1
|
Angelidakis G, Chemaly RF, Sahasrabhojane PV, Morado-Aramburo O, Jiang Y, Bhatti MM, Shpall E, Hosing C, Jain P, Mahadeo KM, Khawaja F, Elhajj P, Wargo JA, Jenq RR, Ajami NJ, Kebriaei P, Ariza-Heredia EJ. Humoral Immunity and Antibody Responses against Diphtheria, Tetanus, and Pneumococcus after Immune Effector Cell Therapies: A Prospective Study. Vaccines (Basel) 2024; 12:1070. [PMID: 39340100 PMCID: PMC11436035 DOI: 10.3390/vaccines12091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Patients undergoing immune effector cell therapy (IECT) are at high risk for infections. We assessed seropositivity against pneumococcus, tetanus, and diphtheria in patients before and after IECT and the patients' response to vaccination. We enrolled patients who underwent IECT from January 2020 to March 2022. Antibody levels for diphtheria, tetanus, and pneumococcus were measured before IECT, at 1 month, and 3-6 months after. Eligible patients were vaccinated after IECT. In non-seroprotected patients, we discontinued testing. Before IECT, most patients had seroprotective antibody levels against tetanus (68/69, 99%) and diphtheria (65/69, 94%), but fewer did against pneumococcus (24/67, 36%). After IECT, all patients had seroprotective antibody levels for tetanus at 1 month (68/68) and 3-6 months (56/56). For diphtheria, 65/65 patients (100%) had seroprotective antibody levels at 1 month, and 48/53 (91%) did at 3-6 months. For pneumococcus, seroprotective antibody levels were identified in 91% (21/23) of patients at 1 month and 79% (15/19) at 3-6 months following IECT. Fifteen patients received a pneumococcal vaccine after IECT, but none achieved seroprotective response. One patient received the tetanus-diphtheria vaccine and had a seroprotective antibody response. Because some patients experience loss of immunity after IECT, studies evaluating vaccination strategies post-IECT are needed.
Collapse
Affiliation(s)
- Georgios Angelidakis
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roy F Chemaly
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pranoti V Sahasrabhojane
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Oscar Morado-Aramburo
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying Jiang
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Micah M Bhatti
- Department of Clinical Microbiology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Preetesh Jain
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kris Michael Mahadeo
- Department of Pediatrics, Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC 27705, USA
| | - Fareed Khawaja
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter Elhajj
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ella J Ariza-Heredia
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Zhu N, Hu L, Hu W, Li Q, Mao H, Wang M, Ke Z, Qi L, Wang J. Comparative Transcriptome Profiling of mRNA and lncRNA of Mouse Spleens Inoculated with the Group ACYW135 Meningococcal Polysaccharide Vaccine. Vaccines (Basel) 2023; 11:1295. [PMID: 37631863 PMCID: PMC10458039 DOI: 10.3390/vaccines11081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The Group ACYW135 meningococcal polysaccharide vaccine (MPV-ACYW135) is a classical common vaccine used to prevent Neisseria meningitidis serogroups A, C, Y, and W135, but studies on the vaccine at the transcriptional level are still limited. In the present study, mRNAs and lncRNAs related to immunity were screened from the spleens of mice inoculated with MPV-ACYW135 and compared with the control group to identify differentially expressed mRNAs and lncRNAs in the immune response. The result revealed 34375 lncRNAs and 41321 mRNAs, including 405 differentially expressed (DE) lncRNAs and 52 DE mRNAs between the MPV group and the control group. Results of GO and KEGG enrichment analysis turned out that the main pathways related to the immunity of target genes of those DE mRNAs and DE lncRNAs were largely associated with positive regulation of T cell activation, CD8-positive immunoglobulin production in mucosal tissue, alpha-beta T cell proliferation, negative regulation of CD4-positive, and negative regulation of interleukin-17 production, suggesting that the antigens of MPV-ACYW135 capsular polysaccharide might activate T cell related immune reaction in the vaccine inoculation. In addition, it was noted that Bach2 (BTB and CNC homolog 2), the target gene of lncRNA MSTRG.17645, was involved in the regulation of immune response in MPV-ACYW135 vaccination. This study provided a preliminary catalog of both mRNAs and lncRNAs associated with the proliferation and differentiation of body immune cells, which was worthy of further research to enhance the understanding of the biological immune process regulated by MPV-ACYW135.
