1
|
Khakha SA, Varghese T, Giri S, Durbin A, Tan GS, Kalaivanan M, Prasad JH, Kang G. Whole-genome characterization of common rotavirus strains circulating in Vellore, India from 2002 to 2017: emergence of non-classical genomic constellations. Gut Pathog 2023; 15:44. [PMID: 37730725 PMCID: PMC10510252 DOI: 10.1186/s13099-023-00569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
Rotaviruses (RVs) are the most common etiological agent of acute gastroenteritis among young children, even after vaccine introduction in low-income countries. A whole-genome classification representing the 11 RV genes, was introduced for surveillance and characterization of RVs. This study characterized the common circulating strains in Vellore, India from 2002 to 2017 to understand rotavirus strain diversity and evolution using Whole genome sequencing (WGS) carried out on Illumina MiSeq. The 89% (92% of Wa-like, 86% of DS-1-like) of strains had classical constellations, while reassortant constellations were seen in 11% (8% of Wa-like, 14% of DS-1-like) of the strains. The rare E6-NSP4 in combination with DS-1 like G1P[8] and the emergence of the OP-354 subtype of P[8] were identified. Phylogenetics of RV strains revealed multiple subtypes circulating in the past 15 years, with strong evidence of animal to human gene transmission among several strains.
Collapse
Affiliation(s)
- Shainey Alokit Khakha
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Tintu Varghese
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Sidhartha Giri
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Alan Durbin
- J. Craig Venter Institute, La Jolla, San Diego, CA, 92037, USA
| | - Gene S Tan
- J. Craig Venter Institute, La Jolla, San Diego, CA, 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92037, USA
| | - Maheswari Kalaivanan
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India.
| |
Collapse
|
2
|
Eugenia Afocha E, Abiodun Iwalokun B, Deji-Agboola MA, Ayorinde James B, Abayomi Banjo T, Adu F, Chukwujekwu Ezechi O, Adegbola R, Lawal Salako B. Prevalence and spatiotemporal distribution of rotavirus diarrhea among children younger than five years old in Lagos, Nigeria. J Immunoassay Immunochem 2023; 44:117-132. [PMID: 36576163 DOI: 10.1080/15321819.2022.2159430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Data on spatiotemporal distribution of rotavirus diarrhea are limited in many endemic settings. This study determined the prevalence and seasonal distribution of rotavirus among Nigerian children with diarrhea. Here, a total of 406 fecal samples were collected from patients attending six health facilities in Lagos between January - December 2019. Socio-demographic data of each enrolled child were collected. Rotavirus VP6 antigen was detected by enzyme-linked immunoassay (ELISA) and confirmation by VP7 gene detection by reverse transcription polymerase-chain reaction. The overall rotavirus diarrhea prevalence was 16.3% by ELISA with children above 2 years having 29.2% of this prevalence and higher occurrence in females (59.1%) than males (40.9%) (P < .05). Rotavirus diarrhea diagnosis using RT-PCR showed 100% concordance with ELISA. Cases of rotavirus diarrhea were detected from March to July and from September to November with the highest number of cases detected in May and June (22.7% each), followed by July (21.2%). The prevalence of rotavirus diarrhea remains high in Lagos with an emerging higher disease activity in children above 2. A different rotavirus transmission dynamics compared to previous studies from Nigeria and other African countries was found. VP6 ELISA may reliably be used for continuous rotavirus surveillance in Nigeria.
