1
|
Pitchers KG, Boakye OD, Campeotto I, Daly JM. The Potential of Plant-Produced Virus-like Particle Vaccines for African Horse Sickness and Other Equine Orbiviruses. Pathogens 2024; 13:458. [PMID: 38921755 PMCID: PMC11206403 DOI: 10.3390/pathogens13060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
African horse sickness is a devastating viral disease of equids. It is transmitted by biting midges of the genus Culicoides with mortalities reaching over 90% in naïve horses. It is endemic to sub-Saharan Africa and is seasonally endemic in many parts of southern Africa. However, outbreaks in Europe and Asia have occurred that caused significant economic issues. There are attenuated vaccines available for control of the virus but concerns regarding the safety and efficacy means that alternatives are sought. One promising alternative is the use of virus-like particles in vaccine preparations, which have the potential to be safer and more efficacious as vaccines against African horse sickness. These particles are best made in a complex, eukaryotic system, but due to technical challenges, this may cause significant economic strain on the developing countries most affected by the disease. Therefore, this review also summarises the success so far, and potential, of recombinant protein expression in plants to reduce the economic strain of production.
Collapse
Affiliation(s)
- Kieran G. Pitchers
- One Virology, School of Veterinary Medicine and Science, Sutton Bonington, University of Nottingham, Nottinghamshire LE12 5RD, UK;
| | - Oliver D. Boakye
- School of Biosciences, Sutton Bonington, University of Nottingham, Nottinghamshire LE12 5RD, UK; (O.D.B.); (I.C.)
| | - Ivan Campeotto
- School of Biosciences, Sutton Bonington, University of Nottingham, Nottinghamshire LE12 5RD, UK; (O.D.B.); (I.C.)
| | - Janet M. Daly
- One Virology, School of Veterinary Medicine and Science, Sutton Bonington, University of Nottingham, Nottinghamshire LE12 5RD, UK;
| |
Collapse
|
2
|
Schliewert EC, Hooijberg EH, Steyn JS, Potgieter C, Fosgate GT, Goddard A. Experimental infection with African Horse Sickness Virus in horses induces only mild temporal hematologic changes and acute phase reactant response. Am J Vet Res 2022; 83:1-11. [PMID: 36215210 DOI: 10.2460/ajvr.22.08.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE African Horse Sickness (AHS) is a vector-borne disease endemic to sub-Saharan Africa caused by African Horse Sickness Virus (AHVS). Infections in naïve horses have high morbidity and mortality rates. AHS pathogenesis is not well understood; neither the hematologic changes nor acute phase response occurring during infection has been fully evaluated. The study's objective was to characterize the hematologic changes and acute phase response during experimental infection with AHSV. ANIMALS 4 horses negative for AHSV group-specific antibodies. PROCEDURES In this prospective, longitudinal study conducted between November 23 and December 2, 2020, horses were experimentally infected with AHSV, and blood samples were obtained before inoculation and then every 12 hours until euthanasia. Hematologic changes and changes for serum amyloid A (SAA) and iron concentration were evaluated over time using a general linear model including natural logarithm of sampling time. RESULTS All horses were humanely euthanized due to severe clinical signs typical of AHS. Median Hct increased significantly, and the median WBC count, monocyte count, eosinophil count, and myeloperoxidase index changed significantly in all horses over time. Horses developed marked thrombocytopenia (median, 48 X 103 cells/µL; range, 21 X 103 to 58 X 103 cells/µL) while markers of platelet activation also changed significantly. Median SAA increased and serum iron concentration decreased significantly over time. CLINICAL RELEVANCE Results indicated severe thrombocytopenia with platelet activation occurs during infection with AHSV. Changes in acute phase reactants SAA and iron, while significant, were unexpectedly mild and might not be useful clinical markers.