Collapse
Affiliation(s)
- Nan Zhu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Liping Hu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Wenlong Hu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Qiang Li
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China; (N.Z.); (L.H.); (W.H.); (Q.L.); (M.W.); (Z.K.); (L.Q.)
| |
Collapse
|
3
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker LM, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat Commun 2022; 13:3466. [PMID: 35710908 PMCID: PMC9201272 DOI: 10.1038/s41467-022-31142-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.
Collapse
Affiliation(s)
- Kevin J Kramer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Erin M Wilfong
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sierra M Barone
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea R Shiakolas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Caroline E Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Lauren M Walker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Steven C Wall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Ariana Paulo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Samuel Schaefer
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Debolanle Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Camille S Westlake
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA
| | | | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Rachel H Bonami
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Ren S, Hansbro PM, Srikusalanukul W, Horvat JC, Hunter T, Brown AC, Peel R, Faulkner J, Evans TJ, Li SC, Newby D, Hure A, Abhayaratna WP, Tsimikas S, Gonen A, Witztum JL, Attia J, Hansbro PM, Peel R, Srikusalanukul W, Abhayaratna W, Newby D, Hure A, D'Este C, Tonkin A, Hopper I, Thrift A, Levi C, Sturm J, Durrheim D, Hung J, Briffa T, Chew D, Anderson P, Moon L, McEvoy M, Attia J. Generation of cardio-protective antibodies after pneumococcal polysaccharide vaccine: Early results from a randomised controlled trial. Atherosclerosis 2022; 346:68-74. [PMID: 35290813 DOI: 10.1016/j.atherosclerosis.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIMS Observational studies have demonstrated that the pneumococcal polysaccharide vaccine (PPV) is associated with reduced risk of cardiovascular events. This may be mediated through IgM antibodies to OxLDL, which have previously been associated with cardioprotective effects. The Australian Study for the Prevention through Immunisation of Cardiovascular Events (AUSPICE) is a double-blind, randomised controlled trial (RCT) of PPV in preventing ischaemic events. Participants received PPV or placebo once at baseline and are being followed-up for incident fatal and non-fatal myocardial infarction or stroke over 6 years. METHODS A subgroup of participants at one centre (Canberra; n = 1,001) were evaluated at 1 month and 2 years post immunisation for changes in surrogate markers of atherosclerosis, as pre-specified secondary outcomes: high-sensitive C-reactive protein (CRP), pulse wave velocity (PWV), and carotid intima-media thickness (CIMT). In addition, 100 participants were randomly selected in each of the intervention and control groups for measurement of anti-pneumococcal antibodies (IgG, IgG2, IgM) as well as anti-OxLDL antibodies (IgG and IgM to CuOxLDL, MDA-LDL, and PC-KLH). RESULTS Concentrations of anti-pneumococcal IgG and IgG2 increased and remained high at 2 years in the PPV group compared to the placebo group, while IgM increased and then declined, but remained detectable, at 2 years. There were statistically significant increases in all anti-OxLDL IgM antibodies at 1 month, which were no longer detectable at 2 years; there was no increase in anti-OxLDL IgG antibodies. There were no significant changes in CRP, PWV or CIMT between the treatment groups at the 2-year follow-up. CONCLUSIONS PPV engenders a long-lasting increase in anti-pneumococcal IgG, and to a lesser extent, IgM titres, as well as a transient increase in anti-OxLDL IgM antibodies. However, there were no detectable changes in surrogate markers of atherosclerosis at the 2-year follow-up. Long-term, prospective follow-up of clinical outcomes is continuing to assess if PPV reduces CVD events.
