1
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Characterization and Vaccine Potential of Outer Membrane Vesicles from Photobacterium damselae subsp. piscicida. Int J Mol Sci 2023; 24:ijms24065138. [PMID: 36982212 PMCID: PMC10049053 DOI: 10.3390/ijms24065138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative fish pathogen with worldwide distribution and broad host specificity that causes heavy economic losses in aquaculture. Although Phdp was first identified more than 50 years ago, its pathogenicity mechanisms are not completely understood. In this work, we report that Phdp secretes large amounts of outer membrane vesicles (OMVs) when cultured in vitro and during in vivo infection. These OMVs were morphologically characterized and the most abundant vesicle-associated proteins were identified. We also demonstrate that Phdp OMVs protect Phdp cells from the bactericidal activity of fish antimicrobial peptides, suggesting that secretion of OMVs is part of the strategy used by Phdp to evade host defense mechanisms. Importantly, the vaccination of sea bass (Dicentrarchus labrax) with adjuvant-free crude OMVs induced the production of anti-Phdp antibodies and resulted in partial protection against Phdp infection. These findings reveal new aspects of Phdp biology and may provide a basis for developing new vaccines against this pathogen.
Collapse
|
3
|
Correia A, Alves P, Fróis-Martins R, Teixeira L, Vilanova M. Protective Effect against Neosporosis Induced by Intranasal Immunization with Neospora caninum Membrane Antigens Plus Carbomer-Based Adjuvant. Vaccines (Basel) 2022; 10:vaccines10060925. [PMID: 35746533 PMCID: PMC9230871 DOI: 10.3390/vaccines10060925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Neospora caninum is an obligate intracellular protozoan responsible for abortion and stillbirths in cattle. We previously developed a mucosal vaccination approach using N. caninum membrane proteins and CpG adjuvant that conferred long-term protection against neosporosis in mice. Here, we have extended this approach by alternatively using the carbomer-based adjuvant Carbigen™ in the immunizing preparation. Immunized mice presented higher proportions and numbers of memory CD4+ and CD8+ T cells. Stimulation of spleen, lungs and liver leukocytes with parasite antigens induced a marked production of IFN-γ and IL-17A and, less markedly, IL-4. This balanced response was also evident in that both parasite-specific IgG1 and IgG2c were raised by immunization, together with specific intestinal IgA. Upon intraperitoneal infection with N. caninum, immunized mice presented lower parasitic burdens than sham-immunized controls. In the infected immunized mice, memory CD4+ T cells predominantly expressed T-bet and RORγt, and CD8+ T cells expressing T-bet were found increased. While spleen, lungs and liver leukocytes of both immunized and sham-immunized infected animals produced high amounts of IFN-γ, only the cells from immunized mice responded with high IL-17A production. Since in cattle both IFN-γ and IL-17A have been associated with protective mechanisms against N. caninum infection, the elicited cytokine profile obtained using CarbigenTM as adjuvant indicates that it could be worth exploring for bovine neosporosis vaccination.
Collapse
Affiliation(s)
- Alexandra Correia
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Pedro Alves
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland;
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luzia Teixeira
- UMIB—Unidade Multidisciplinar de Investigação Biomédica, ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal;
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-290 Porto, Portugal
| | - Manuel Vilanova
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
4
|
Débare H, Schmidt J, Moiré N, Ducournau C, Acosta Paguay YD, Schwarz RT, Dimier-Poisson I, Debierre-Grockiego F. In vitro cellular responses to Neospora caninum glycosylphosphatidylinositols depend on the host origin of antigen presenting cells. Cytokine 2019; 119:119-128. [PMID: 30909148 DOI: 10.1016/j.cyto.2019.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023]
Abstract
Neosporosis due to Neospora caninum causes abortions in farm animals such as cattle. No treatment and vaccine exist to fight this disease, responsible for considerable economic losses. It is thus important to better understand the immune responses occurring during the pathogenesis to control them in a global strategy against the parasite. In this context, we studied the roles of N. caninum glycosylphosphatidylinositols (GPIs), glycolipids defined as toxins in the related parasite Plasmodium falciparum. We demonstrated for the first time that GPIs could be excreted in the supernatant of N. caninum culture and trigger cell signalling through the Toll-like receptors 2 and 4. In addition, antibodies specific to N. caninum GPIs were detected in the serum of infected mice. As shown for other protozoan diseases, they could play a role in neutralizing GPIs. N. caninum GPIs were able to induce the production of tumour necrosis factor-α, interleukin(IL)-1β and IL-12 cytokines by murine macrophages and dendritic cells. Furthermore, GPIs significantly reduced expression of major histocompatibility complex (MHC) molecules of class I on murine dendritic cells. In contrast to murine cells, bovine blood mononuclear cells produced increased levels of IFN-γ and IL-10, but reduced levels of IL-12p40 in response to GPIs. On these bovine cells, GPI had the tendency to up-regulate MHC class I, but to down-regulate MHC class II. Altogether, these results suggest that N. caninum GPIs might differentially participate in the responses of antigen presenting cells induced by the whole parasite in mouse models of neosporosis and in the natural cattle host.
