1
|
Cortés-Jofré M, Rueda-Etxebarria M, Orillard E, Jimenez Tejero E, Rueda JR. Therapeutic vaccines for advanced non-small cell lung cancer. Cochrane Database Syst Rev 2024; 3:CD013377. [PMID: 38470132 PMCID: PMC10929364 DOI: 10.1002/14651858.cd013377.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND New strategies in immunotherapy with specific antigens that trigger an anti-tumour immune response in people with lung cancer open the possibility of developing therapeutic vaccines aimed at boosting the adaptive immune response against cancer cells. OBJECTIVES To evaluate the effectiveness and safety of different types of therapeutic vaccines for people with advanced non-small cell lung cancer. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, Wanfang Data, and China Journal Net (CNKI) up to 22 August 2023. SELECTION CRITERIA We included parallel-group, randomised controlled trials evaluating a therapeutic cancer vaccine, alone or in combination with other treatments, in adults (> 18 years) with advanced non-small cell lung cancer (NSCLC), whatever the line of treatment. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Our primary outcomes were overall survival, progression-free survival, and serious adverse events; secondary outcomes were three- and five-year survival rates and health-related quality of life. MAIN RESULTS We included 10 studies with 2177 participants. The outcome analyses included only 2045 participants (1401 men and 644 women). The certainty of the evidence varied by vaccine and outcome, and ranged from moderate to very low. We report only the results for primary outcomes here. TG4010 The addition of the vector-based vaccine, TG4010, to chemotherapy, compared with chemotherapy alone in first-line treatment, may result in little to no difference in overall survival (hazard ratio (HR) 0.83, 95% confidence interval (CI) 0.65 to 1.05; 2 studies, 370 participants; low-certainty evidence). It may increase progression-free survival slightly (HR 0.74, 95% CI 0.55 to 0.99; 1 study, 222 participants; low-certainty evidence). It may result in little to no difference in the proportion of participants with at least one serious treatment-related adverse event, but the evidence is very uncertain (risk ratio (RR) 0.70, 95% CI 0.23 to 2.19; 2 studies, 362 participants; very low-certainty evidence). Epidermal growth factor vaccine Epidermal growth factor vaccine, compared to best supportive care as switch maintenance treatment after first-line chemotherapy, may result in little to no difference in overall survival (HR 0.82, 95% CI 0.66 to 1.02; 1 study, 378 participants; low-certainty evidence), and in the proportion of participants with at least one serious treatment-related adverse event (RR 1.32, 95% CI 0.88 to 1.98; 2 studies, 458 participants; low-certainty evidence). hTERT (vx-001) The hTERT (vx-001) vaccine compared to placebo as maintenance treatment after first-line chemotherapy may result in little to no difference in overall survival (HR 0.97, 95% CI 0.70 to 1.34; 1 study, 190 participants). Racotumomab Racotumomab compared to placebo as a switch maintenance treatment post-chemotherapy was assessed in one study with 176 participants. It may increase overall survival (HR 0.63, 95% CI 0.46 to 0.87). It may make little to no difference in progression-free survival (HR 0.73, 95% CI 0.53 to 1.00) and in the proportion of people with at least one serious treatment-related adverse event (RR 1.03, 95% CI 0.15 to 7.18). Racotumomab versus docetaxel as switch maintenance therapy post-chemotherapy was assessed in one study with 145 participants. The study did not report hazard rates on overall survival or progression-free survival time, but the difference in median survival times was very small - less than one month. Racotumomab may result in little to no difference in the proportion of people with at least one serious treatment-related adverse event compared with docetaxel (RR 0.89, 95% CI 0.44 to 1.83). Personalised peptide vaccine Personalised peptide vaccine plus docetaxel compared to docetaxel plus placebo post-chemotherapy treatment may result in little to no difference in overall survival (HR 0.80, 95% CI 0.42 to 1.52) and progression-free survival (HR 0.78, 95% CI 0.43 to 1.42). OSE2101 The OSE2101 vaccine compared with chemotherapy, after chemotherapy or immunotherapy, was assessed in one study with 219 participants. It may result in little to no difference