Collapse
Affiliation(s)
- Shu Ren
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; Centenary UTS Centre for Inflammation, Sydney, NSW, Australia
| | - Wichat Srikusalanukul
- Australian National University Medical School, Canberra Hospital, Canberra, ACT, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Tegan Hunter
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Alexandra C Brown
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Roseanne Peel
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - Jack Faulkner
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | | | - Shu Chuen Li
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - David Newby
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Alexis Hure
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Walter P Abhayaratna
- Australian National University Medical School, Canberra Hospital, Canberra, ACT, Australia
| | - Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ayelet Gonen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; Department of Medicine, John Hunter Hospital, Newcastle, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mehanny M, Kroniger T, Koch M, Hoppstädter J, Becher D, Kiemer AK, Lehr C, Fuhrmann G. Yields and Immunomodulatory Effects of Pneumococcal Membrane Vesicles Differ with the Bacterial Growth Phase. Adv Healthc Mater 2022; 11:e2101151. [PMID: 34724354 PMCID: PMC11469037 DOI: 10.1002/adhm.202101151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Streptococcus pneumoniae infections are a leading cause of death worldwide. Bacterial membrane vesicles (MVs) are promising vaccine candidates because of the antigenic components of their parent microorganisms. Pneumococcal MVs exhibit low toxicity towards several cell lines, but their clinical translation requires a high yield and strong immunogenic effects without compromising immune cell viability. MVs are isolated during either the stationary phase (24 h) or death phase (48 h), and their yields, immunogenicity and cytotoxicity in human primary macrophages and dendritic cells have been investigated. Death-phase vesicles showed higher yields than stationary-phase vesicles. Both vesicle types displayed acceptable compatibility with primary immune cells and several cell lines. Both vesicle types showed comparable uptake and enhanced release of the inflammatory cytokines, tumor necrosis factor and interleukin-6, from human primary immune cells. Proteomic analysis revealed similarities in vesicular immunogenic proteins such as pneumolysin, pneumococcal surface protein A, and IgA1 protease in both vesicle types, but stationary-phase MVs showed significantly lower autolysin levels than death-phase MVs. Although death-phase vesicles produced higher yields, they lacked superiority to stationary-phase vesicles as vaccine candidates owing to their similar antigenic protein cargo and comparable uptake into primary human immune cells.
Collapse
Affiliation(s)
- Mina Mehanny
- Helmholtz Institute for Pharmaceutical Research SaarlandBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbrücken66123Germany
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyAin Shams UniversityCairo11566Egypt
| | - Tobias Kroniger
- Center for Functional Genomics of MicrobesDepartment of Microbial ProteomicsInstitute of MicrobiologyUniversity GreifswaldGreifswald17489Germany
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2.2Saarbrücken66123Germany
| | - Jessica Hoppstädter
- Department of PharmacyPharmaceutical BiologySaarland UniversitySaarbrücken66123Germany
| | - Dörte Becher
- Center for Functional Genomics of MicrobesDepartment of Microbial ProteomicsInstitute of MicrobiologyUniversity GreifswaldGreifswald17489Germany
| | - Alexandra K. Kiemer
- Department of PharmacyPharmaceutical BiologySaarland UniversitySaarbrücken66123Germany
| | - Claus‐Michael Lehr
- Department of PharmacySaarland UniversityCampus E8.1Saarbrücken66123Germany
- Helmholtz Institute for Pharmaceutical Research SaarlandDrug Delivery DepartmentCampus E8.1Saarbrücken66123Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research SaarlandBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbrücken66123Germany
- Friedrich‐Alexander‐University Erlangen‐NürnbergPharmaceutical BiologyDepartment BiologyStaudtstr. 5Erlangen91058Germany
| |
Collapse
|
6
|
Single-Cell Profiling of the Antigen-Specific Response to BNT162b2 SARS-CoV-2 RNA Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34341788 DOI: 10.1101/2021.07.28.453981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA-based vaccines against SARS-CoV-2 are critical to limiting COVID-19 severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. We used single-cell technologies to identify and characterized antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 in longitudinal samples from a cohort of healthy donors. Mass cytometry and machine learning pinpointed a novel expanding, population of antigen-specific non-canonical memory CD4 + and CD8 + T cells. B cell sequencing suggested progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlated with eventual SARS-CoV-2 IgG and a donor lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms reveal an antigen-specific cellular basis of RNA vaccine-based immunity. ONE SENTENCE SUMMARY Single-cell profiling reveals the cellular basis of the antigen-specific response to the BNT162b2 SARS-CoV-2 RNA vaccine.