Collapse
Affiliation(s)
- Ebelechukwu Eugenia Afocha
- Medical Microbiology & Parasitology Department, Olabisi Onabanjo University, Nigeria.,Centre for Infectious Disease Research, Microbiology Department, Nigerian Institute of Medical Research, Nigeria
| | - Bamidele Abiodun Iwalokun
- Medical Microbiology & Parasitology Department, Olabisi Onabanjo University, Nigeria.,Molecular Biology & Biotechnology Department, Nigerian Institute of Medical Research, Nigeria.,Central Research Laboratory Department, Nigerian Institute of Medical Research, Nigeria
| | | | | | - Taiwo Abayomi Banjo
- Medical Microbiology & Parasitology Department, Olabisi Onabanjo University, Nigeria
| | - Festus Adu
- All Saints University Medical School, Cnr Hillborough and Great George Street, Common Wealth of Dominica, West Indies
| | | | - Richard Adegbola
- Centre for Infectious Disease Research, Microbiology Department, Nigerian Institute of Medical Research, Nigeria
| | | |
Collapse
|
3
|
Selvarajan S, Reju S, Gopalakrishnan K, Padmanabhan R, Srikanth P. Evolutionary analysis of rotavirus G1P[8] strains from Chennai, South India. J Med Virol 2021; 94:2870-2876. [PMID: 34841551 DOI: 10.1002/jmv.27462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022]
Abstract
Rotaviruses by virtue of its segmented genome generate numerous genotypes. G1P[8] is the most common genotype reported globally. We intend to identify the evolutionary differences among G1P[8] strains from the study with vaccine strains. Stool samples collected from children <5 years were screened for rotavirus antigen by enzyme linked immunosorbent assay. The samples that tested positive for rotavirus were subjected to VP7 and VP4 semi-nested RT-PCR. Sanger sequencing was performed in randomly chosen VP7 and VP4 rotavirus strains. Phylogenetic analysis showed less homology between study strains and vaccine strains and they were placed in different lineages. The VP7 and VP4 proteins of rotavirus were analyzed by two different platforms to identify the amino acid substitutions in the epitope regions. Nine amino acid substitutions with respect to Rotarix®, RotaTeq® and Rotasiil®-V66A, A/T68S, Q72R, N94S, D100E, T113I, S123N, M217T, and I281T were observed in VP7. There were five amino acid substitutions-S145G, N/D195G, N113D, N/I78T, E150D in VP4 (VP8 portion) with respect to Rotarix® and RotaTeq® vaccine strains. M217T substitution in VP7 (epitope 7-2) and N113D, D195G substitution in VP4 (epitope 8-3, 8-1) confer changes in polarity/electrical charge with respect to vaccine strains, thus indicating the need for continued surveillance.
Collapse
Affiliation(s)
- Sribal Selvarajan
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sudhabharathi Reju
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Krithika Gopalakrishnan
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Ramachandran Padmanabhan
- Department of Paediatrics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Padma Srikanth
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Gupta S, Gauhar M, Bubber P, Ray P. Phylogenetic analysis of VP7 and VP4 genes of the most predominant human group A rotavirus G12 identified in children with acute gastroenteritis in Himachal Pradesh, India during 2013-2016. J Med Virol 2021; 93:6200-6209. [PMID: 34138482 DOI: 10.1002/jmv.27142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 11/05/2022]
Abstract
G12 strains are now considered to be the sixth most prevalent human rotaviruses globally. India has introduced rotavirus vaccine Rotavac® into the national immunization program in 2016 and Himachal Pradesh (HP) is the first state to launch it. During epidemiological rotavirus surveillance in HP, predominance of G12 rotaviruses was observed. This study investigated the genetic variability and evolution of HP G12 strains (n = 15) associated with P-genotypes P[6], P[4], and P[8] identified between 2013 and 2016. Phylogenetic analysis of VP7 gene revealed that all characterized G12 strains clustered in lineage-III and diversified into three subclusters indicating that these strains may have originated from three different ancestral G12 strains. The comparative sequence analysis of HP strains with Rotavac® and Rotarix® vaccine strains revealed various amino acid substitutions in epitope regions of VP7 and VP4 proteins especially at the antibody neutralization sites. Only 12/29 VP7 epitope residues and 2/25 VP4 epitope residues were found to be conserved between HP rotavirus strains and vaccine strains. Both long and short electropherotypes were observed in G12P[4] strains, while a single long electropherotype was observed in G12P[6] strains. Children of ≤11 months were significantly infected with G12 rotaviruses. The frequency of vomiting episodes (≥5/day) was significantly higher in children infected with G12 rotavirus strains as compared to non-G12 rotaviruses (p = 0.0405). Our study provides the comprehensive data on clinical characteristics and evolutionary pattern of the G12 rotavirus, the most prevalent strain in HP and emphasizes the need to monitor these strains for inclusion in future vaccine.
