69007, Lyon, France
| | - Maela Francillette
- BioSellal, Bâtiment Accinov, 317 avenue Jean Jaurès, 69007, Lyon, France
| | - Friedrich Schmoll
- Institute for Veterinary Disease Control, AGES, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| |
Collapse
|
10
|
Ferrari L, Canelli E, De Angelis E, Catella A, Ferrarini G, Ogno G, Bonati L, Nardini R, Borghetti P, Martelli P. A highly pathogenic porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) strongly modulates cellular innate and adaptive immune subsets upon experimental infection. Vet Microbiol 2018. [DOI: 10.1016/j.vetmic.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Characterization of Monoclonal Antibodies against HA Protein of H1N1 Swine Influenza Virus and Protective Efficacy against H1 Viruses in Mice. Viruses 2017; 9:v9080209. [PMID: 28786930 PMCID: PMC5580466 DOI: 10.3390/v9080209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
H1N1 swine influenza viruses (SIV) are prevalent in pigs globally, and occasionally emerge in humans, which raises concern about their pandemic threats. To stimulate hemagglutination (HA) of A/Swine/Guangdong/LM/2004 (H1N1) (SW/GD/04) antibody response, eukaryotic expression plasmid pCI-neo-HA was constructed and used as an immunogen to prepare monoclonal antibodies (mAbs). Five mAbs (designed 8C4, 8C6, 9D6, 8A4, and 8B1) against HA protein were obtained and characterized. Western blot showed that the 70 kDa HA protein could be detected by all mAbs in MDCK cells infected with SW/GD/04. Three mAbs—8C4, 8C6, and 9D6—have hemagglutination inhibition (HI) and neutralization test (NT) activities, and 8C6 induces the highest HI and NT titers. The protection efficacy of 8C6 was investigated in BALB/c mice challenged with homologous or heterologous strains of the H1 subtype SIV. The results indicate that mAb 8C6 protected the mice from viral infections, especially the homologous strain, which was clearly demonstrated by the body weight changes and reduction of viral load. Thus, our findings document for the first time that mAb 8C6 might be of potential therapeutic value for H1 subtype SIV infection.
Collapse
|
12
|
Sirisereewan C, Nedumpun T, Kesdangsakonwut S, Woonwong Y, Kedkovid R, Arunorat J, Thanawongnuwech R, Suradhat S. Positive immunomodulatory effects of heterologous DNA vaccine- modified live vaccine, prime-boost immunization, against the highly-pathogenic PRRSV infection. Vet Immunol Immunopathol 2016; 183:7-15. [PMID: 28063479 DOI: 10.1016/j.vetimm.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is one of the most important swine pathogens, and causes a major economic impact worldwide. Recently, a new variant type 2 PRRSV, highly pathogenic PRRSV (HP-PRRSV) has emerged and continued to circulate in Southeast Asia region. Currently, commercially available PRRSV vaccines, modified live PRRS vaccines (MLV) are not able to provide complete protection against HP-PRRSV and been reported to induce negative immunomodulatory effects. Interestingly, a novel DNA vaccine was developed and successfully used to improve PRRSV-specific immune responses following MLV vaccination. To investigate the efficacy of a heterologous DNA-MLV prime-boost immunization against the HP-PRRSV infection, an experimental vaccinated-challenged study was conducted. Two-week-old, PRRSV-seronegative, crossbred pigs (5-8 pigs/group) were allocated into 5 groups. At day -14 (D-14), the treatment group (DNA-MLV) was immunized with a DNA vaccine encoding PRRSV-truncated nucleocapsid protein (pORF7t), followed by a commercial modified live type 2 PRRS vaccine (MLV) at D0. The other groups included the group that received PBS at D-14 followed by MLV at D0 (MLV), pORF7t at D-14 (DNA), PBS at D0 (PBS) and the negative control group. At D42, all groups, except the negative control group, were challenged with HP-PRRSV (strain 10PL1). The results demonstrated that pigs that received MLV, regardless of the DNA priming, exhibited less clinical signs and faster viral clearance. Following HP-PRRSV challenge, the DNA-MLV group exhibited improved PRRSV-specific immunity, as observed by increased neutralizing antibody titers and PRRSV-specific IFN-γ production, and reduced IL-10 and PRRSV-specific Treg productions. However, neither the prime-boost immunization nor the MLV was able to induce complete clinical protection against HP-PRRSV infection. In conclusion, improved immunological responses, but not clinical protection, were achieved by DNA-MLV prime-boost immunization. This study highlights the potential use of heterologous prime-boost vaccination regimen, where DNA can be incorporated with other vaccine candidates, for improving anti-PRRSV immunity that may eventually lead induction of complete PRRSV protection.
Collapse
Affiliation(s)
- Chaitawat Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Teerawut Nedumpun
- Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Sawang Kesdangsakonwut
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan Bangkok 10330, Thailand
| | - Yonlayong Woonwong
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Roongtham Kedkovid
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Jirapat Arunorat
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Roongroje Thanawongnuwech
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan Bangkok 10330, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Pathumwan, Bangkok 10330, Thailand
| | - Sanipa Suradhat
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan Bangkok 10330, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Transdermal delivery of plasmid encoding truncated nucleocapsid protein enhanced PRRSV-specific immune responses. Vaccine 2015; 34:609-615. [PMID: 26724543 DOI: 10.1016/j.vaccine.2015.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome virus (PRRSV) induces several immunomodulatory mechanisms that resulted in delayed and ineffective anti-viral immune responses. Recently, it has been shown that intradermal immunization of plasmid encoding truncated nucleocapsid protein (pORF7t) could reduce PRRSV-induced immunomodulatory activities and enhances anti-PRRSV immunity in vaccinated pigs. However, intradermal immunization may not be practical for farm setting. Currently, there are several transdermal delivery systems available in the market, although they were not originally designed for plasmid delivery. OBJECTIVES To investigate the potential use of a transdermal delivery system for delivering of pORF7t and its immunological outcomes. METHOD The immunomodulatory effects induced by transdermal delivery of pORF7t were compared with intradermal immunization in an experimental pig model. In addition, immunomodulatory effects of the DNA vaccine were determined in the fattening pigs kept in a PRRSV-positive farm environment, and in the experimental pigs receiving heterologous prime-boost, pORF7t-modified live vaccine (MLV) immunization. RESULT The patterns of PRRSV-specific cellular responses induced by transdermal and intradermal immunizations of pORF7t were similar. Interestingly, the pigs transdermally immunized with pORF7t exhibited higher number of PRRSV-specific CD8(+)IFN-γ(+) cells. Pigs immunized with pORF7t and kept at PRRSV-positive environment exhibited enhanced PRRSV-specific IFN-γ(+) production, reduced numbers of regulatory T lymphocytes (Tregs) and lower lung scores at the end of the finishing period. In the heterologous prime-boost experiment, priming with pORF7t prior to MLV vaccination resulted in significantly higher numbers of CD3(+)IFN-γ(+) subpopulations, lower numbers of PRRSV-specific CD3(+)IL-10(+) cells and Tregs, and rapid antibody responses in immunized pigs. CONCLUSION Transdermal immunization with pORF7t reduced PRRRSV-induced immunomodulatory effects and enhanced long-term PRRSV-specific cellular responses in vaccinated pigs. Furthermore, heterologous DNA-MLV prime-boost immunization significantly improved the quality of PRRSV-specific cellular and humoral immunity. The information could benefit the future development of PRRSV management and control strategies.
Collapse
|