1
|
Shidan Z, Song L, Yumin Z, Rong C, Siteng W, Meirong L, Guangjin L. First report of Streptococcus agalactiae isolated from a healthy captive sichuan golden snub-nosed monkey (Rhinopithecus roxellana) in China. Microb Pathog 2024; 195:106907. [PMID: 39218375 DOI: 10.1016/j.micpath.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Streptococcus agalactiae (S. agalactiae) is an opportunistic pathogen, and to date, studies have mainly focused on S. agalactiae strains isolated from humans, dairy cows, and fish. We reported one S. agalactiae strain, named CFFB, which was isolated from a healthy Sichuan golden snub-nosed monkey. Classical bacteriological approaches, as well as, next-generation sequencing, comparative genomics, and mice challenge test were used to characterize this strain. CFFB was identified as serotype III, ST19 combination which is a common type found in human strains. Phylogenetic analysis showed that the genome of CFFB was closely related to human clinical isolates, rather far away from animal strains. In total, CFFB contained fewer virulence-associated genes and antibiotic resistance genes than human isolates that were close to CFFB in evolutionary relationships. In the mice challenge test, CFFB had a relative weak virulence that just caused death in 33 % of ICR mice at a dose of 108 CFU by intraperitoneal injection, and CFFB was reisolated from the cardiac blood of the dead mice. Meanwhile, two intact prophages (prophage 1 and 2) were identified in the CFFB genome and shared high similarities with phage Javan52 and Javan29 which from human S. agalactiae isolate Gottschalk 1002A and RBH03, respectively. Moreover, the type II-A CRISPR-Cas system was detected in the CFFB genome, and the spacers from CFFB were the same to the streptococci isolates from human. These results suggest that CFFB isolated from healthy Sichuan golden snub-nosed monkeys may have its origin in human S. agalactiae. Our results suggested some genomic similarities between the S. agalactiae colonized in Sichuan golden snub-nosed monkey and those in infected humans.
Collapse
Affiliation(s)
- Zhang Shidan
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, 572000, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Song
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhang Yumin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 201100, China
| | - Chen Rong
- Nanjing Hongshan Forest Zoo, Nanjing, 210028, China
| | - Wang Siteng
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Meirong
- Nanjing Hongshan Forest Zoo, Nanjing, 210028, China.
| | - Liu Guangjin
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, 572000, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
3
|
Clustered Regularly Interspaced Short Palindromic Repeat Analysis of Clonal Complex 17 Serotype III Group B Streptococcus Strains Causing Neonatal Invasive Diseases. Int J Mol Sci 2021; 22:ijms222111626. [PMID: 34769055 PMCID: PMC8584069 DOI: 10.3390/ijms222111626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Group B Streptococcus (GBS) is an important pathogen of neonatal infections, and the clonal complex (CC)-17/serotype III GBS strain has emerged as the dominant strain. The clinical manifestations of CC17/III GBS sepsis may vary greatly but have not been well-investigated. A total of 103 CC17/III GBS isolates that caused neonatal invasive diseases were studied using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) loci and restriction fragment length polymorphism (RFLP) analyses. All spacers of CRISPR loci were sequenced and analyzed with the clinical presentations. After CRISPR-RFLP analyses, a total of 11 different patterns were observed among the 103 CRISPR-positive GBS isolates. GBS isolates with the same RFLP patterns were found to have highly comparable spacer contents. Comparative sequence analysis of the CRISPR1 spacer content revealed that it is highly diverse and consistent with the dynamics of this system. A total of 29 of 43 (67.4%) spacers displayed homology to reported phage and plasmid DNA sequences. In addition, all CC17/III GBS isolates could be categorized into three subgroups based on the CRISPR-RFLP patterns and eBURST analysis. The CC17/III GBS isolates with a specific CRISPR-RFLP pattern were more significantly associated with occurrences of severe sepsis (57.1% vs. 29.3%, p = 0.012) and meningitis (50.0% vs. 20.8%, p = 0.009) than GBS isolates with RFLP lengths between 1000 and 1300 bp. Whole-genome sequencing was also performed to verify the differences between CC17/III GBS isolates with different CRISPR-RFLP patterns. We concluded that the CRISPR-RFLP analysis is potentially applicable to categorizing CC17/III GBS isolates, and a specific CRISPR-RFLP pattern could be used as a new biomarker to predict meningitis and illness severity after further verification.