Collapse
Affiliation(s)
- Shipra Gupta
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mariyam Gauhar
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India
| | - Parvesh Bubber
- Department of Biochemistry, School of Sciences, IGNOU, New Delhi, India
| | - Pratima Ray
- Department of Biotechnology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, India.,Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Varghese T, Alokit Khakha S, Giri S, Nair NP, Badur M, Gathwala G, Chaudhury S, Kaushik S, Dash M, Mohakud NK, Ray RK, Mohanty P, Kumar CPG, Venkatasubramanian S, Arora R, Raghava Mohan V, E. Tate J, D. Parashar U, Kang G. Rotavirus Strain Distribution before and after Introducing Rotavirus Vaccine in India. Pathogens 2021; 10:pathogens10040416. [PMID: 33915946 PMCID: PMC8066972 DOI: 10.3390/pathogens10040416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
In April 2016, an indigenous monovalent rotavirus vaccine (Rotavac) was introduced to the National Immunization Program in India. Hospital-based surveillance for acute gastroenteritis was conducted in five sentinel sites from 2012 to 2020 to monitor the vaccine impact on various genotypes and the reduction in rotavirus positivity at each site. Stool samples collected from children under 5 years of age hospitalized with diarrhea were tested for group A rotavirus using a commercial enzyme immunoassay, and rotavirus strains were characterized by RT-PCR. The proportion of diarrhea hospitalizations attributable to rotavirus at the five sites declined from a range of 56–29.4% in pre-vaccine years to 34–12% in post-vaccine years. G1P[8] was the predominant strain in the pre-vaccination period, and G3P[8] was the most common in the post-vaccination period. Circulating patterns varied throughout the study period, and increased proportions of mixed genotypes were detected in the post-vaccination phase. Continuous long-term surveillance is essential to understand the diversity and immuno-epidemiological effects of rotavirus vaccination.
Collapse
Affiliation(s)
- Tintu Varghese
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (S.A.K.); (S.G.); (N.P.N.)
| | - Shainey Alokit Khakha
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (S.A.K.); (S.G.); (N.P.N.)
| | - Sidhartha Giri
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (S.A.K.); (S.G.); (N.P.N.)
| | - Nayana P. Nair
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (S.A.K.); (S.G.); (N.P.N.)
| | - Manohar Badur
- Department of Pediatrics, Sri Venkateshwara Medical College, Tirupati 517507, India;
| | - Geeta Gathwala
- Department of Pediatrics, Post Graduate Institute of Medical Sciences, Medical Road, Rohtak, Haryana 124001, India;
| | - Sanjeev Chaudhury
- Department of Pediatrics, Dr Rajendra Prasad Government Medical College, Tanda, Himachal Pradesh 176001, India;
| | - Shayam Kaushik
- Department of Pediatrics, Indira Gandhi Medical College, Shimla, Himachal Pradesh 171001, India;
| | - Mrutunjay Dash
- Department of Pediatrics, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, Odisha 751003, India;
| | - Nirmal K. Mohakud
- Department of Pediatrics, Kalinga Institute of Medical Sciences, 5 KIIT Road, Bhubaneswar, Odisha 751024, India;
| | - Rajib K. Ray
- Department of Pediatrics, Hi-Tech Hospital, Bhubaneswar, Odisha 751025, India; (R.K.R.); (P.M.)
| | - Prasantajyoti Mohanty
- Department of Pediatrics, Hi-Tech Hospital, Bhubaneswar, Odisha 751025, India; (R.K.R.); (P.M.)
| | | | | | - Rashmi Arora
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India;
| | | | - Jacqueline E. Tate
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.E.T.); (U.D.P.)
| | - Umesh D. Parashar
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.E.T.); (U.D.P.)