Collapse
|
7
|
Janssen LMA, Heron M, Murk JL, Leenders ACAP, Rijkers GT, de Vries E. The clinical relevance of IgM and IgA anti-pneumococcal polysaccharide ELISA assays in patients with suspected antibody deficiency. Clin Exp Immunol 2021; 205:213-221. [PMID: 33877708 PMCID: PMC8274160 DOI: 10.1111/cei.13605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022] Open
Abstract
Unlike immunoglobulin (Ig)G pneumococcal polysaccharide (PnPS)‐antibodies, PnPS IgA and IgM‐antibodies are not routinely determined for the assessment of immunocompetence. It is not yet known whether an isolated inability to mount a normal IgM or IgA‐PnPS response should be considered a relevant primary antibody deficiency (PAD). We studied the clinical relevance of anti‐PnPS IgM and IgA‐assays in patients with suspected primary immunodeficiency in a large teaching hospital in ’s‐Hertogenbosch, the Netherlands. Serotype‐specific‐PnPS IgG assays were performed; subsequently, 23‐valent‐PnPS IgG assays (anti‐PnPS IgG assays), and later anti‐PnPS IgA and IgM assays, were performed in archived material (240 patients; 304 samples). Eleven of 65 pre‐ and six of 10 post‐immunization samples from good responders to PnPS serotype‐specific IgG testing had decreased anti‐PnPS IgA and/or IgM titres. Of these, three pre‐ and no post‐immunization samples were from patients previously classified as ‘no PAD’. Determination of anti‐PnPS IgA and IgM in addition to anti‐PnPS IgG did not reduce the need for serotype‐specific PnPS IgG testing to assess immunocompetence [receiver operating characteristic (ROC) analysis of post‐immunization samples: anti‐PnPS IgA + IgG area under the curve (AUC) = 0.80, 95% confidence interval (CI) = 0.63–0.97; anti‐PnPS IgM + IgG AUC 0.80, 95% CI = 0.62–0.98; anti‐PnPS IgA + IgG + IgM AUC = 0.71, 95% CI = 0.51–0.91; anti‐PnPS IgG AUC = 0.93, 95% CI = 0.85–1.00]. Our data show that patients classified as having an intact antibody response based on measurement of serotype‐specific PnPS IgG can still display impaired anti‐PnPS IgM and IgA responses, and that the additional measurement of anti‐PnPS IgA and IgM could not reduce the need for serotype‐specific IgG testing. Future studies are needed to investigate the clinical relevance of potential ‘specific IgA or IgM antibody deficiency’ in patients with recurrent airway infections in whom no PAD could be diagnosed according to the current definitions.