Collapse
Affiliation(s)
| | - Jörg Schmidt
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | | | | | - Yoshuá D Acosta Paguay
- Laboratorio de Virología-inmunología de la carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, 171103 Sangolquí, Ecuador
| | - Ralph T Schwarz
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043 Marburg, Germany; Univ. Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d'Ascq, France
| | | | | |
Collapse
|
5
|
Fereig RM, Shimoda N, Abdelbaky HH, Kuroda Y, Nishikawa Y. Neospora GRA6 possesses immune-stimulating activity and confers efficient protection against Neospora caninum infection in mice. Vet Parasitol 2019; 267:61-68. [PMID: 30878088 DOI: 10.1016/j.vetpar.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 10/27/2022]
Abstract
Vaccination has the potential to be the most cost-effective control measure for reducing the economic burden of neosporosis in cattle. In this study, the immune-stimulatory effect of recombinant Neospora caninum dense granule protein 6 (NcGRA6) was confirmed via its triggering of IL-12p40 production in murine macrophages. BALB/c mice were immunized with recombinant NcGRA6 fused with glutathione S-transferase (GST) protein with or without oligomannose-coated-liposomes (OMLs) as the potential adjuvant. Specific IgG1 antibody production was observed from 21 and 35 days after the first immunization in NcGRA6+GST- and NcGRA6+GST-OML-immunized mice, respectively. However, specific IgG2a was detected 1 week after the infection, and IgG2a levels of the NcGRA6+GST- group were higher than those of the NcGRA6+GST-OML-group. Moreover, spleen cell proliferation with concomitant interferon-gamma production was detected in mice immunized with NcGRA6+GST, indicating that a significant cellular immune response was induced. Mouse survival rates against N. caninum challenge infection were 91.7% for NcGRA6+GST and 83.3% for NcGRA6+GST-OML, which were significantly higher than those of control groups (GST-OML: 25%, phosphate-buffered saline: 16.7%). This indicates that naked NcGRA6+GST induced protective immunity. Thus, our findings highlight the immune-stimulating potential of NcGRA6 and the ability to induce protective immunity against N. caninum infection in mice.
Collapse
Affiliation(s)
- Ragab M Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hanan H Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Kita-kaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
6
|
Interferon-γ-dependent protection against Neospora caninum infection conferred by mucosal immunization in IL-12/IL-23 p40-deficient mice. Vaccine 2018; 36:4890-4896. [DOI: 10.1016/j.vaccine.2018.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023]
|
7
|
Pereira C, Pereira AT, Osório H, Moradas-Ferreira P, Costa V. Sit4p-mediated dephosphorylation of Atp2p regulates ATP synthase activity and mitochondrial function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:591-601. [PMID: 29719209 DOI: 10.1016/j.bbabio.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/13/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022]
Abstract
Sit4p is a type 2A-related protein phosphatase in Saccharomyces cerevisiae involved in a wide spectrum of cellular functions, including the glucose repression of mitochondrial transcription. Here we report that Sit4p is also involved in post-translational regulation of mitochondrial proteins and identified 9 potential targets. One of these, the ATP synthase (FoF1 complex) beta subunit Atp2p, was characterized and two phosphorylation sites, T124 and T317, were identified. Expression of Atp2p-T124 or T317 phosphoresistant versions in sit4Δ cells decreased Atp2p phosphorylation confirming these as Sit4p-regulated sites. Moreover, Sit4p and Atp2p interacted both physically and genetically. Mimicking phosphorylation at T124 or T317 increased Atp2p levels, resulting in higher abundance/activity of ATP synthase. Similar changes were observed in sit4Δ cells in which Atp2p is endogenously more phosphorylated. Expression of Atp2-T124 or T317 phosphomimetics also increased mitochondrial respiration and ATP levels and extended yeast lifespan. These results suggest that Sit4p-mediated dephosphorylation of Atp2p-T124/T317 downregulates Atp2p alongside with ATP synthase and mitochondrial function. Combination of transcriptional with post-translational regulation during fermentative growth may allow for a more efficient Sit4p repression of mitochondrial respiration.
