1
|
Duan Y, Tang X, Liu S, Cui W, Li M, Tang S, Yao W, Li W, Weng J, Zhao J, Wei Z. Structure-guided design and evaluation of CRM197-scaffolded vaccine targeting GnRH for animal immunocastration. Appl Microbiol Biotechnol 2024; 108:507. [PMID: 39520573 PMCID: PMC11550287 DOI: 10.1007/s00253-024-13348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Immunocastration is a humane alternative to surgical castration for controlling population and estrous behaviors in animals. Gonadotropin-releasing hormone (GnRH), the pivotal initiating hormone of the hormonal cascade in mammals, is the optimal target for immunocastration vaccine development. Cognate antigen-mediated cross-linking of B cell receptors (BCRs) is a strong activation signal for B cells and is facilitated by repetitive surface organizations of antigens. In this study, we describe the structure-guided design of highly immunogenic chimeric proteins with variant numbers of GnRH peptide insertion by epitope grafting. Linear B-cell epitopes of cross-reacting material 197 (CRM197) were replaced with multiple copies of GnRH peptide, and the inserts were displayed on the surface of the designs while maintaining the overall folding of CRM197. Among the seven designs, TCG13, which carries 13 copies of GnRH peptide, was the most immunogenic, and its immunocastration efficacy was evaluated in male mice. Vaccination with the BFA03-adjuvanted TCG13 induced potent humoral immunity and reduced the serum testosterone concentration in mice. It could significantly decrease sperm quality and severely impair gonadal function and fertility. These results demonstrate that CRM197 holds great value as a scaffold for epitope presentation in peptide-based vaccine development and supports TCG13 as a promising vaccine candidate for animal immunocastration. KEY POINTS: • Provide a feasible way to design chimeric immunogen targeting GnRH by epitope grafting. • CRM197 can accommodate the insertion of multiple copies of heterologous epitope peptides. • Administration with the most immunogenic design led to effective immunocastration in male mice.
Collapse
Affiliation(s)
- Yurong Duan
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, 266021, China
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Sha Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Weiwei Cui
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Mengge Li
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Shiyu Tang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Wenrong Yao
- Jiangsu Recbio Technology Co., Ltd, Taizhou, 225300, China
| | - Wenjie Li
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Jiachen Weng
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Junjie Zhao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Zhun Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266073, China.
- Institute of Innovative Drugs, Qingdao University, Qingdao, 266021, China.
- Keynova Biotech Co, Ltd, Weifang, 261071, China.
| |
Collapse
|
2
|
Dolce M, Proietti D, Principato S, Giusti F, Adamo GM, Favaron S, Ferri E, Margarit I, Romano MR, Scarselli M, Carboni F. Impact of Protein Nanoparticle Shape on the Immunogenicity of Antimicrobial Glycoconjugate Vaccines. Int J Mol Sci 2024; 25:3736. [PMID: 38612547 PMCID: PMC11011275 DOI: 10.3390/ijms25073736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Protein self-assembling nanoparticles (NPs) can be used as carriers for antigen delivery to increase vaccine immunogenicity. NPs mimic the majority of invading pathogens, inducing a robust adaptive immune response and long-lasting protective immunity. In this context, we investigated the potential of NPs of different sizes and shapes-ring-, rod-like, and spherical particles-as carriers for bacterial oligosaccharides by evaluating in murine models the role of these parameters on the immune response. Oligosaccharides from Neisseria meningitidis type W capsular polysaccharide were conjugated to ring-shape or nanotubes of engineered Pseudomonas aeruginosa Hemolysin-corregulated protein 1 (Hcp1cc) and to spherical Helicobacter pylori ferritin. Glycoconjugated NPs were characterized using advanced technologies such as High-Performance Liquid Chromatography (HPLC), Asymmetric Flow-Field Flow fractionation (AF4), and Transmission electron microscopy (TEM) to verify their correct assembly, dimensions, and glycosylation degrees. Our results showed that spherical ferritin was able to induce the highest immune response in mice against the saccharide antigen compared to the other glycoconjugate NPs, with increased bactericidal activity compared to benchmark MenW-CRM197. We conclude that shape is a key attribute over size to be considered for glycoconjugate vaccine development.