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India; (T.V.); (S.A.K.); (S.G.); (N.P.N.)
- Correspondence:
| |
Collapse
|
6
|
Pradhan SK, Panigrahi S, Padhi PS, Thiyagarajan V, Satpathy SK. Genetic Characteristics of Rotavirus Acute Gastroenteritis Among Hospitalized Children of Odisha in Eastern India. Indian J Pediatr 2021; 88:35-40. [PMID: 33403613 DOI: 10.1007/s12098-020-03610-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To generate epidemiological data of rotavirus diarrhea among hospitalized children less than 5 y of age and to characterize the circulating rotavirus genotypes post introduction of rotavirus vaccine in Universal Immunization Program (UIP). METHODS This prospective study was conducted from April 2016 to July 2019 at Sardar Vallabhbhai Patel Post Graduate Institute of Paediatrics & SCB Medical College, Cuttack, Odisha among hospitalized children with acute gastroenteritis (AGE) under five years of age. Stool samples collected were tested for rotavirus by a commercial enzyme immunoassay and strains were characterized by reverse-transcription polymerase chain reaction (PCR). The data was analysed using a chi-square test with 95% confidence interval and risk ratio. RESULTS Rotavirus diarrhea was seen in 715 (36.4%) of the 1963 samples tested. The peak incidence of rotavirus diarrhea was during the winter season, i.e., from the month of December to February. Most of the infections were in children between 6 mo to 2 y of age, affecting boys and girls equally. The commonest genotypes were G3P[8] (50.34%) followed by G1P[8] (17.46%). CONCLUSION This study highlights the high prevalence of rotavirus diarrhea among children which emphasize the need for continued rotavirus vaccination. The changing patterns of genotype distribution stress the need for continued surveillance post introduction of vaccines to understand the effect of vaccines on strain evolution over a longer period and detect emergence of new genotypes.
Collapse
Affiliation(s)
- Subal Kumar Pradhan
- Department of Pediatrics, Sardar Vallabhbhai Patel Post Graduate Institute of Paediatrics (SVPPGIP) and SCB Medical College, Cuttack, Odisha, India.
| | - Sumanta Panigrahi
- Department of Pediatrics, Pandit Raghunath Murmu Government Medical College and Hospital, Baripada, Odisha, India
| | - Pooja Sagar Padhi
- Department of Pediatrics, Sardar Vallabhbhai Patel Post Graduate Institute of Paediatrics (SVPPGIP) and SCB Medical College, Cuttack, Odisha, India
| | - Varunkumar Thiyagarajan
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Saroj Kumar Satpathy
- Department of Pediatrics, Sardar Vallabhbhai Patel Post Graduate Institute of Paediatrics (SVPPGIP) and SCB Medical College, Cuttack, Odisha, India
| |
Collapse
|
7
|
Giri S, Kumar CPG, Khakha SA, Chawla-Sarkar M, Gopalkrishna V, Chitambar SD, Ray P, Venkatasubramanian S, Borkakoty BJ, Roy S, Bhat J, Dwibedi B, Das P, Paluru V, Ramani S, Babji S, Arora R, Mehendale SM, Gupte MD, Kang G. Diversity of rotavirus genotypes circulating in children < 5 years of age hospitalized for acute gastroenteritis in India from 2005 to 2016: analysis of temporal and regional genotype variation. BMC Infect Dis 2020; 20:740. [PMID: 33036575 PMCID: PMC7547507 DOI: 10.1186/s12879-020-05448-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background From 2016, the Government of India introduced the oral rotavirus vaccine into the national immunization schedule. Currently, two indigenously developed vaccines (ROTAVAC, Bharat Biotech; ROTASIIL, Serum Institute of India) are included in the Indian immunization program. We report the rotavirus disease burden and the diversity of rotavirus genotypes from 2005 to 2016 in a multi-centric surveillance study before the introduction of vaccines. Methods A total of 29,561 stool samples collected from 2005 to 2016 (7 sites during 2005–2009, 3 sites from 2009 to 2012, and 28 sites during 2012–2016) were included in the analysis. Stools were tested for rotavirus antigen using enzyme immunoassay (EIA). Genotyping was performed on 65.8% of the EIA positive samples using reverse transcription- polymerase chain reaction (RT-PCR) to identify the G (VP7) and P (VP4) types. Multinomial logistic regression was used to quantify the odds of detecting genotypes