Collapse
Affiliation(s)
- Eva-Christina Schliewert
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Medicine, University of Pretoria, Pretoria, South Africa
| | - Emma H Hooijberg
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Medicine, University of Pretoria, Pretoria, South Africa
| | | | - Christiaan Potgieter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Medicine, University of Pretoria, Pretoria, South Africa
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Bekker S, Potgieter CA, van Staden V, Theron J. Investigating the Role of African Horse Sickness Virus VP7 Protein Crystalline Particles on Virus Replication and Release. Viruses 2022; 14:2193. [PMID: 36298748 PMCID: PMC9608501 DOI: 10.3390/v14102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
African horse sickness is a deadly and highly infectious disease of equids, caused by African horse sickness virus (AHSV). AHSV is one of the most economically important members of the Orbivirus genus. AHSV is transmitted by the biting midge, Culicoides, and therefore replicates in both insect and mammalian cell types. Structural protein VP7 is a highly conserved major core protein of orbiviruses. Unlike any other orbivirus VP7, AHSV VP7 is highly insoluble and forms flat hexagonal crystalline particles of unknown function in AHSV-infected cells and when expressed in mammalian or insect cells. To examine the role of AHSV VP7 in virus replication, a plasmid-based reverse genetics system was used to generate a recombinant AHSV that does not form crystalline particles. We characterised the role of VP7 crystalline particle formation in AHSV replication in vitro and found that soluble VP7 interacted with viral proteins VP2 and NS2 similarly to wild-type VP7 during infection. Interestingly, soluble VP7 was found to form uncharacteristic tubule-like structures in infected cells which were confirmed to be as a result of unique VP7-NS1 colocalisation. Furthermore, it was found that VP7 crystalline particles play a role in AHSV release and yield. This work provides insight into the role of VP7 aggregation in AHSV cellular pathogenesis and contributes toward the understanding of the possible effects of viral protein aggregation in other human virus-borne diseases.
Collapse
Affiliation(s)
- Shani Bekker
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| | - Christiaan A. Potgieter
- Deltamune (Pty) Ltd., 3 Bauhinia Street, Unit 34 Oxford Office Park, Highveld Techno Park, Centurion 0169, South Africa
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa
| |
Collapse
|
4
|
Bekker S, Huismans H, van Staden V. Generation of a Soluble African Horse Sickness Virus VP7 Protein Capable of Forming Core-like Particles. Viruses 2022; 14:1624. [PMID: 35893692 PMCID: PMC9331310 DOI: 10.3390/v14081624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
A unique characteristic of the African horse sickness virus (AHSV) major core protein VP7 is that it is highly insoluble, and spontaneously forms crystalline particles in AHSV-infected cells and when expressed in vitro. The aggregation of AHSV VP7 into these crystals presents many problems in AHSV vaccine development, and it is unclear whether VP7 aggregation affects AHSV assembly or contributes to AHSV pathogenesis. Here, we set out to abolish VP7 self-assembly by targeting candidate amino acid regions on the surface of the VP7 trimer via site-directed mutagenesis. It was found that the substitution of seven amino acids resulted in the complete disruption of AHSV VP7 self-assembly, which abolished the formation of VP7 crystalline particles and converted VP7 to a fully soluble protein still capable of interacting with VP3 to form core-like particles. This work provides further insight into the formation of AHSV VP7 crystalline particles and the successful development of AHSV vaccines. It also paves the way for future research by drawing comparisons with similar viral phenomena observed in human virology.
Collapse
Affiliation(s)
| | | | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa; (S.B.); (H.H.)
| |
Collapse
|
5
|
O'Kennedy MM, Coetzee P, Koekemoer O, du Plessis L, Lourens CW, Kwezi L, du Preez I, Mamputha S, Mokoena NB, Rutkowska DA, Verschoor JA, Lemmer Y. Protective immunity of plant-produced African horse sickness virus serotype 5 chimaeric virus-like particles (VLPs) and viral protein 2 (VP2) vaccines in IFNAR -/- mice. Vaccine 2022; 40:5160-5169. [PMID: 35902279 DOI: 10.1016/j.vaccine.2022.06.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Next generation vaccines have the capability to contribute to and revolutionise the veterinary vaccine industry. African horse sickness (AHS) is caused by an arbovirus infection and is characterised by respiratory distress and/or cardiovascular failure and is lethal to horses. Mandatory annual vaccination in endemic areas curtails disease occurrence and severity. However, development of a next generation AHSV vaccine, which is both safe and efficacious, has been an objective globally for years. In this study, both AHSV serotype 5 chimaeric virus-like particles (VLPs) and soluble viral protein 2 (VP2) were successfully produced in Nicotiana benthamiana ΔXT/FT plants, partially purified and validated by gel electrophoresis, transmission electron microscopy and liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing before vaccine formulation. IFNAR-/- mice vaccinated with the adjuvanted VLPs or VP2 antigens in a 10 µg prime-boost regime resulted in high titres of antibodies confirmed by both serum neutralising tests (SNTs) and enzyme-linked immunosorbent assays (ELISA). Although previous studies reported high titres of antibodies in horses when vaccinated with plant-produced AHS homogenous VLPs, this is the first study demonstrating the protective efficacy of both AHSV serotype 5 chimaeric VLPs and soluble AHSV-5 VP2 as vaccine candidates. Complementary to this, coating ELISA plates with the soluble VP2 has the potential to underpin serotype-specific serological assays.