in overall survival (HR 0.86, 95% CI 0.62 to 1.19). It may result in a small difference in the proportion of people with at least one serious treatment-related adverse event (RR 0.95, 95% CI 0.91 to 0.99). SRL172 The SRL172 vaccine of killed Mycobacterium vaccae, added to chemotherapy, compared to chemotherapy alone, may result in no difference in overall survival, and may increase the proportion of people with at least one serious treatment-related adverse event (RR 2.07, 95% CI 1.76 to 2.43; 351 participants). AUTHORS' CONCLUSIONS Adding a vaccine resulted in no differences in overall survival, except for racotumomab, which showed some improvement compared to placebo, but the difference in median survival time was very small (1.4 months) and the study only included 176 participants. Regarding progression-free survival, we observed no differences between the compared treatments, except for TG4010, which may increase progression-free survival slightly. There were no differences between the compared treatments in serious treatment-related adverse events, except for SRL172 (killed Mycobacterium vaccae) added to chemotherapy, which was associated with an increase in the proportion of participants with at least one serious treatment-related adverse event, and OSE2101, which may decrease slightly the proportion of people having at least one serious treatment-related adverse event. These conclusions should be interpreted cautiously, as the very low- to moderate-certainty evidence prevents drawing solid conclusions: many vaccines were evaluated in a single study with small numbers of participants and events.
Collapse
Affiliation(s)
- Marcela Cortés-Jofré
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mikel Rueda-Etxebarria
- Research in Sciences of dissemination and implementation in health services, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Elena Jimenez Tejero
- Independent Cochrane review author, Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - José-Ramón Rueda
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing. University of the Basque Country, Leioa, Spain
| |
Collapse
|
2
|
Sato Y, Vatsan R, Joshi BH, Husain SR, Puri RK. A Novel Recombinant Modified Vaccinia Ankara Virus expressing Interleukin-13 Receptor α2 Antigen for Potential Cancer Immunotherapy. Curr Mol Med 2024; 24:758-770. [PMID: 36999709 DOI: 10.2174/1566524023666230331085007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Genetically altered recombinant poxviruses hold great therapeutic promise in animal models of cancer. Poxviruses can induce effective cellmediated immune responses against tumor-associated antigens. Preventive and therapeutic vaccination with a DNA vaccine expressing IL-13Rα2 can mediate partial regression of established tumors in vivo, indicating that host immune responses against IL-13Rα2 need further augmentation. OBJECTIVE The aim of the study is developing a recombinant modified vaccinia Ankara (MVA) expressing IL-13Rα2 (rMVA-IL13Rα2) virus and study in vitro infectivity and efficacy against IL-13Rα2 positive cell lines. METHODS We constructed a recombinant MVA expressing IL-13Rα2 and a green fluorescent protein (GFP) reporter gene. Purified virus titration by infection of target cells and immunostaining using anti-vaccinia and anti-IL-13Rα2 antibodies was used to confirm the identity and purity of the rMVA-IL13Rα2. RESULTS Western Blot analysis confirmed the presence of IL-13Rα2 protein (~52 kDa). Flow cytometric analysis of IL-13Rα2 negative T98G glioma cells when infected with rMVA-IL13Rα2 virus demonstrated cell-surface expression of IL-13Rα2, indicating the infectivity of the recombinant virus. Incubation of T98G-IL13Rα2 cells with varying concentrations (0.1-100 ng/ml) of interleukin-13 fused to truncated Pseudomonas exotoxin (IL13-PE) resulted in depletion of GFP+ fluorescence in T98G-IL13Rα2 cells. IL13-PE (10-1000 ng/ml) at higher concentrations also inhibited the protein synthesis in T98G-IL13Rα2 cells compared to cells infected with the control pLW44-MVA virus. IL13- PE treatment of rMVA-IL13Rα2 infected chicken embryonic fibroblast and DF-1 cell line reduced virus titer compared to untreated cells. CONCLUSION rMVA-IL13Rα2 virus can successfully infect mammalian cells to express IL-13Rα2 in a biologically active form on the surface of infected cells. To evaluate the efficacy of rMVA-IL13Rα2, immunization studies are planned in murine tumor models.