across the surveillance period and in particular age groups. Results Of the 29,561 samples tested, 10,959 (37.1%) were positive for rotavirus. There was a peak in rotavirus positivity during December to February across all sites. Of the 7215 genotyped samples, G1P[8] (38.7%) was the most common, followed by G2P[4] (12.3%), G9P[4] (5.8%), G12P[6] (4.2%), G9P[8] (4%), and G12P[8] (2.4%). Globally, G9P[4] and G12P[6] are less common genotypes, although these genotypes have been reported from India and few other countries. There was a variation in the geographic and temporal distribution of genotypes, and the emergence or re-emergence of new genotypes such as G3P[8] was seen. Over the surveillance period, there was a decline in the proportion of G2P[4], and an increase in the proportion of G9P[4]. A higher proportion of mixed and partially typed/untyped samples was also seen more in the age group 0–11 months. Conclusions This 11 years surveillance highlights the high burden of severe rotavirus gastroenteritis in Indian children < 5 years of age before inclusion of rotavirus vaccines in the national programme. Regional variations in rotavirus epidemiology were seen, including the emergence of G3P[8] in the latter part of the surveillance. Having pre-introduction data is important to track changing epidemiology of rotaviruses, particularly following vaccine introduction.
Collapse
Affiliation(s)
- Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India.,Indian Council of Medical Research, New Delhi, India
| | | | - Shainey Alokit Khakha
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Mamta Chawla-Sarkar
- National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | | | | | | | | | | | - Subarna Roy
- National Institute of Traditional Medicine, Belgaum, Karnataka, India
| | - Jyothi Bhat
- National Institute for Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | | | - Pradeep Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Vijayachari Paluru
- Regional Medical Research Centre, Port Blair, Andaman & Nicobar Islands, India
| | - Sasirekha Ramani
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India.,Baylor College of Medicine, Houston, TX, USA
| | - Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rashmi Arora
- Indian Council of Medical Research, New Delhi, India.,Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | | | - Mohan D Gupte
- Indian Council of Medical Research, New Delhi, India
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India. .,Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| | | |
Collapse
|
8
|
Chawla-Sarkar M, Banerjee A, Lo M, Mitra S, Okamoto K, Deb A, Dutta S. A decade-long temporal analyses of human group-A rotavirus among children with gastroenteritis: Prevaccination scenario in West Bengal, eastern India. J Med Virol 2020; 92:1334-1342. [PMID: 32073164 DOI: 10.1002/jmv.25712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/16/2020] [Indexed: 11/05/2022]
Abstract
Despite the significant reduction in the global infantile death toll due to rotaviral diarrhea, India still contributes substantially to rotavirus-related hospitalization as well as mortality rates. The rotavirus surveillance study conducted from 2008 through 2017 among children (≤5 years) with moderate to severe gastroenteritis seeking healthcare facilities at two hospitals in eastern India, revealed a change in the proportion of rotavirus positivity, seasonality, and age-group specificity along with the cycling of different usual and unusual genotypes in this endemic setting. G1 strains predominated during 2008-2010, while G2 and G9 genotypes eventually upsurged during 2011-2013. G1 strains re-established their lead during 2013-2015, while G3 emerged for the first time in eastern India in 2015 and rooted itself as the cardinal strain 2016 onwards. Evolutionary analyses of all the predominant genotypes (G1, G2, G3, and G9) revealed that they were mostly phylogenetically distant to the rotavirus vaccine strains as depicted in the phylogenetic dendrogram. These decade-long epidemiological studies during the pre-vaccination period in West Bengal (eastern India) underscore the cocirculation of multiple rotavirus genotypes in addition to sporadic occurrence of zoonotic strains like G10P[6] and G11P[25].