Collapse
Affiliation(s)
- Martha M O'Kennedy
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa.
| | - Peter Coetzee
- Onderstepoort Biological Products SOC Ltd, Onderstepoort, South Africa
| | - Otto Koekemoer
- Onderstepoort Biological Products SOC Ltd, Onderstepoort, South Africa
| | - Lissinda du Plessis
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2520, South Africa
| | - Carina W Lourens
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort South Africa
| | - Lusisizwe Kwezi
- Council for Scientific and Industrial Research (CSIR) Chemical Cluster, Pretoria, South Africa
| | - Ilse du Preez
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Sipho Mamputha
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | | | - Daria A Rutkowska
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Jan A Verschoor
- Department of Biochemistry, University of Pretoria, South Africa
| | - Yolandy Lemmer
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| |
Collapse
|
6
|
Durán-Ferrer M, Villalba R, Fernández-Pacheco P, Tena-Tomás C, Jiménez-Clavero MÁ, Bouzada JA, Ruano MJ, Fernández-Pinero J, Arias M, Castillo-Olivares J, Agüero M. Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses. Viruses 2022; 14:v14071545. [PMID: 35891525 PMCID: PMC9316263 DOI: 10.3390/v14071545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
This study described the clinical, virological, and serological responses of immunologically naïve and vaccinated horses to African horse sickness virus (AHSV) serotype 9. Naïve horses developed a clinical picture resembling the cardiac form of African horse sickness. This was characterized by inappetence, reduced activity, and hyperthermia leading to lethargy and immobility–recumbency by days 9–10 post-infection, an end-point criteria for euthanasia. After challenge, unvaccinated horses were viremic from days 3 or 4 post-infection till euthanasia, as detected by serogroup-specific (GS) real time RT-PCR (rRT-PCR) and virus isolation. Virus isolation, antigen ELISA, and GS-rRT-PCR also demonstrated high sensitivity in the post-mortem detection of the pathogen. After infection, serogroup-specific VP7 antibodies were undetectable by blocking ELISA (b-ELISA) in 2 out of 3 unvaccinated horses during the course of the disease (9–10 dpi). Vaccinated horses did not show significant side effects post-vaccination and were largely asymptomatic after the AHSV-9 challenge. VP7-specific antibodies could not be detected by the b-ELISA until day 21 and day 30 post-inoculation, respectively. Virus neutralizing antibody titres were low or even undetectable for specific serotypes in the vaccinated horses. Virus isolation and GS-rRT-PCR detected the presence of AHSV vaccine strains genomes and infectious vaccine virus after vaccination and challenge. This study established an experimental infection model of AHSV-9 in horses and characterized the main clinical, virological, and immunological parameters in both immunologically naïve and vaccinated horses using standardized bio-assays.
Collapse
Affiliation(s)
- Manuel Durán-Ferrer
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | | | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - José-Antonio Bouzada
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - María-José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | - Marisa Arias
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
- Correspondence:
| |
Collapse
|
7
|
Fairbanks EL, Brennan ML, Mertens PPC, Tildesley MJ, Daly JM. Re-parameterisation of a mathematical model of African horse sickness virus using data from a systematic literature search. Transbound Emerg Dis 2021; 69:e671-e681. [PMID: 34921513 PMCID: PMC9543668 DOI: 10.1111/tbed.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
African horse sickness (AHS) is a vector‐borne disease transmitted by Culicoides spp., endemic to sub‐Saharan Africa. There have been many examples of historic and recent outbreaks in the Middle East, Asia and Europe. However, not much is known about infection dynamics and outbreak potential in these naive populations. In order to better inform a previously published ordinary differential equation model, we performed a systematic literature search to identify studies documenting experimental infection of naive (control) equids in vaccination trials. Data on the time until the onset of viraemia, clinical signs and death after experimental infection of a naive equid and duration of viraemia were extracted. The time to viraemia was 4.6 days and the time to clinical signs was 4.9 days, longer than the previously estimated latent period of 3.7 days. The infectious periods of animals that died/were euthanized or survived were found to be 3.9 and 8.7 days, whereas previous estimations were 4.4 and 6 days, respectively. The case fatality was also found to be higher than previous estimations. The updated parameter values (along with other more recently published estimates from literature) resulted in an increase in the number of host deaths, decrease in the duration of the outbreak and greater prevalence in vectors.