Collapse
Affiliation(s)
- Yuki Sato
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Department of Research Promotion, Division of Cancer Research, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda, Tokyo 100- 0004, Japan
| | - Ramjay Vatsan
- Gene Therapy Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Syed R Husain
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, 825 Industrial Road, Suite 400, San Carlos, CA, California, 94070, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Iovance Biotherapeutics, 825 Industrial Road, Suite 400, San Carlos, CA, California, 94070, USA
| |
Collapse
|
3
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Ramos RN, Tosch C, Kotsias F, Claudepierre MC, Schmitt D, Remy-Ziller C, Hoffmann C, Ricordel M, Nourtier V, Farine I, Laruelle L, Hortelano J, Spring-Giusti C, Sedlik C, Le Tourneau C, Hoffmann C, Silvestre N, Erbs P, Bendjama K, Thioudellet C, Quemeneur E, Piaggio E, Rittner K. Pseudocowpox virus, a novel vector to enhance the therapeutic efficacy of antitumor vaccination. Clin Transl Immunology 2022; 11:e1392. [PMID: 35573979 PMCID: PMC9081486 DOI: 10.1002/cti2.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/11/2022] [Accepted: 04/16/2022] [Indexed: 11/11/2022] Open
Abstract
Objective Antitumor viral vaccines, and more particularly poxviral vaccines, represent an active field for clinical development and translational research. To improve the efficacy and treatment outcome, new viral vectors are sought, with emphasis on their abilities to stimulate innate immunity, to display tumor antigens and to induce a specific T‐cell response. Methods We screened for a new poxviral backbone with improved innate and adaptive immune stimulation using IFN‐α secretion levels in infected PBMC cultures as selection criteria. Assessment of virus effectiveness was made in vitro and in vivo. Results The bovine pseudocowpox virus (PCPV) stood out among several poxviruses for its ability to induce significant secretion of IFN‐α. PCPV produced efficient activation of human monocytes and dendritic cells, degranulation of NK cells and reversed MDSC‐induced T‐cell suppression, without being offensive to activated T cells. A PCPV‐based vaccine, encoding the HPV16 E7 protein (PCPV‐E7), stimulated strong antigen‐specific T‐cell responses in TC1 tumor‐bearing mice. Complete regression of tumors was obtained in a CD8+ T‐cell‐dependent manner after intratumoral injection of PCPV‐E7, followed by intravenous injection of the cancer vaccine MVA‐E7. PCPV also proved active when injected repeatedly intratumorally in MC38 tumor‐bearing mice, generating tumor‐specific T‐cell responses without encoding a specific MC38 antigen. From a translational perspective, we demonstrated that PCPV‐E7 effectively stimulated IFN‐γ production by T cells from tumor‐draining lymph nodes of HPV+‐infected cancer patients. Conclusion We propose PCPV as a viral vector suitable for vaccination in the field of personalised cancer vaccines, in particular for heterologous prime‐boost regimens.