Collapse
Affiliation(s)
- Marta Dolce
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- GSK, 53100 Siena, Italy
| | | | | | | | | | - Sara Favaron
- GSK, 53100 Siena, Italy
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
3
|
van der Put RM, Metz B, Pieters RJ. Carriers and Antigens: New Developments in Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:vaccines11020219. [PMID: 36851097 PMCID: PMC9962112 DOI: 10.3390/vaccines11020219] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Glycoconjugate vaccines have proven their worth in the protection and prevention of infectious diseases. The introduction of the Haemophilus influenzae type b vaccine is the prime example, followed by other glycoconjugate vaccines. Glycoconjugate vaccines consist of two components: the carrier protein and the carbohydrate antigen. Current carrier proteins are tetanus toxoid, diphtheria toxoid, CRM197, Haemophilus protein D and the outer membrane protein complex of serogroup B meningococcus. Carbohydrate antigens have been produced mainly by extraction and purification from the original host. However, current efforts show great advances in the development of synthetically produced oligosaccharides and bioconjugation. This review evaluates the advances of glycoconjugate vaccines in the last five years. We focus on developments regarding both new carriers and antigens. Innovative developments regarding carriers are outer membrane vesicles, glycoengineered proteins, new carrier proteins, virus-like particles, protein nanocages and peptides. With regard to conjugated antigens, we describe recent developments in the field of antimicrobial resistance (AMR) and ESKAPE pathogens.
Collapse
Affiliation(s)
- Robert M.F. van der Put
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Correspondence:
| | - Bernard Metz
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
4
|
Sorieul C, Dolce M, Romano MR, Codée J, Adamo R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert Rev Vaccines 2023; 22:1055-1078. [PMID: 37902243 DOI: 10.1080/14760584.2023.2274955] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marta Dolce
- GSK, Via Fiorentina 1, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Ou L, Gulla K, Biju A, Biner DW, Bylund T, Changela A, Chen SJ, Zheng CY, Cibelli N, Corrigan AR, Duan H, Gonelli CA, Kong WP, Cheng C, O’Dell S, Sarfo EK, Shaddeau A, Wang S, Vinitsky A, Yang Y, Zhang B, Zhang Y, Koup RA, Doria-Rose NA, Gall JG, Mascola JR, Kwong PD. Assessment of Crosslinkers between Peptide Antigen and Carrier Protein for Fusion Peptide-Directed Vaccines against HIV-1. Vaccines (Basel) 2022; 10:vaccines10111916. [PMID: 36423012 PMCID: PMC9698951 DOI: 10.3390/vaccines10111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the HIV-1 fusion peptide (FP8) as an antigen could prime for broad cross-clade neutralizing responses, that recombinant heavy chain of tetanus toxin (rTTHC) as a carrier protein provided optimal responses, and that choice of crosslinker could impact both antigenicity and immunogenicity. Here, we delve more deeply into the impact of varying the linker between FP8 and rTTHC. In specific, we assessed the physical properties, the antigenicity, and the immunogenicity of conjugates for crosslinkers ranging in spacer-arm length from 1.5 to 95.2 Å, with varying hydrophobicity and crosslinking-functional groups. Conjugates coupled with different degrees of multimerization and peptide-to-rTTHC stoichiometry, but all were well recognized by HIV-fusion-peptide-directed antibodies VRC34.01, VRC34.05, PGT151, and ACS202 except for the conjugate with the longest linker (24-PEGylated SMCC; SM(PEG)24), which had lower affinity for ACS202, as did the conjugate with the shortest linker (succinimidyl iodoacetate; SIA), which also had the lowest peptide-to-rTTHC stoichiometry. Murine immunizations testing seven FP8-rTTHC conjugates elicited fusion-peptide-directed antibody responses, with SIA- and SM(PEG)24-linked conjugates eliciting lower responses than the other five conjugates. After boosting with prefusion-closed envelope trimers from strains BG505 clade A and consensus clade C, trimer-directed antibody-binding responses were lower for the SIA-linked conjugate; elicited neutralizing responses were similar, however, though statistically lower for the SM(PEG)24-linked conjugate, when tested against a strain especially sensitive to fusion-peptide-directed responses. Overall, correlation analyses revealed the immunogenicity of FP8-rTTHC conjugates to be negatively impacted by hydrophilicity and extremes of length or low peptide-carrier stoichiometry, but robust to other linker parameters, with several commonly used crosslinkers yielding statistically indistinguishable serological results.