Collapse
|
4
|
Baeringsdottir B, Erlendsdottir H, Bjornsdottir ES, Martins ER, Ramirez M, Haraldsson A, Thorkelsson T. Group B streptococcal infections in infants in Iceland: clinical and microbiological factors. J Med Microbiol 2021; 70:001426. [PMID: 34554080 PMCID: PMC8697508 DOI: 10.1099/jmm.0.001426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/19/2021] [Indexed: 02/04/2023] Open
Abstract
Introduction. Group B streptococcus (GBS) is a leading cause of invasive neonatal infections. These have been divided into early-onset disease (EOD; <7 days) and late-onset disease (LOD; 7-89 days), with different GBS clonal complexes (CCs) associated with different disease presentations.Hypothesis. Different GBS CCs are associated with timing of infection (EOD or LOD) and clinical presentation (sepsis, meningitis or pneumonia).Aim. To study infant GBS infections in Iceland from 1975 to 2019. Are specific GBS CCs related to disease presentation? Is CC17 overrepresented in infant GBS infections in Iceland?Methodology. All culture-confirmed invasive GBS infections in infants (<90 days) in Iceland from 1975 to 2019 were included. Clinical information was gathered from medical records.Results. A total of 127 invasive GBS infections in infants were diagnosed, but 105 infants were included in the study. Of these, 56 had EOD and 49 had LOD. The incidence of GBS infections declined from 2000 onwards but increased again at the end of the study period. Furthermore, there was a significant increase in LOD over the study period (P=0.0001). The most common presenting symptoms were respiratory difficulties and fever and the most common presentation was sepsis alone. Approximately one-third of the cases were caused by GBS CC17 of serotype III with surface protein RIB and pili PI-1+PI-2b or PI-2b. CC17 was significantly associated with LOD (P<0.001).Conclusion. CC17 is a major cause of GBS infection in infants in Iceland. This clone is associated with LOD, which has been increasing in incidence. Because intrapartum antibiotic prophylaxis only prevents EOD, it is important to continue the development of a GBS vaccine in order to prevent LOD infections.
Collapse
Affiliation(s)
| | - Helga Erlendsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Elisabete R. Martins
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mário Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- The Children’s Hospital, Landspitali University Hospital, Reykjavik, Iceland
| | - Thordur Thorkelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- The Children’s Hospital, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
5
|
Motallebirad T, Fazeli H, Ghahiri A, Shokri D, Jalalifar S, Moghim S, Esfahani BN. Prevalence, population structure, distribution of serotypes, pilus islands and resistance genes among erythromycin-resistant colonizing and invasive Streptococcus agalactiae isolates recovered from pregnant and non-pregnant women in Isfahan, Iran. BMC Microbiol 2021; 21:139. [PMID: 33947330 PMCID: PMC8096152 DOI: 10.1186/s12866-021-02186-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 01/31/2023] Open
Abstract
Background The information on antibiotic resistance and molecular features of Group B Streptococcus (GBS) are essential for epidemiological purposes as well as vaccine development. Therefore, we aimed to assess the antimicrobial resistance profiles and molecular characteristics of GBS isolates in Isfahan, Iran. A total number of 72 colonizing and invasive GBS were collected from pregnant and non-pregnant women. The GBS isolates were analyzed for resistance profiles, capsular genotyping, and detection of PI-1, PI-2a, PI-2b, hvgA, ermB, ermTR, lnuB and, mefA genes. Besides, erythromycin-resistant strains were subjected to multilocus sequence typing (MLST). Results The prevalence of colonizing and invasive GBS were 11 and 0.05%, respectively. The frequency of capsular serotypes was as follows: III (26.3%), Ia (20.83%), Ib and V (each 15.2%), IV (9.7%), II (8.3%), VII (2.7%), and VI (1.3%). Overall frequencies of PIs were as follows: PI-1, 37.5%, PI-1 + PI-2a, 30.5%, PI-1 + PI-2b, 29.1% and PI-2b, 2.7%. Two maternal colonizing GBS (2.6%) were hvgA positive and were belonged to ST-17/CPS-III/PI-1 + PI-2b lineage. Among 30(41.6%) erythromycin resistant GBS, 21 isolates (70%) harbored ermB gene, followed by ermTR (23.3%) and mefA (10%). One clindamycin-resistant isolate harbored the lnuB gene. MLST analysis revealed the following five clonal complexes (CCs) and nine STs: (CC-19/ST-335, ST-19, and ST-197), (CC-12/ST-43, ST-12), (CC-23/ST-163, ST-23), (CC-17/ST-17) and (CC-4/ST-16). Conclusion The study shows an alarmingly high prevalence of erythromycin-resistant GBS in Iran. In addition, we report dissemination of ST-335/CPS-III clone associated with tetracycline and erythromycin resistance in our region. The distribution of capsular and pilus genotypes varies between invasive and colonizing GBS that could be helpful for vaccine development.