Collapse
Affiliation(s)
- Rodrigo Nalio Ramos
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France.,Present address: Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia Hospital das Clínicas Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) São Paulo Brazil.,Present address: Instituto D'Or de Ensino e Pesquisa São Paulo Brazil
| | | | - Fiorella Kotsias
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | | | | | | | | | | | | | | | | | | | | | - Christine Sedlik
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i) Institut Curie Paris and Saint-Cloud France
| | - Caroline Hoffmann
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France.,Department of Surgical Oncology Institut Curie PSL Research University Paris France
| | | | | | | | | | | | - Eliane Piaggio
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | | |
Collapse
|
6
|
Immunotherapy for non-small cell lung cancer (NSCLC), as a stand-alone and in combination therapy. Crit Rev Oncol Hematol 2021; 164:103417. [PMID: 34242772 DOI: 10.1016/j.critrevonc.2021.103417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/05/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is of major concern for society as it is associated with high mortality and is one of the most commonly occurring of all cancers. Due to the number of mutational variants and general heterogeneity of this type of cancer, treatment using conventional modalities has been challenging. Therefore, it is important to have improved therapeutic treatments like immunotherapy, that can specifically treat the disease while causing minimal damage to healthy tissue and additionally provide systemic immunity. Cancer vaccines are an important element of cancer immunotherapy and have been approved for treatment of a limited number of cancers, including NSCLC. This article highlights scientific evidence for several therapeutic treatment strategies for NSCLC, alone or in combination, which offers new hope for those suffering. Although cancer vaccines have had some success as a monotherapy, their potential in a combination therapy needs to be critically analyzed for future applications.
Collapse
|
7
|
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan 49341‐74515 Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| | - Zahra Nazari
- Department of Biology School of Basic Sciences Golestan University Gorgan 49361‐79142 Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| |
Collapse
|
8
|
Cortés-Jofré M, Uranga R, Torres Pombert A, Arango Prado MDC, Caballero Aguirrechu I, Pacheco C, Ortiz Reyes RM, Chuecas F, Mas Bermejo PI. Therapeutic vaccines for advanced non-small cell lung cancer. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2019. [DOI: 10.1002/14651858.cd013377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marcela Cortés-Jofré
- Universidad Católica de la Santísima; Concepción Chile
- Autonomous University of Barcelona; Doctoral Program in Research Methodology and Public Health; Barcelona Spain
| | - Rolando Uranga
- Centro Nacional Coordinador de Ensayos Clínicos (CENCEC); Manejo y Procesamiento de Datos; Ave 5ta A e/60 y 62 Miramar, Playa La Habana Cuba 11300
| | - Ania Torres Pombert
- Centro Nacional Coordinador de Ensayos Clínicos (CENCEC); Head of Scientific Information Management Unit; 5th avenue E 60th Street, 2nd Floor. Miramar Havana Cuba 11300
| | - Maria del Carmen Arango Prado
- Instituto Nacional de Oncología y Radiobiología (INOR); Departamento de Investigaciones Básicas; 29 and F, Vedado La Habana La Habana Cuba 10400
| | - Iraida Caballero Aguirrechu
- MINSAP - Hermanos Ameijeiras Hospital (HHA); Clinical Oncology; San Lazaro 701 Centro Habana La Habana Cuba 10400
| | - Cecilia Pacheco
- Clinica Alemana, Universidad del Desarrollo; Centro de Información Médica; Av. Manquehue 1499 - Vitacura Santiago Región metropolitana Chile 6750567
| | - Rosa Maria Ortiz Reyes
- Instituto Nacional de Oncología y Radiobiología (INOR); Departmento de Investigaciones Clinicas; 29 y F . Vedado La Habana La Habana Cuba 10400
| | - Fernando Chuecas
- Catholic University; Faculty of Medicine; Alonso de Ribera 2850 Concepción Chile 4090541
| | - Pedro Inocente Mas Bermejo
- Tropical Medicine Institute "Pedro Kouri"; Department of Epidemiology and Public Health; Autopista del Mediodia km 6 La Lisa Cuba Marianao 13
| |
Collapse
|
9
|
Syrkina MS, Vassetzky YS, Rubtsov MA. MUC1 Story: Great Expectations, Disappointments and the Renaissance. Curr Med Chem 2019; 26:554-563. [PMID: 28820070 DOI: 10.2174/0929867324666170817151954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
In the course of studying human mucin MUC1, the attitude towards this molecule has been changing time and again. Initially, the list of presumable functions of MUC1 was restricted to protecting and lubricating epithelium. To date, it is assumed to play an important role in cell signaling as well as in all stages of oncogenesis, from malignant cell transformation to tumor dissemination. The story of MUC1 is full of hopes and disappointments. However, the scientific interest to MUC1 has never waned, and the more profoundly it has been investigated, the clearer its hidden potential turned to be disclosed. The therapeutic potential of mucin MUC1 has already been noted by various scientific groups at the early stages of research. Over forty years ago, the first insights into MUC1 functions became a strong ground for considering this molecule as potential target for anticancer therapy. Therefore, this direction of research has always been of particular interest and practical importance. More than 200 papers on MUC1 were published in 2016; the majority of them are dedicated to MUC1-related anticancer diagnostics and therapeutics. Here we review the history of MUC1 studies from the very first attempts to reveal its functions to the ongoing renaissance.