Collapse
Affiliation(s)
- Lisanne M A Janssen
- Department of Tranzo, Tilburg University, Tilburg, the Netherlands.,Department of Paediatrics, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michiel Heron
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Jean-Luc Murk
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | | | - Ger T Rijkers
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands.,Science Department, University College Roosevelt, Middelburg, the Netherlands
| | - Esther de Vries
- Department of Tranzo, Tilburg University, Tilburg, the Netherlands.,Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| |
Collapse
|
8
|
Divithotawela C, Pham A, Bell PT, Ledger EL, Tan M, Yerkovich S, Grant M, Hopkins PM, Wells TJ, Chambers DC. Inferior outcomes in lung transplant recipients with serum Pseudomonas aeruginosa specific cloaking antibodies. J Heart Lung Transplant 2021; 40:951-959. [PMID: 34226118 DOI: 10.1016/j.healun.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chronic Lung Allograft Dysfunction (CLAD) limits long-term survival following lung transplantation. Colonization of the allograft by Pseudomonas aeruginosa is associated with an increased risk of CLAD and inferior overall survival. Recent experimental data suggests that 'cloaking' antibodies targeting the O-antigen of the P. aeruginosa lipopolysaccharide cell wall (cAbs) attenuate complement-mediated bacteriolysis in suppurative lung disease. METHODS In this retrospective cohort analysis of 123 lung transplant recipients, we evaluated the prevalence, risk factors and clinical impact of serum cAbs following transplantation. RESULTS cAbs were detected in the sera of 40.7% of lung transplant recipients. Cystic fibrosis and younger age were associated with increased risk of serum cAbs (CF diagnosis, OR 6.62, 95% CI 2.83-15.46, p < .001; age at transplant, OR 0.69, 95% CI 0.59-0.81, p < .001). Serum cAbs and CMV mismatch were both independently associated with increased risk of CLAD (cAb, HR 4.34, 95% CI 1.91-9.83, p < .001; CMV mismatch (D+/R-), HR 5.40, 95% CI 2.36-12.32, p < .001) and all-cause mortality (cAb, HR 2.75, 95% CI 1.27-5.95, p = .010, CMV mismatch, HR 3.53, 95% CI 1.62-7.70, p = .002) in multivariable regression analyses. CONCLUSIONS Taken together, these findings suggest a potential role for 'cloaking' antibodies targeting P. aeruginosa LPS O-antigen in the immunopathogenesis of CLAD.
Collapse
Affiliation(s)
| | - Amy Pham
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia
| | - Peter T Bell
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia
| | - Emma L Ledger
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | | | - Michelle Grant
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | - Peter M Hopkins
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia
| | - Timothy J Wells
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Daniel C Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Scarrone M, González-Techera A, Alvez-Rosado R, Delfin-Riela T, Modernell Á, González-Sapienza G, Lassabe G. Development of anti-human IgM nanobodies as universal reagents for general immunodiagnostics. N Biotechnol 2021; 64:9-16. [PMID: 33984500 DOI: 10.1016/j.nbt.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/09/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Nanobodies are the smallest antibody fragments which bind to antigens with high affinity and specificity. Due to their outstanding physicochemical stability, simplicity and cost-effective production, nanobodies have become powerful agents in therapeutic and diagnostic applications. In this work, the advantages of nanobodies were exploited to develop generic and standardized anti-human IgM reagents for serology and IgM+ B-cell analysis. Selection of anti-IgM nanobodies was carried out by evaluating their yields, stability, binding kinetics and cross-reactivity with other Ig isotypes. High affinity nanobodies were selected with dissociation constants (KDs) in the nM range and high sensitivities for detection of total IgM by ELISA. The nanobodies also proved to be useful for capturing IgM in the serodiagnosis of an acute infection as demonstrated by detection of specific IgM in sera of dengue virus patients. Finally, due to the lack of an Fc region, the selected nanobodies do not require Fc receptor blocking steps, facilitating the immunophenotyping of IgM+ cells by flow cytometry, an important means of diagnosis of immunodeficiencies and B-cell lymphoproliferative disorders. This work describes versatile anti-IgM nanobodies that, due to their recombinant nature and ease of reproduction at low cost, may represent an advantageous alternative to conventional anti-IgM antibodies in research and diagnosis.