Collapse
Affiliation(s)
- Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Anindita Banerjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Mahadeb Lo
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Suvrotoa Mitra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases at Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Shanta Dutta
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| |
Collapse
|
9
|
Nayak MK, Banerjee A, Sarkar R, Mitra S, Dutta K, Ganguly N, Ghosh C, Girish Kumar CP, Niyogi P, Panda S, Dutta S, Chawla-Sarkar M. Genetic characterization of group-A rotaviruses among children in eastern India during 2014-2016: Phylodynamics of co-circulating genotypes. Vaccine 2019; 37:6842-6856. [PMID: 31543416 DOI: 10.1016/j.vaccine.2019.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Group-A human rotaviruses (GARV) are among the major cause of childhood diarrhea worldwide. In lieu of monitoring the circulatory GARV strains and underscoring the burden of GARV related hospitalization, a systematic surveillance was conducted in three hospitals of eastern India. In this hospital-based diarrheal disease surveillance (2014-2016), GARV was the most common cause of acute infantile gastroenteritis. The strains were genotyped and characterized to understand their prevalence and phylodynamics prior to the introduction of vaccine in eastern India. MATERIALS AND METHODS A total of 3652 stool samples were screened from children (≤5 years) hospitalized with acute diarrhea during 2014-2016. Initial screening for VP6 antigen was done by ELISA. GARV positive samples were genotyped by multiplex semi-nested PCR and DNA sequencing and phylogenetic analyses were based on the capsid proteins VP4 and VP7. RESULTS Of 3652 samples, 1817 (49.8%) were GARV positive. G1, G2, G3 and G9 in conjunction with P[4], P[6]and P[8]genotypes were seen to co-circulate in the population. A sharp deflection from G1 to G3 occurred since 2016; upsurge of G9 strains was seen in alternate years, whereas G2 strains had a low frequency. All the circulating genotypes depicted a low phylogenetic relatedness to the vaccine strains. Differences in antigenic epitopes of VP4 and VP7 proteins in local strains were seen when compared to the vaccine strains. A significant difference in the degree of dehydration, duration of mean hospital stay and frequency of vomiting/24 h between GARV positive and negative children was evident. CONCLUSION The study provides a relevant set of base-line data on high burden of rotaviral gastroenteritis and the varied genotypic diversity among children prior to the introduction of GARV vaccine in this endemic region. Continuous monitoring during post-vaccination era will be required to assess the impact of vaccination in this region.
Collapse
Affiliation(s)
- Mukti Kant Nayak
- ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India; B.B. College, Odisha, India
| | - Anindita Banerjee
- ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Rakesh Sarkar
- ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Suvrotoa Mitra
- ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | | | | | | | | | | | | | - Shanta Dutta
- ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Mamta Chawla-Sarkar
- ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India.
| |
Collapse
|
10
|
Epidemiology and genetic diversity of group A rotavirus in acute diarrhea patients in pre-vaccination era in Himachal Pradesh, India. Vaccine 2019; 37:5350-5356. [PMID: 31331769 DOI: 10.1016/j.vaccine.2019.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023]
Abstract
Acute gastroenteritis due to Group A rotaviruses remains the leading cause of mortality and morbidity in children in developing countries. India introduced its indigenous rotavirus vaccine Rotavac® in 2016 and Himachal Pradesh (HP) the first state to launch it. The present study aimed to evaluate rotavirus strain diversity associated with AGE prior to vaccine introduction in HP. A total of 331 fecal specimens collected from diarrheic children hospitalized at RPGMC Tanda, HP between July-2014 and June-2016 were screened for RVA by EIA. Rotavirus RNA was extracted by TRIZOL method and analyzed by RNA-PAGE. G/P typing was performed using semi-nested multiplex reverse transcriptase PCR. Rotavirus was detected in 45% (n = 149/331) of diarrheic children, with highest rate observed in the 6-11 months age group (47%). Vomiting was found more frequently associated with RV-infection. Among G-types, G12 was found most prevalent (33.1%) followed by G1 (28.4%), G9 (12.2%), G2 (9.5%), G3 (3.4%) and G10 (2.7%). G4 (0.7%) strains were rarely detected. Among P-types, P[6] was the most prevalent (40.5%) followed by P[8] (29.1%) and P[4] (14.2%). Of note, genotypes G3 and P[11] were detected for the first time in HP. Among G/P combinations, G12P[6] was most prevalent (30.4%) followed by G1P[8] (20.3%), G2P[4] (4.7%), G1P[6] (3.4%) and G3P[8] (2.7%). Interestingly, our study observed high percentage of unusual strains (14.2%) namely G9P[4], G2P[6], G2P[8], G12P[4] and G1P[11]. The regionally common strains G3P[6], G4P[6], G9P[6], G9P[8], G10P[6], G10P[8] and G12P[8] strains were very rarely detected. Of interest, RNA migration pattern of G1P[8] was DS-1 like and genomic heterogeneity was observed within G12P[4] strains with both long and short electropherotypes. Our study highlights rich genetic diversity with emergence of rare rotavirus strains circulating in HP and provides baseline data prior to Rotavac® introduction that will help to gauge the impact of the Rotavac® vaccine in HP.