Collapse
Affiliation(s)
- Marina S Syrkina
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Yegor S Vassetzky
- LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,Koltzov Institute of Developmental Biology, Moscow, Russian Federation
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
10
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Chen Y, Yuan F, Jiang X, Lv Q, Luo N, Gong C, Wang C, Yang L, He G. Discovery of a self-assembling and self-adjuvant lipopeptide as a saccharide-free peptide vaccine targeting EGFRvIII positive cutaneous melanoma. Biomater Sci 2018. [PMID: 29528348 DOI: 10.1039/c8bm00017d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, tumor immunotherapy has achieved great progress in the treatment of hematological and solid neoplasms. The DC vaccines, KLH-conjugated vaccines or glycosylated peptide vaccines can efficiently induce immune responses against tumors. In the current study, we have discovered cholesteryl PADRE-EGFRvIII epitope-conjugated lipopeptide self-assembled micelles as a potential self-adjuvant vaccine against cutaneous melanoma. The lipopeptide vaccines were synthesized using a standard solid phase peptide synthesis method, and these vaccines could elicit both a humoral and a cellular immune response to EGFRvIII positive melanoma cells. Their high humoral immunoreaction stimulation properties in combination with their cytotoxic T-cell eliciting properties provide them with potent tumor inhibitory capacity. In therapeutic and preventive xenograft models of B16-EGFRvIII melanoma cells, the self-adjuvant lipopeptide vaccine micelles efficiently prevented tumor growth as well as tumorigenesis. Our results provide a novel platform for eliciting immune responses to non-antigenic cancer-related epitopes in peptide cancer vaccine discovery and development.
Collapse
Affiliation(s)
- Yujuan Chen
- State Key Laboratory of Biotherapy, Department of breast surgery and Department of dermatology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo M, You C, Dou J. Role of transmembrane glycoprotein mucin 1 (MUC1) in various types of colorectal cancer and therapies: Current research status and updates. Biomed Pharmacother 2018; 107:1318-1325. [PMID: 30257347 DOI: 10.1016/j.biopha.2018.08.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinoma (CRC) is the third most common malignant tumor in the world. In recent years, the morbidity and mortality of CRC have increased in the world due to increasingly ageing population, modern dietary habits, environmental change, genetic disorders and chronic intestinal inflammation. Despite recent advances in earlier detection and improvements in chemotherapy, the 5-year survival rate of patients with metastatic CRC remains low. Therefore, novel effective treatment strategies for primary or metastatic CRC have emerged to enhance cure rate as well as elongation of patient's survival. Immunotherapy has been proposed for a potentially effective therapeutic approach to the treatment of CRC. Tumor vaccination in preclinical and clinical studies has supported the antitumor activity induced by immunization with CRC cell vaccines. Epithelial cell molecule Mucin 1 (MUC1), a transmembrane glycoprotein aberrantly overexpressed in various cancers including CRC, has been used as a candidate target antigen in the peptide, dendritic cell, and whole tumor vaccines. Several clinical trials in progress reveal the immunogenicity and suitability of MUC1 that acted as immunotherapeutic vaccines for CRC/colorectal cancer stem cells (CCSC). The present review summarizes the potential roles of MUC1 on CRC/CCSC vaccines according to the latest data. Moreover, this review also discusses the novel strategies for targeting CCSC via inducing an immune response against MUC1 to achieve the best prevention and treatment effects in animal models and clinical trails.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Chengzhong You
- Department of General Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
13
|