Collapse
Affiliation(s)
- Emma L Fairbanks
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Marnie L Brennan
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Peter P C Mertens
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Michael J Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
8
|
The Bluetongue Disabled Infectious Single Animal (DISA) Vaccine Platform Based on Deletion NS3/NS3a Protein Is Safe and Protective in Cattle and Enables DIVA. Viruses 2021; 13:v13050857. [PMID: 34067226 PMCID: PMC8151055 DOI: 10.3390/v13050857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), an OIE-notifiable disease of ruminants. At least 29 BTV serotypes are described as determined by the outer shell proteins VP2 and VP5. Vaccination is the most effective control measure. Inactivated and live-attenuated vaccines (LAVs) are currently available. These vaccines have their specific pros and cons, and both are not DIVA vaccines. The BT Disabled Infectious Single Animal (DISA) vaccine platform is based on LAV without nonessential NS3/NS3a expression and is applicable for many serotypes by the exchange of outer shell proteins. The DISA vaccine is effective and completely safe. Further, transmission of the DISA vaccine by midges is blocked (DISA principle). Finally, the DISA vaccine enables DIVA because of a lack of antibodies against the immunogenic NS3/NS3a protein (DIVA principle). The deletion of 72 amino acids (72aa) in NS3/NS3a is sufficient to block virus propagation in midges. Here, we show that a prototype DISA vaccine based on LAV with the 72aa deletion enables DIVA, is completely safe and induces a long-lasting serotype-specific protection in cattle. In conclusion, the in-frame deletion of 72-aa codons in the BT DISA/DIVA vaccine platform is sufficient to fulfil all the criteria for modern veterinary vaccines.
Collapse
|
9
|
Wall GV, Wright IM, Barnardo C, Erasmus BJ, van Staden V, Potgieter AC. African horse sickness virus NS4 protein is an important virulence factor and interferes with JAK-STAT signaling during viral infection. Virus Res 2021; 298:198407. [PMID: 33812899 DOI: 10.1016/j.virusres.2021.198407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022]
Abstract
African horse sickness virus (AHSV) non-structural protein NS4 is a nucleocytoplasmic protein that is expressed in the heart, lung, and spleen of infected horses, binds dsDNA, and colocalizes with promyelocytic leukemia nuclear bodies (PML-NBs). The aim of this study was to investigate the role of AHSV NS4 in viral replication, virulence and the host immune response. Using a reverse genetics-derived virulent strain of AHSV-5 and NS4 deletion mutants, we showed that knockdown of NS4 expression has no impact in cell culture, but results in virus attenuation in infected horses. RNA sequencing (RNA-seq) was used to investigate the transcriptional response in these horses, to see how the lack of NS4 mediates the transition of the virus from virulent to attenuated. The presence of NS4 was shown to result in a 24 hour (h) delay in the transcriptional activation of several immune system processes compared to when the protein was absent. Included in these processes were the RIG-I-like, Toll-like receptor, and JAK-STAT signaling pathways, which are key pathways involved in innate immunity and the antiviral response. Thus, it was shown that AHSV NS4 suppresses the host innate immune transcriptional response in the early stages of the infection cycle. We investigated whether AHSV NS4 affects the innate immune response by impacting the JAK-STAT signaling pathway specifically. Using confocal laser scanning microscopy (CLSM) we showed that AHSV NS4 disrupts JAK-STAT signaling by interfering with the phosphorylation and/or translocation of STAT1 and pSTAT1 into the nucleus. Overall, these results showed that AHSV NS4 is a key virulence factor in horses and allows AHSV to overcome host antiviral responses in order to promote viral replication and spread.