Collapse
Affiliation(s)
- Tahereh Motallebirad
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Ataollah Ghahiri
- Department of Gynecology and Obstetrics, Al-Zahra university Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Dariush Shokri
- Infectious disease and tropical medicine research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran.
| |
Collapse
|
6
|
Ghazvini K, Keikha M. The impact of the scpB virulence factor of Streptococcus agalactiae and develop to early-onset disease in newborns. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Trends in molecular characteristics and antimicrobial resistance of group B streptococci: a multicenter study in Serbia, 2015-2020. Sci Rep 2021; 11:540. [PMID: 33436658 PMCID: PMC7804007 DOI: 10.1038/s41598-020-79354-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Group B Streptococcus (GBS) is a major cause of neonatal morbidity and mortality. Serbia has not fully implemented preventive measures against GBS neonatal diseases. Therefore, we aimed to assess the maternal GBS colonisation and invasive neonatal disease rate, to reveal the trends of antimicrobial resistance and serotype distribution of GBS from various patient groups. Randomly selected non-invasive (n = 991) and all invasive GBS (n = 80) collected throughout Serbia from 2015 to 2020 were tested for antimicrobial susceptibility, capsular typing, and hvgA detection. Overall, 877/5621 (15.6%) pregnant women were colonised with GBS. Invasive GBS infections incidence in infants (0.18/1000 live births) showed a decreasing trend (0.3 to 0.1/1000 live births). Type III was overrepresented in infants with invasive infections (n = 35, 58.3%), whereas type V predominated among colonised adults (n = 224, 25.5%) and those with noninvasive (n = 37, 32.5%) and invasive infections (n = 8, 40%). The hypervirulent clone III/ST17 was highly associated with invasive infections (n = 28, 35%), particularly late-onset disease (n = 9, 47.4%), showing an increase from 12.3 to 14.8%. The GBS resistance to erythromycin and clindamycin was 26.7% and 22.1%, respectively, with an upward trend. The emergence of the hypervirulent clone III/ST17 and the escalation in GBS resistance highlight an urgent need for continuous monitoring of GBS infections.
Collapse
|
8
|
Antibiotic Resistance and Molecular Epidemiological Characteristics of Streptococcus agalactiae Isolated from Pregnant Women in Guangzhou, South China. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2020; 2020:1368942. [PMID: 32399123 PMCID: PMC7210523 DOI: 10.1155/2020/1368942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/16/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus agalactiae colonization in pregnant women can cause postpartum intrauterine infections and life-threatening neonatal infections. To formulate strategies for the prevention and treatment of S. agalactiae infections, we performed a comprehensive analysis of antibiotic resistance and a molecular-based epidemiological investigation of S. agalactiae in this study. Seventy-two S. agalactiae strains, collected from pregnant women, were subjected to antibiotic susceptibility tests; then, the screened erythromycin and clindamycin nonsusceptible isolates were used for macrolides and clindamycin resistance genes detection, respectively. Detection of resistance genes, serotyping, and determination of virulence genes were performed by polymerase chain reaction. The clonal relationships among the colonized strains were evaluated by multilocus sequence typing. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) mass peak analysis was performed to discriminate the specific sequence types (STs). In our study, 69.4% and 47.2% of the strains were nonsusceptible to erythromycin and clindamycin, respectively; the multidrug resistance rate was 66.7%. All erythromycin nonsusceptible strains harbored resistance genes, whereas only 52.9% of the clindamycin nonsusceptible strains possessed the linB gene. Erythromycin resistance was mainly mediated by the ermB or mefA/E genes. Four serotypes were identified, and the most common serotype was serotype III (52.8%), followed by Ib (22.2%), Ia (18.0%), and II (4.2%). All the strains were divided into 18 STs that were assigned to nine clonal complexes. Most of the major STs were distributed into specific serotypes, including ST19/serotype III, ST17/serotype III, ST485/serotype Ia, ST862/serotype III, and ST651/serotype III. Analysis of virulence genes yielded seven clusters, of which bca-cfb-scpB-lmb (61.6%) was the predominant virulence gene cluster. Among all ST strains distributed in this region, only the ST17 strains had a mass peak at 7620 Da. The outcomes of this study are beneficial for the epidemiological comparison of colonized S. agalactiae in different regions and may be helpful for developing the strategies for the prevention of S. agalactiae infection in Guangzhou. Furthermore, our results show that MALDI-TOF MS can be used for the rapid identification of the ST17 strains.