Seidl M, Bader M, Vaihinger A, Wellner UF, Todorova R, Herde B, Schrenk K, Maurer J, Schilling O, Erbes T, Fisch P, Pfeiffer J, Hoffmann L, Franke K, Werner M, Bronsert P. Morphology of Immunomodulation in Breast Cancer Tumor Draining Lymph Nodes Depends on Stage and Intrinsic Subtype. Sci Rep 2018; 8:5321. [PMID: 29593307 PMCID: PMC5871837 DOI: 10.1038/s41598-018-23629-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer research of immune-modulating mechanisms mainly addresses the role of tumor-infiltrating immune cells. Mechanisms modulating the adaptive immune system at the primary activation site - the draining lymph node (LN) - are less investigated. Here we present tumor-caused histomorphological changes in tumor draining LNs of breast cancer patients, dependent on the localization (sentinel LN vs. non-sentinel LN), the tumor size, the intrinsic subtype and nodal metastatic status. The quantitative morphological study was conducted in breast cancer patients with at least one sentinel LN and no neoadjuvant therapy. All LNs were annotated considering to their topographical location, stained for IgD/H&E, digitized and quantitatively analyzed. In 206 patients, 394 sentinels and 940 non-sentinel LNs were categorized, comprising 40758 follicles and 7074 germinal centers. Subtype specific immunomorphological patterns were detectable: Follicular density was higher in LNs of Her2 enriched hormone receptor positive and triple-negative breast cancers whereas hormone receptor positive breast cancers showed more macrophage infiltrations in the LN cortex. Follicles are rounder in metastatic LNs and non-sentinel LNs. The identified immunomorphological changes reflect different underlying immunomodulations taking place in the tumor-draining LNs and should therefore be considered as possible prognostic and predictive markers for LN metastasis and therapy associated immunomodulation.
Collapse
Affiliation(s)
- Maximilian Seidl
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Moritz Bader
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Division of Cranio-maxillo-facial Surgery, Department of Reconstructive Surgery, University of Basel, Basel, Switzerland
| | - Astrid Vaihinger
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich F Wellner
- Clinic for Surgery, University Clinic Schleswig-Holstein Campus Lübeck, Lubeck, Germany
| | - Rumyana Todorova
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Herde
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaudia Schrenk
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Maurer
- Department of Gynecology, RWTH Aachen University Hospital, Aachen, Germany
| | - Oliver Schilling
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paul Fisch
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Pfeiffer
- Department of Oto-Rhino-Laryngology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Kai Franke
- Department of Trauma, Hand and Reconstructive Surgery Giessen, University Hospital Giessen-Marburg, Giessen, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Oberson A, Spagnuolo L, Puddinu V, Barchet W, Rittner K, Bourquin C. NAB2 is a novel immune stimulator of MDA-5 that promotes a strong type I interferon response. Oncotarget 2017; 9:5641-5651. [PMID: 29464024 PMCID: PMC5814164 DOI: 10.18632/oncotarget.23725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
Novel adjuvants are needed to increase the efficacy of vaccine formulations and immune therapies for cancer and chronic infections. In particular, adjuvants that promote a strong type I IFN response are required, since this cytokine is crucial for the development of efficient anti-tumoral and anti-viral immunity. Nucleic acid band 2 (NAB2) is a double-stranded RNA molecule isolated from yeast and identified as an agonist of the pattern-recognition receptors TLR3 and MDA-5. We compared the ability of NAB2 to activate innate immunity with that of poly(I:C), a well-characterized TLR3 and MDA-5 agonist known for the induction of type I IFN. NAB2 promoted stronger IFN-α production and induced a higher activation state of both murine and human innate immune cells compared to poly(I:C). This correlated with a stronger activation of the signalling pathway downstream of MDA-5, and IFN-α induction was dependent on MDA-5. Upon injection, NAB2 induced higher levels of serum IFN-α in mice than poly(I:C). These results suggest that NAB2 has the potential to become an efficient adjuvant for the induction of type-I IFN responses in therapeutic immunization against cancer or infections.