Collapse
Affiliation(s)
- Gayle V Wall
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Isabella M Wright
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Carin Barnardo
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Baltus J Erasmus
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa
| | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - A Christiaan Potgieter
- Deltamune (Pty) Ltd, Moraine House - The Braes, 193 Bryanston Drive, Bryanston, Gauteng, 2191, South Africa; Department of Biochemistry, Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
10
|
Raksakoon C, Potiwat R. Current Arboviral Threats and Their Potential Vectors in Thailand. Pathogens 2021; 10:pathogens10010080. [PMID: 33477699 PMCID: PMC7831943 DOI: 10.3390/pathogens10010080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/26/2023] Open
Abstract
Arthropod-borne viral diseases (arboviruses) are a public-health concern in many regions of the world, including Thailand. This review describes the potential vectors and important human and/or veterinary arboviruses in Thailand. The medically important arboviruses affect humans, while veterinary arboviruses affect livestock and the economy. The main vectors described are mosquitoes, but other arthropods have been reported. Important mosquito-borne arboviruses are transmitted mainly by members of the genus Aedes (e.g., dengue, chikungunya, and Zika virus) and Culex (e.g., Japanese encephalitis, Tembusu and West Nile virus). While mosquitoes are important vectors, arboviruses are transmitted via other vectors, such as sand flies, ticks, cimicids (Family Cimicidae) and Culicoides. Veterinary arboviruses are reported in this review, e.g., duck Tembusu virus (DTMUV), Kaeng Khoi virus (KKV), and African horse sickness virus (AHSV). During arbovirus outbreaks, to target control interventions appropriately, it is critical to identify the vector(s) involved and their ecology. Knowledge of the prevalence of these viruses, and the potential for viral infections to co-circulate in mosquitoes, is also important for outbreak prediction.
Collapse
Affiliation(s)
- Chadchalerm Raksakoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Rutcharin Potiwat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
11
|
Castillo‐Olivares J. African horse sickness in Thailand: Challenges of controlling an outbreak by vaccination. Equine Vet J 2021; 53:9-14. [PMID: 33007121 PMCID: PMC7821295 DOI: 10.1111/evj.13353] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Javier Castillo‐Olivares
- Laboratory of Viral ZoonoticsDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
- School of Veterinary Medicine and ScienceUniversity of NottinghamLoughboroughLeicsUK
| |
Collapse
|
12
|
Calvo-Pinilla E, Marín-López A, Utrilla-Trigo S, Jiménez-Cabello L, Ortego J. Reverse genetics approaches: a novel strategy for African horse sickness virus vaccine design. Curr Opin Virol 2020; 44:49-56. [PMID: 32659516 PMCID: PMC7351391 DOI: 10.1016/j.coviro.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/26/2023]
Abstract
African horse sickness (AHS) is a devastating disease caused by African horse sickness virus (AHSV) and transmitted by arthropods between its equine hosts. AHSV is endemic in sub-Saharan Africa, where polyvalent live attenuated vaccine is in use even though it is associated with safety risks. This review article summarizes and compares new strategies to generate safe and effective AHSV vaccines based on protein, virus like particles, viral vectors and reverse genetics technology. Manipulating the AHSV genome to generate synthetic viruses by means of reverse genetic systems has led to the generation of potential safe vaccine candidates that are under investigation.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Luís Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
13
|
van Rijn PA, Maris-Veldhuis MA, Grobler M, Wright IM, Erasmus BJ, Maartens LH, Potgieter CA. Safety and efficacy of inactivated African horse sickness (AHS) vaccine formulated with different adjuvants. Vaccine 2020; 38:7108-7117. [PMID: 32921506 DOI: 10.1016/j.vaccine.2020.08.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae causing African Horse Sickness (AHS) in equids with a mortality of about 95% in naïve horses. AHS causes serious losses in developing countries where horses play a central role in draft power and transportation. There are nine AHSV serotypes inducing no or low cross-neutralizing antibodies. AHSV is spread by biting Culicoides midges. AHS is endemic in sub-Saharan Africa, and a serious threat outside Africa, since Culicoides species in moderate climate conditions are spreading the closely related bluetongue virus. AHS outbreaks will be devastating for the equestrian industry in developed countries. Live-attenuated vaccines (LAVs) are licensed, marketed and in use in Africa. Their application is controversial with regard to safety issues. LAVs are not allowed in AHS-free countries. We here studied inactivated AHSV with different adjuvants in guinea pigs and horses. Subcutaneous and intramuscular vaccination were studied in horses. Local reactions were observed after prime and boost vaccination. In general, neutralizing antibodies (nAbs) titres were very low after prime vaccination, whereas boost vaccination resulted in high nAb titres for some adjuvants. Vaccinated horses were selected based on local reactions and nAb titres to study efficacy. Unfortunately, not all vaccinated horses survived virulent AHSV infection. Further, most survivors temporarily developed clinical signs and viremia. Further, the current prototype inactivated AHS vaccine is not suitable as emergency vaccine, because onset of protection is slow and requires boost vaccinations. On the other hand, inactivated AHS vaccine is completely safe with respect to virus spread, and incorporation of the DIVA principle based on NS3/NS3a serology and exploring a vaccine production platform for other serotypes is feasible. A superior adjuvant increasing the protective response without causing local reactions will be required to develop payable and acceptable inactivated AHS vaccines.