Collapse
|
11
|
Tian Y, Chughtai AA, Gao Z, Yan H, Chen Y, Liu B, Huo D, Jia L, Wang Q, MacIntyre CR. Prevalence and genotypes of group A rotavirus among outpatient children under five years old with diarrhea in Beijing, China, 2011-2016. BMC Infect Dis 2018; 18:497. [PMID: 30285635 PMCID: PMC6168998 DOI: 10.1186/s12879-018-3411-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rotavirus is a leading cause of severe diarrheal disease, and one of the common causes of death in children aged under five years old. The dominant epidemic strains may change in different years in the same area. In order to provide evidence for rotavirus epidemic control and inform vaccine development, we analyzed epidemiological patterns and genetic characteristics of rotavirus in Beijing during 2011-2016. METHODS Stool specimens of outpatient children under five years old were collected from three children's hospitals on a weekly basis. Group A rotavirus antigens were detected using enzyme-linked immunosorbent assay (ELISA) kit. The partial VP4 genes and VP7 genes of rotavirus were both amplified and sequenced. Genotyping and phylogenetic analyses were performed. Logistic regression and Chi-square tests were performed to determine differences across age groups, districts and years in rotavirus prevalence and genotype distribution. RESULTS A total of 3668 stool specimens from children with acute diarrhea identified through hospital-based surveillance were collected from 2011 to 2016 in Beijing. A total of 762 (20.8%) specimens tested positive for rotavirus. The rotavirus-positive rate was highest among the 1-2 years old age group (29.0%, 310/1070). November, December and January were the highest rotavirus-positive rate months each year. G9 was the most common G genotype (64.4%, 461/716), and P [8] was the most common P genotype (87.0%, 623/716) among the 716 rotavirus-positive specimens. G9P [8], G3P [8] and G2P [4] were the most common strains. The rotavirus-positive rates of samples in 2012 and 2013 were higher than that in 2011, and the dominant genotype changed from G3P [8] to G9P [8] in 2012 and 2013. VP7 gene sequences of G9 strains in this study clustered into two main lineages. Most of the G9 strains exhibited the highest nucleotide similarity (99.1%~ 100.0%) to the strain found in Japan (MI1128). VP4 gene sequences of P [8] strains were almost P[8]b. CONCLUSIONS Rotavirus accounted for more than one fifth of childhood diarrhea in Beijing during the study period. Targeted measures such as immunization with effective rotavirus vaccines should be carried out to reduce the morbidity and mortality due to rotavirus.
Collapse
Affiliation(s)
- Yi Tian
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Abrar Ahmad Chughtai
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Hanqiu Yan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yanwei Chen
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Baiwei Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Da Huo
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Chandini Raina MacIntyre
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
- College of Public Service and Community Solutions, and College of Health Solutions, Arizona State University, Phoenix, USA
| |
Collapse
|