Collapse
|
9
|
Epidemiology of group B streptococcal infection in pregnant women and diseased infants in mainland China. Pediatr Neonatol 2019; 60:487-495. [PMID: 31445795 DOI: 10.1016/j.pedneo.2019.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/13/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal sepsis and an important cause of maternal disease in many countries; however, no accurate population-based epidemiological data on GBS is yet available in mainland China. In this systematic literature review, we obtained published data regarding the maternal GBS colonization rate, incidence of invasive GBS disease in infants, clinical screening, and the associated GBS typing and clinical outcomes in China. The maternal GBS colonization rate in mainland China ranged from 3.7 to 14.52%, and the incidence of invasive GBS disease in infants was 0.55-1.79 per 1000 live births, with a case fatality risk ranging from 6.45 to 7.1%. Serotype III was the dominant serotype that was observed in GBS isolates. GBS detection and identification has become more commonplace, due to the availability of polymerase chain reaction and DNA microarray technologies. Immunizing pregnant women against GBS is an emerging approach through which newborns are protected from GBS. The available data suggest that five GBS serotypes (Ia, Ib, II, III, and V) account for the majority of the cases of GBS disease in mainland China. Furthermore, conjugate vaccines comprising some or all of these serotypes are of potential value in the prevention of GBS infection.
Collapse
|
10
|
Vielot NA, Toval-Ruíz CE, Weber RP, Becker-Dreps S, Alemán Rivera TDJ. Rectovaginal group B streptococcus colonization among pregnant women in Nicaragua: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2019; 34:2418-2426. [PMID: 31510821 DOI: 10.1080/14767058.2019.1667324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Maternal colonization with group B Streptococcus (GBS) is a predictor of neonatal sepsis. In Nicaragua, neonatal sepsis is a major cause of hospitalization, but it can be prevented with intrapartum antibiotic prophylaxis. We undertook this study to estimate the pooled prevalence of rectovaginal GBS colonization among pregnant women 35-40-week gestation in Nicaragua, and sensitivity of GBS isolates to various antibiotics. METHODS We systematically searched electronic databases of peer-reviewed and unpublished literature using prespecified search terms. We included English- and Spanish-language studies of rectovaginal GBS colonization and/or antibiotic sensitivity of GBS isolates that followed internationally-recognized diagnostic standards, from various sites and years. Two reviewers independently abstracted data and assessed risk of study bias. We then meta-analyzed the pooled prevalence of rectovaginal GBS colonization and antibiotic sensitivity of GBS isolates. We performed subgroup analyses by geographic location, urbanicity, and study risk of bias. MAIN RESULTS Prevalence of rectovaginal GBS colonization from 13 samples in 11 studies was 0.14 (95% CI: 0.09, 0.21). Effect size heterogeneity was identified between coastal (0.12 [95% CI: 0.07, 0.19]) and central study sites (0.23 [95% CI: 0.18, 0.28]), and between predominantly rural (0.06 [95% CI: 0.02, 0.10]) and urban (0.28 [95% CI: 0.19, 0.37]) samples of pregnant women. GBS sensitivity to penicillin, the first-line antibiotic for intrapartum prophylaxis, was 0.89 (95% CI: 0.71, 1.00) based on seven studies. CONCLUSIONS Maternal GBS colonization was substantial in some study sites. Most GBS isolates are sensitive to recommended antibiotics, and intrapartum antibiotic prophylaxis may effectively prevent neonatal sepsis in Nicaragua.