Collapse
Affiliation(s)
- Martina Scarrone
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay
| | - Andrés González-Techera
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay
| | - Romina Alvez-Rosado
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay
| | - Triana Delfin-Riela
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay
| | | | - Gualberto González-Sapienza
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay.
| | - Gabriel Lassabe
- Department of Immunology, DEPBIO, Faculty of Chemistry, Hygiene Institute, UDELAR, Av. A. Navarro 3051, 11600, Montevideo, Uruguay.
| |
Collapse
|
10
|
Kasahara TDM, Bento CADM, Gupta S. Phenotypic analysis of T follicular helper and T follicular regulatory cells in primary selective IgM deficiency. Hum Immunol 2020; 81:625-633. [PMID: 32773096 DOI: 10.1016/j.humimm.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Selective IgM deficiency (SIgMD) is a rare immunodeficiency characterized by serum IgM below two standard of mean, and normal IgG and IgA levels. Both in human and mice with selective IgM deficiency, germinal centers cells are decreased. The development of germinal center and humoral immunity are regulated in part by follicular helper T (TFH) and follicular regulatory T (TFR) cells. However, the analysis of circulating TFH (cTFH) and TFR (cTFR) cells in the pathogenesis of SIgMD has not been explored. We observed lower percentage of cTFR cells in SIgMD patients than in control group. However, we did not observe any significant difference in the percentage of cTFH cells and their subsets between both experimental groups. When data were analyzed according to specific antibody response to pneumococcal polysaccharide, we observed a higher percentage of cTFH cells in SIgMD patients with specific antibody deficiency than in SIgMD patients with normal specific antibody response. Our results suggest that cTFH cells and their subsets are preserved in SIgMD patients. However, the role of lower percentage of cTFR cells in the pathogenesis of this immunodeficiency is not clear.
Collapse
Affiliation(s)
- Taissa de M Kasahara
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Brazil; Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil; Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States.
| | - Cleonice Alves de Melo Bento
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Brazil; Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
11
|
Mauro FR, Giannarelli D, Galluzzo CM, Vitale C, Visentin A, Riemma C, Rosati S, Porrazzo M, Pepe S, Coscia M, Trentin L, Gentile M, Raponi S, Micozzi A, Gentile G, Baroncelli S. Response to the conjugate pneumococcal vaccine (PCV13) in patients with chronic lymphocytic leukemia (CLL). Leukemia 2020; 35:737-746. [PMID: 32555297 DOI: 10.1038/s41375-020-0884-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/21/2020] [Indexed: 11/09/2022]
Abstract
Pneumococcal (PC) vaccination is recommended for patients with chronic lymphocytic leukemia (CLL). However, response to vaccines has been investigated in a small series of CLL patients. We analyzed the antibody response and outcomes of 112 CLL patients who received the 13-valent pneumococcal conjugate vaccine (PCV13). An immune response was defined by a twofold increase in the PC-IgG levels assessed by ELISA. The median age of patients was 68 years, 23.2% showed IgG levels ≤ 400 mg/L, 6.3% progressive disease, 52% unmutated IGHV. Twenty-two (19.6%) patients were treatment-naïve and 90 (80.4%) previously treated (40.2% front-line chemoimmunotherapy; ibrutinib first/advanced-line, 9.8%/21.4%; idelalisib advanced-line, 8.9%). Nine (8%) patients developed an immune response, eight treatment-naive, and one on front-line ibrutinib. No responses were observed in patients previously treated with chemoimmunotherapy. Age ≥ 60 years (p = 0.007), IgG levels < 400 mg/L (p < 0.0001), prior treatment (p < 0.0001), and signs of disease progression (p = 0.04) were associated with a lower response rate. Pneumonia-free survival was significantly shorter in patients with clinical signs of progressive disease (HR, 8.39), prior pneumonia (HR, 7.03), and TP53 disruption (HR, 2.91). In conclusion, our results suggest that vaccination should be offered at diagnosis to CLL patients with early stage and stable disease who have better resources for an effective immune response.