Collapse
Affiliation(s)
- Clara Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| | - Andreia T Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Hugo Osório
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal; Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Pedro Moradas-Ferreira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Vítor Costa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.
| |
Collapse
|
8
|
Gastric Cancer Cell Glycosylation as a Modulator of the ErbB2 Oncogenic Receptor. Int J Mol Sci 2017; 18:ijms18112262. [PMID: 29143776 PMCID: PMC5713232 DOI: 10.3390/ijms18112262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/23/2022] Open
Abstract
Aberrant expression and hyperactivation of the human epidermal growth factor receptor 2 (ErbB2) constitute crucial molecular events underpinning gastric neoplastic transformation. Despite ErbB2 extracellular domain being a well-known target for glycosylation, its glycosylation profile and the molecular mechanisms through which it actively tunes tumorigenesis in gastric cancer (GC) cells remain elusive. We aimed at disclosing relevant ErbB2 glycan signatures and their functional impact on receptor's biology in GC cells. The transcriptomic profile of cancer-relevant glycosylation enzymes, and the expression and activation of the ErbB receptors were characterized in four GC cell lines. Cellular- and receptor-specific glycan profiling of ErbB2-overexpressing NCI-N87 cells unveiled a heterogeneous glycosylation pattern harboring the tumor-associated sialyl Lewis a (SLea) antigen. The expression of SLea and key enzymes integrating its biosynthetic pathway were strongly upregulated in this GC cell line. An association between the expression of ERBB2 and FUT3, a central gene in SLea biosynthesis, was disclosed in GC patients, further highlighting the crosstalk between ErbB2 and SLea expression. Moreover, cellular deglycosylation and CA 19.9 antibody-mediated blocking of SLea drastically altered ErbB2 expression and activation in NCI-N87 cells. Altogether, NCI-N87 cell line constitutes an appealing in vitro model to address glycan-mediated regulation of ErbB2 in GC.
Collapse
|
9
|
Potocki W, Negri A, Peszyńska-Sularz G, Hinc K, Obuchowski M, Iwanicki A. The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore. Microb Cell Fact 2017; 16:151. [PMID: 28899372 PMCID: PMC5596941 DOI: 10.1186/s12934-017-0765-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bacillus subtilis spores can be used for presentation of heterologous proteins. Two main approaches have been developed, the recombinant one, requiring modification of bacterial genome to express a protein of interest as a fusion with spore-coat protein, and non-recombinant, based on the adsorption of a heterologous protein onto the spore. So far only single proteins have been displayed on the spore surface. RESULTS We have used a combined approach to adsorb and display FliD protein of Clostridium difficile on the surface of recombinant IL-2-presenting spores. Such spores presented FliD protein with efficiency comparable to FliD-adsorbed spores produced by wild-type 168 strain and elicited FliD-specific immune response in intranasally immunized mice. CONCLUSIONS Our results indicate that such dual display technology may be useful in creation of spores simultaneously presenting adjuvant and antigen molecules. Regarding the characteristics of elicited immune response it seems plausible that such recombinant IL-2-presenting spores with adsorbed FliD protein might be an interesting candidate for vaccine against infections with Clostridium difficile.
Collapse
Affiliation(s)
- Wojciech Potocki
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland
| | - Alessandro Negri
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, Gdańsk, Poland.,Department of Microbiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Krzysztof Hinc
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Obuchowski
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland
| | - Adam Iwanicki
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|