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mieke A Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Miemie Grobler
- Department of Production Animal Studies, University of Pretoria, South Africa
| | - Isabel M Wright
- Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa
| | - Baltus J Erasmus
- Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa
| | - Louis H Maartens
- Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa
| | - Christiaan A Potgieter
- Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
van Gennip RGP, Drolet BS, Rozo Lopez P, Roost AJC, Boonstra J, van Rijn PA. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasit Vectors 2019; 12:470. [PMID: 31604476 PMCID: PMC6790033 DOI: 10.1186/s13071-019-3722-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transmission of vector-borne virus by insects is a complex mechanism consisting of many different processes; viremia in the host, uptake, infection and dissemination in the vector, and delivery of virus during blood-feeding leading to infection of the susceptible host. Bluetongue virus (BTV) is the prototype vector-borne orbivirus (family Reoviridae). BTV serotypes 1-24 (typical BTVs) are transmitted by competent biting Culicoides midges and replicate in mammalian (BSR) and midge (KC) cells. Previously, we showed that genome segment 10 (S10) encoding NS3/NS3a protein is required for virus propagation in midges. BTV serotypes 25-27 (atypical BTVs) do not replicate in KC cells. Several distinct BTV26 genome segments cause this so-called 'differential virus replication' in vitro. METHODS Virus strains were generated using reverse genetics and their growth was examined in vitro. The midge feeding model has been developed to study infection, replication and disseminations of virus in vivo. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV variants and propagation in the midge was examined using PCR testing. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS A 100 nl blood meal containing ±105.3 TCID50/ml of BTV11 which corresponds to ±20 TCID50 infected 50% of fully engorged midges, and is named one Midge Alimentary Infective Dose (MAID50). BTV11 with a small in-frame deletion in S10 infected blood-fed midge midguts but virus release from the midgut into the haemolymph was blocked. BTV11 with S1[VP1] of BTV26 could be adapted to virus growth in KC cells, and contained mutations subdivided into 'corrections' of the chimeric genome constellation and mutations associated with adaptation to KC cells. In particular one amino acid mutation in outer shell protein VP2 overcomes differential virus replication in vitro and in vivo. CONCLUSION Small changes in NS3/NS3a or in the outer shell protein VP2 strongly affect virus propagation in midges and thus vector competence. Therefore, spread of disease by competent Culicoides midges can strongly differ for very closely related viruses.
Collapse
Affiliation(s)
- René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA
| | - Paula Rozo Lopez
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA.,Kansas State University, Manhattan, KS, USA
| | - Ashley J C Roost
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
15
|
Dennis SJ, Meyers AE, Hitzeroth II, Rybicki EP. African Horse Sickness: A Review of Current Understanding and Vaccine Development. Viruses 2019; 11:E844. [PMID: 31514299 PMCID: PMC6783979 DOI: 10.3390/v11090844] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
African horse sickness is a devastating disease that causes great suffering and many fatalities amongst horses in sub-Saharan Africa. It is caused by nine different serotypes of the orbivirus African horse sickness virus (AHSV) and it is spread by Culicoid midges. The disease has significant economic consequences for the equine industry both in southern Africa and increasingly further afield as the geographic distribution of the midge vector broadens with global warming and climate change. Live attenuated vaccines (LAV) have been used with relative success for many decades but carry the risk of reversion to virulence and/or genetic re-assortment between outbreak and vaccine strains. Furthermore, the vaccines lack DIVA capacity, the ability to distinguish between vaccine-induced immunity and that induced by natural infection. These concerns have motivated interest in the development of new, more favourable recombinant vaccines that utilize viral vectors or are based on reverse genetics or virus-like particle technologies. This review summarizes the current understanding of AHSV structure and the viral replication cycle and also evaluates existing and potential vaccine strategies that may be applied to prevent or control the disease.