Collapse
Affiliation(s)
- Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy.
| | - Diana Giannarelli
- Biostatistic Unit, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | | | - Candida Vitale
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino and Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Costantino Riemma
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Serena Rosati
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Marika Porrazzo
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Sara Pepe
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Marta Coscia
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino and Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Massimo Gentile
- Hematology and Oncology Department, Biotechnology Research Unit, Cosenza, Italy
| | - Sara Raponi
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Alessandra Micozzi
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Giuseppe Gentile
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Silvia Baroncelli
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on vaccine responses. J Allergy Clin Immunol 2020; 145:1309-1321. [PMID: 32386655 PMCID: PMC7198995 DOI: 10.1016/j.jaci.2020.03.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Impaired vaccine responses in older individuals are associated with alterations in both the quantity and quality of the T-cell compartment with age. As reviewed herein, the T-cell response to vaccination requires a fine balance between the generation of inflammatory effector T cells versus follicular helper T (TFH) cells that mediate high-affinity antibody production in tandem with the induction of long-lived memory cells for effective recall immunity. During aging, we find that this balance is tipped where T cells favor short-lived effector but not memory or TFH responses. Consistently, vaccine-induced antibodies commonly display a lower protective capacity. Mechanistically, multiple, potentially targetable, changes in T cells have been identified that contribute to these age-related defects, including posttranscription regulation, T-cell receptor signaling, and metabolic function. Although research into the induction of tissue-specific immunity by vaccines and with age is still limited, current mechanistic insights provide a framework for improved design of age-specific vaccination strategies that require further evaluation in a clinical setting.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif.
| |
Collapse
|
13
|
Janssen LMA, Heron M, Murk JL, Leenders ACAP, Rijkers GT, de Vries E. Focusing on Good Responders to Pneumococcal Polysaccharide Vaccination in General Hospital Patients Suspected for Immunodeficiency. A Decision Tree Based on the 23-Valent Pneumococcal IgG Assay. Front Immunol 2019; 10:2496. [PMID: 31749801 PMCID: PMC6848064 DOI: 10.3389/fimmu.2019.02496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background and Aim: Recently, the 23-valent IgG-assay was suggested as screening assay to identify poor responders to pneumococcal polysaccharide (PnPS)-vaccination with the serotype-specific assay as a second-line test. However, in a low pre-test probability general hospital setting predicting good responders could be more valuable to reduce the number of samples needing serotyping. Methods: Serotype-specific PnPS antibody-assays were performed for suspected immunodeficiency in two Dutch general hospitals (Jeroen Bosch Hospital, 's-Hertogenbosch; Elisabeth Tweesteden Hospital, Tilburg). 23-Valent PnPS antibody-assays were subsequently performed in archived material. Data were analyzed using receiver operating characteristic curves (AUC) and agreement indices (ICC). Results: Sera of 284 patients (348 samples) were included; 23-valent IgG-titres and the corresponding sum of PnPS-serotype specific antibodies showed moderate correlation (ICC = 0.63). In 232 conjugated-pneumococcal-vaccine-naïve patients (270 samples), a random 23-valent IgG-titer could discriminate between samples with and without ≥7/11, ≥7/13, or ≥6/9 pneumococcal serotypes when both cut-off values 0.35 and 1.0 μg/ml were used (AUC 0.86 and 0.92, respectively). All patients with a pre-immunization-titer ≥38.2 μg/ml and/or post-immunization-titer ≥96.1 μg/ml and none with a post-immunization-titer ≤38.5 μg/ml exhibited a good response to PnPS vaccination. Using these breakpoints as screening test to predict good responders, only 24% of patients would require further serotyping, as opposed to 68% if breakpoints to predict poor responders would have been used. Conclusion: In a low pre-test probability setting, the 23-valent IgG-assay proved to be a reliable screening test for good responders in conjugated-pneumococcal-vaccine-naïve patients, reducing the overall number of patient samples needing further serotyping, thus reducing overall costs of pneumococcal vaccination response assessment.