Collapse
Affiliation(s)
- Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
7
|
Palmieri E, Kis Z, Ozanne J, Di Benedetto R, Ricchetti B, Massai L, Carducci M, Oldrini D, Gasperini G, Aruta MG, Rossi O, Kontoravdi C, Shah N, Mawas F, Micoli F. GMMA as an Alternative Carrier for a Glycoconjugate Vaccine against Group A Streptococcus. Vaccines (Basel) 2022; 10:1034. [PMID: 35891202 PMCID: PMC9324507 DOI: 10.3390/vaccines10071034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Group A Streptococcus (GAS) causes about 500,000 annual deaths globally, and no vaccines are currently available. The Group A Carbohydrate (GAC), conserved across all GAS serotypes, conjugated to an appropriate carrier protein, represents a promising vaccine candidate. Here, we explored the possibility to use Generalized Modules for Membrane Antigens (GMMA) as an alternative carrier system for GAC, exploiting their intrinsic adjuvant properties. Immunogenicity of GAC-GMMA conjugate was evaluated in different animal species in comparison to GAC-CRM197; and the two conjugates were also compared from a techno-economic point of view. GMMA proved to be a good alternative carrier for GAC, resulting in a higher immune response compared to CRM197 in different mice strains, as verified by ELISA and FACS analyses. Differently from CRM197, GMMA induced significant levels of anti-GAC IgG titers in mice also in the absence of Alhydrogel. In rabbits, a difference in the immune response could not be appreciated; however, antibodies from GAC-GMMA-immunized animals showed higher affinity toward purified GAC antigen compared to those elicited by GAC-CRM197. In addition, the GAC-GMMA production process proved to be more cost-effective, making this conjugate particularly attractive for low- and middle-income countries, where this pathogen has a huge burden.
Collapse
Affiliation(s)
- Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Zoltán Kis
- The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (Z.K.); (C.K.); (N.S.)
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - James Ozanne
- The National Institute for Biological Standards and Control (NIBSC), South Mimms EN6 3QG, UK; (J.O.); (F.M.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Beatrice Ricchetti
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Maria Grazia Aruta
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Cleo Kontoravdi
- The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (Z.K.); (C.K.); (N.S.)
| | - Nilay Shah
- The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (Z.K.); (C.K.); (N.S.)
| | - Fatme Mawas
- The National Institute for Biological Standards and Control (NIBSC), South Mimms EN6 3QG, UK; (J.O.); (F.M.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| |
Collapse
|
8
|
Micoli F, Alfini R, Di Benedetto R, Necchi F, Schiavo F, Mancini F, Carducci M, Oldrini D, Pitirollo O, Gasperini G, Balocchi C, Bechi N, Brunelli B, Piccioli D, Adamo R. Generalized Modules for Membrane Antigens as Carrier for Polysaccharides: Impact of Sugar Length, Density, and Attachment Site on the Immune Response Elicited in Animal Models. Front Immunol 2021; 12:719315. [PMID: 34594333 PMCID: PMC8477636 DOI: 10.3389/fimmu.2021.719315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Nanoparticle systems are being explored for the display of carbohydrate antigens, characterized by multimeric presentation of glycan epitopes and special chemico-physical properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are receiving great attention, combining antigen presentation with the immunopotentiator effect of the Toll-like receptor agonists naturally present on these systems. In this context, we are testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides. Here, we investigated the impact of saccharide length, density, and attachment site on the immune response elicited by GMMA in animal models, using a variety of structurally diverse polysaccharides from different pathogens (i.e., Neisseria meningitidis serogroup A and C, Haemophilus influenzae type b, and streptococcus Group A Carbohydrate and Salmonella Typhi Vi). Anti-polysaccharide immune response was not affected by the number of saccharides per GMMA particle. However, lower saccharide loading can better preserve the immunogenicity of GMMA as antigen. In contrast, saccharide length needs to be optimized for each specific antigen. Interestingly, GMMA conjugates induced strong functional immune response even when the polysaccharides were linked to sugars on GMMA. We also verified that GMMA conjugates elicit a T-dependent humoral immune response to polysaccharides that is strictly dependent on the nature of the polysaccharide. The results obtained are important to design novel glycoconjugate vaccines using GMMA as carrier and support the development of multicomponent glycoconjugate vaccines where GMMA can play the dual role of carrier and antigen. In addition, this work provides significant insights into the mechanism of action of glycoconjugates.