Collapse
Affiliation(s)
- Susan J Dennis
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
16
|
Ferreira-Venter L, Venter E, Theron J, van Staden V. Targeted mutational analysis to unravel the complexity of African horse sickness virus NS3 function in mammalian cells. Virology 2019; 531:149-161. [DOI: 10.1016/j.virol.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
17
|
Dennis SJ, O’Kennedy MM, Rutkowska D, Tsekoa T, Lourens CW, Hitzeroth II, Meyers AE, Rybicki EP. Safety and immunogenicity of plant-produced African horse sickness virus-like particles in horses. Vet Res 2018; 49:105. [PMID: 30309390 PMCID: PMC6389048 DOI: 10.1186/s13567-018-0600-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/28/2018] [Indexed: 11/10/2022] Open
Abstract
African horse sickness (AHS) is caused by multiple serotypes of the dsRNA AHSV and is a major scourge of domestic equids in Africa. While there are well established commercial live attenuated vaccines produced in South Africa, risks associated with these have encouraged attempts to develop new and safer recombinant vaccines. Previously, we reported on the immunogenicity of a plant-produced AHS serotype 5 virus-like particle (VLP) vaccine, which stimulated high titres of AHS serotype 5-specific neutralizing antibodies in guinea pigs. Here, we report a similar response to the vaccine in horses. This is the first report demonstrating the safety and immunogenicity of plant-produced AHS VLPs in horses.
Collapse
Affiliation(s)
- Susan J. Dennis
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| | - Martha M. O’Kennedy
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, 0001 South Africa
| | - Daria Rutkowska
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, 0001 South Africa
| | - Tsepo Tsekoa
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, 0001 South Africa
| | - Carina W. Lourens
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, Pretoria, 0110 South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| | - Ann E. Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
18
|
van Rijn PA, Maris-Veldhuis MA, Boonstra J, van Gennip RGP. Diagnostic DIVA tests accompanying the Disabled Infectious Single Animal (DISA) vaccine platform for African horse sickness. Vaccine 2018; 36:3584-3592. [PMID: 29759377 DOI: 10.1016/j.vaccine.2018.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
African Horse Sickness Virus (AHSV) (Orbivirus genus, Reoviridae family) causes high mortality in naïve domestic horses with enormous economic and socio-emotional impact. There are nine AHSV serotypes showing limited cross neutralization. AHSV is transmitted by competent species of Culicoides biting midges. AHS is a serious threat beyond the African continent as endemic Culicoides species in moderate climates transmit the closely related prototype bluetongue virus. There is a desperate need for safe and efficacious vaccines, while DIVA (Differentiating Infected from Vaccinated) vaccines would accelerate control of AHS. Previously, we have shown that highly virulent AHSV with an in-frame deletion of 77 amino acids (aa) in NS3/NS3a is completely safe, does not cause viremia and shows protective capacity. This deletion mutant is a promising DISA (Disabled Infectious Single Animal) vaccine platform, since exchange of serotype specific virus proteins has been shown for all nine serotypes. Here, we show that a prototype NS3 competitive ELISA is DIVA compliant to AHS DISA vaccine platforms. Epitope mapping of NS3/NS3a shows that more research is needed to evaluate this prototype serological DIVA assay regarding sensitivity and specificity, in particular for AHSVs expressing antigenically different NS3/NS3a proteins. Further, an experimental panAHSV PCR test targeting genome segment 10 is developed that detects reference AHSV strains, whereas AHS DISA vaccine platforms were not detected. This DIVA PCR test completely guarantees genetic DIVA based on in silico and in vitro validation, although test validation regarding diagnostic sensitivity and specificity has not been performed yet. In conclusion, the prototype NS3 cELISA and the PCR test described here enable serological and genetic DIVA accompanying AHS DISA vaccine platforms.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mieke A Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|