Collapse
Affiliation(s)
- Nadja A Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian E Toval-Ruíz
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua, León, Nicaragua
| | - Rachel Palmieri Weber
- Cecil G Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teresa de Jesús Alemán Rivera
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua, León, Nicaragua.,Demography and Health Research Center (CIDS), National Autonomous University of Nicaragua, León, Nicaragua
| |
Collapse
|
11
|
Emerging serotype III sequence type 17 group B streptococcus invasive infection in infants: the clinical characteristics and impacts on outcomes. BMC Infect Dis 2019; 19:538. [PMID: 31216993 PMCID: PMC6585028 DOI: 10.1186/s12879-019-4177-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is an important pathogen that causes high mortality and morbidity in young infants. However, data on clinical manifestations between different GBS serotypes and correlation with molecular epidemiology are largely incomplete. The aim of this study was to determine the serotype distribution, antimicrobial resistance, clinical features and molecular characteristics of invasive GBS isolates recovered from Taiwanese infants. METHODS From 2003 to 2017, 182 non-duplicate GBS isolates that caused invasive disease in infants less than one year of age underwent serotyping, multilocus sequence typing (MLST) and antibiotic susceptibility testing. The clinical features of these infants with GBS disease were also reviewed. RESULTS Of the 182 patients with invasive GBS disease, 41 (22.5%) were early-onset disease, 121 (66.5%) were late-onset disease and 20 (11.0%) were late late-onset disease (> 90 days of age). All these patients were treated with effective antibiotics on time. Among them, 51 (28.0%) had meningitis, 29 (16.0%) had neurological complications, 12 (6.6%) died during hospitalization, and 15 (8.8%) out of 170 patients who survived had long-term neurological sequelae at discharge. Serotype III GBS strains accounted for 64.8%, followed by serotype Ia (18.1%) and Ib (8.2%). MLST analysis revealed 11 different sequence types among the 182 isolates and ST-17 was the most dominant sequence type (56.6%). The correlation between serotype III and ST17 was evident, as ST17 accounted for 87.3% of all serotype III isolates. There was an obvious increasing trend of type III/ST-17 GBS that caused invasive disease in infants. All isolates were susceptible to penicillin, cefotaxime, and vancomycin, while 68.1 and 65.9% were resistant to erythromycin and clindamycin, respectively. CONCLUSIONS Despite timely and appropriate antibiotic treatment, a significant proportion of invasive GBS disease still inevitably causes adverse outcomes. Further study to explore preventive strategies and development of serotype-based vaccines will be necessary in the future.
Collapse
|
12
|
Tsai MH, Hsu JF, Lai MY, Lin LC, Chu SM, Huang HR, Chiang MC, Fu RH, Lu JJ. Molecular Characteristics and Antimicrobial Resistance of Group B Streptococcus Strains Causing Invasive Disease in Neonates and Adults. Front Microbiol 2019; 10:264. [PMID: 30833941 PMCID: PMC6387999 DOI: 10.3389/fmicb.2019.00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/01/2019] [Indexed: 11/17/2022] Open
Abstract
We aimed to analyze the molecular characteristics, clonality and antimicrobial resistance profiles of group B streptococcus (GBS) isolates collected in Taiwan from invasive diseases and carriage. Multilocus sequence typing (MLST) was used to assess the genetic diversity of 225 GBS strains from neonates and adults with invasive GBS diseases. 100 GBS strains collected from colonized pregnant women during the same period were compared, and all strains were characterized for one of nine capsule genotypes. We also determined the susceptibilities of all GBS isolates to various antimicrobial agents. The most frequently identified serotypes that caused invasive disease in neonates were III (60.6%) and Ia (17.3%), whereas type VI (32.7%), Ib (19.4%), and V (19.4%) were the most common to cause invasive disease in adults. Serotype VI was the leading type that colonized pregnant women (35.0%). Twenty-six sequence types (STs) were identified, and 90.5% of GBS strains were represented by 6 STs. ST-17 and ST-1 were more prevalent in invasive diseases in neonates and adults, respectively. The majority of serotype III and VI isolates belonged to clonal complex (CC)-17 and CC-1, respectively. ST-17 strains were more likely to cause meningitis and late-onset disease than other strains. In addition, ST-12 and ST-17 GBS strains showed the highest rate of resistance to erythromycin and clindamycin (range: 75.8–100%). In conclusion, CC-17/type III and CC-1/type VI are the most important invasive pathogens in infants and non-pregnant adults in Taiwan, respectively. GBS genotypes vary between different age groups and geographical areas and should be considered during GBS vaccine development.
Collapse
Affiliation(s)
- Ming-Horng Tsai
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Fu Hsu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Yin Lai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Ming Chu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsuan-Rong Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Chou Chiang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ren-Huei Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jang-Jih Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|