Collapse
Affiliation(s)
- Lisanne M A Janssen
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Nijmegen, Netherlands
| | - Michiel Heron
- Laboratory of Medical Microbiology and Immunology, St. Elisabeth Hospital Tilburg, Tilburg, Netherlands
| | - Jean-Luc Murk
- Laboratory of Medical Microbiology and Immunology, St. Elisabeth Hospital Tilburg, Tilburg, Netherlands
| | | | - Ger T Rijkers
- Laboratory of Medical Microbiology and Immunology, St. Elisabeth Hospital Tilburg, Tilburg, Netherlands.,Science Department, University College Roosevelt, Middelburg, Netherlands
| | - Esther de Vries
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Laboratory of Medical Microbiology and Immunology, St. Elisabeth Hospital Tilburg, Tilburg, Netherlands
| |
Collapse
|
14
|
Parker AR, Skold M, Harding S, Barton JC, Bertoli LF, Barton JC. Pneumococcal vaccination responses in adults with subnormal IgG subclass concentrations. BMC Immunol 2019; 20:29. [PMID: 31429700 PMCID: PMC6701150 DOI: 10.1186/s12865-019-0310-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We sought to compare Pneumovax®23 responses in adults with subnormal IgG subclass concentrations. We studied adults with normal total IgG, frequent/severe respiratory infection, and subnormal IgG1, IgG3, or IgG1 + IgG3 before and after Pneumovax®23. We defined response as serotype-specific IgG > 1.3 μg/mL and aggregate response as IgG > 1.3 μg/mL for ≥70% of all serotypes tested. We compared patients with and without serotype-specific responses and performed logistic regression on aggregate responses using: age; male sex; body mass index; autoimmune condition(s); atopy; other allergies; subnormal IgGSc immunophenotypes; IgA; and IgM. RESULTS There were 59 patients (mean age 44 ± 13 (SD) years; 83.1% women). Median days between pre- and post-Pneumovax®23 testing was 33 (range 19-158). The median post-vaccination summated concentration of serotype-specific IgG was higher in patients with subnormal IgG1 than subnormal IgG3 (responders and non-responders). All subnormal IgG1 + IgG3 non-responders responded to serotypes 8, 9 and 26, unlike other non-responders. Subnormal IgG3 responders had lower responses to serotypes 1, 4, 12, 23, 26, and 51. Subnormal IgG3 non-responders had higher responses to serotypes 1, 3, 8, 9, 12, 14, 19, 51, and 56. Response rates decreased with increasing age. Aggregate responders were: subnormal IgG1, 54%; IgG3, 46%; and IgG1 + IgG3, 46%. Regression on aggregate response revealed lower response with male sex (odds ratio 0.09 [95% CI 0.01, 0.77]) and atopy (0.17 [0.03, 0.83]). CONCLUSIONS Serotype-specific IgG responses to Pneumovax®23 were greater in patients with subnormal IgG1 than subnormal IgG3. Male sex and atopy were associated with lower aggregate responses.
Collapse
Affiliation(s)
- Antony R Parker
- The Binding Site Group Limited, 8 Calthorpe Road, Birmingham, B15 1QT, UK
| | - Markus Skold
- The Binding Site Group Limited, 8 Calthorpe Road, Birmingham, B15 1QT, UK
| | - Stephen Harding
- The Binding Site Group Limited, 8 Calthorpe Road, Birmingham, B15 1QT, UK.
| | | | - Luigi F Bertoli
- Department of Medicine, Brookwood Medical Center, Birmingham, AL, USA
| | - James C Barton
- Southern Iron Disorders Center, Birmingham, AL, USA.,Department of Medicine, Brookwood Medical Center, Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|