Collapse
Affiliation(s)
- Anne Oberson
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland
| | - Lorenzo Spagnuolo
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Viola Puddinu
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Winfried Barchet
- German Center for Infection Research, Cologne-Bonn, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Germany
| | - Karola Rittner
- Transgene S.A., Parc d'Innovation, CS80166, 67405 Illkirch-Graffenstaden Cedex, France
| | - Carole Bourquin
- Chair of Pharmacology, Department of Medicine, Faculty of Science, University of Fribourg, 1700 Fribourg, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland.,Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
15
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|
16
|
Remy-Ziller C, Thioudellet C, Hortelano J, Gantzer M, Nourtier V, Claudepierre MC, Sansas B, Préville X, Bendjama K, Quemeneur E, Rittner K. Sequential administration of MVA-based vaccines and PD-1/PD-L1-blocking antibodies confers measurable benefits on tumor growth and survival: Preclinical studies with MVA-βGal and MVA-MUC1 (TG4010) in a murine tumor model. Hum Vaccin Immunother 2017; 14:140-145. [PMID: 28925793 PMCID: PMC5791558 DOI: 10.1080/21645515.2017.1373921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TG4010, a Modified Vaccinia virus Ankara (MVA) expressing human mucin1 (MUC1) has demonstrated clinical benefit for patients suffering from advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. To support its development, preclinical experiments were performed with either TG4010 or β-galactosidase-encoding MVA vector (MVA-βgal) in mice presenting tumors in the lung. Tumor growth was obtained after intravenous injection of CT26 murine colon cancer cells, engineered to express either MUC1 or βgal. Mice showed increased survival rates after repeated intravenous injections of TG4010 or MVA-βgal, compared to an empty MVA control vector. Treatment with MVA vectors led to the accumulation of CD3dimCD8dim T cells, with two subpopulations characterized as KLRG1+CD127− short-lived effector cells (SLECs), and KLRG1−CD127− early effector cells (EECs) comprising cells releasing IFNγ, Granzyme B and CD107a upon antigen-specific peptide stimulation. EECs were characterized by an up-regulation of PD-1. Tumor growth in the diseased lung correlated with the appearance of PD1+ Treg cells that partially disappeared after TG4010 treatment. At late stage of tumor development in the lung, PD-L1 was detected on CD45− tumor cells, on CD4+ cells, including Treg cells, on CD3+CD8+ and CD3dimCD8dim T lymphocytes, on NK cells, on MDSCs and on alveolar macrophages. We demonstrated that targeting the PD-1/PD-L1 pathway with blocking monoclonal antibodies several days after TG4010 treatment, at late stage of tumor development, enhanced the therapeutic protection induced by the vaccine, supporting the ongoing clinical evaluation of TG4010 immunotherapy in combination with Nivolumab.
Collapse
Affiliation(s)
- Christelle Remy-Ziller
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | - Christine Thioudellet
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | - Julie Hortelano
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | - Murielle Gantzer
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | - Virginie Nourtier
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | | | - Benoit Sansas
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | - Xavier Préville
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | - Kaïdre Bendjama
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | - Eric Quemeneur
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| | - Karola Rittner
- a Department of Oncoimmunology , Transgene S.A. , Parc d'Innovation, Illkirch-Graffenstaden , Cedex , France
| |
Collapse
|