Collapse
Affiliation(s)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Fabiola Schiavo
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | - Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Berti F, Romano MR, Micoli F, Adamo R. Carbohydrate based meningococcal vaccines: past and present overview. Glycoconj J 2021; 38:401-409. [PMID: 33905086 PMCID: PMC8076658 DOI: 10.1007/s10719-021-09990-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022]
Abstract
Neisseria meningitidis is a major cause of bacterial meningitidis worldwide. Children less than five years and adolescents are particularly affected. Nearly all invasive strains are surrounded by a polysaccharide capsule, based on which, 12 N. meningitidis serogroups are differentiated. Six of them, A, B, C, W, X, and Y, cause the vast majority of infections in humans. Mono- and multi-valent carbohydrate-based vaccines against meningococcal infections have been licensed or are currently in clinical development. In this mini-review, an overview of the past and present approaches for producing meningococcal glycoconjugate vaccines is provided.
Collapse
|
10
|
Molecular modeling provides insights into the loading of sialic acid-containing antigens onto CRM 197: the role of chain flexibility in conjugation efficiency and glycoconjugate architecture. Glycoconj J 2021; 38:411-419. [PMID: 33721150 PMCID: PMC7957279 DOI: 10.1007/s10719-021-09991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Vaccination is the most cost-effective way to control disease caused by encapsulated bacteria; the capsular polysaccharide (CPS) is the primary virulence factor and vaccine target. Neisseria meningitidis (Nm) serogroups B, C, Y and W all contain sialic acid, a common surface feature of human pathogens. Two protein-based vaccines against serogroup B infection are available for human use while four tetravalent conjugate vaccines including serogroups C, W and Y have been licensed. The tetravalent Menveo® conjugate vaccine is well-defined: a simple monomeric structure of oligosaccharides terminally conjugated to amino groups of the carrier protein CRM197. However, not only is there a surprisingly low limit for antigen chain attachment to CRM197, but different serogroup saccharides have consistently different CRM197 loading, the reasons for which are unclear. Understanding this phenomenon is important for the long-term goal of controlling conjugation to prepare conjugate vaccines of optimal immunogenicity. Here we use molecular modeling to explore whether antigen flexibility can explain the varying antigen loading of the conjugates. Because flexibility is difficult to separate from other structural factors, we focus on sialic-acid containing CPS present in current glycoconjugate vaccines: serogroups NmC, NmW and NmY. Our simulations reveal a correlation between Nm antigen flexibility (NmW > NmC > NmY) and the number of chains attached to CRM197, suggesting that increased flexibility enables accommodation of additional chains on the protein surface. Further, in silico models of the glycoconjugates confirm the relatively large hydrodynamic size of the saccharide chains and indicate steric constraints to further conjugation.
Collapse
|
11
|
Ahmadi K, Aslani MM, Pouladfar G, Faezi S, Kalani M, Pourmand MR, Ghaedi T, Havaei SA, Mahdavi M. Preparation and preclinical evaluation of two novel Staphylococcus aureus capsular polysaccharide 5 and 8-fusion protein (Hla-MntC-SACOL0723) immunoconjugates. IUBMB Life 2019; 72:226-236. [PMID: 31573748 DOI: 10.1002/iub.2159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is one of the most common pathogens in the hospital and the community. The emergence of broad-spectrum antibiotic resistance in S. aureus has made the treatment process more difficult. Therefore, it is obvious that an effective prevention strategy against the pathogen could significantly reduce costs related to care in hospitals. In this report, we describe a simple approach to conjugate S. aureus capsular polysaccharide 5 (CP5) from S. aureus Reynolds strain and 8 (CP8) from S. aureus Becker strain to a fusion protein (Hla-MntC-SACOL0723) and investigation of its bioactivity. The conjugation was done by using ADH (as a bridge) and EDAC (as a coupling agent). The immunoconjugates were characterized by routine polysaccharide/protein contents assays followed by reverse phase chromatography and FTIR spectroscopy. The groups of mice were immunized with conjugate vaccines, capsular polysaccharides, and phosphate-buffered saline (PBS) as a control group. The functional activity of the vaccine candidates was evaluated by ELISA, opsonophagocytosis tests, and determination of bacterial load in challenge study. The results showed that the specific antibody (total IgG) titers raised against conjugate molecules were higher than those of the nonconjugated capsular polysaccharides. The opsonic activity of the conjugate vaccines antisera was significantly higher than polysaccharides alone (58% reduction in the number of bacteria versus 16.3% at 1:2 dilution, p < .05), Further, the conjugate vaccine group had a significant reduction in bacterial load after challenge with S. aureus COL strain cells as compared to the PBS and nonconjugated controls. In conclusion, the immunoconjugates could be developed as a potential vaccine candidate against S. aureus.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.,Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Gholamreza Pouladfar
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Kalani
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad R Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebe Ghaedi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed A Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|