1
|
Proietti J, Boylan GB, Walsh BH. Regional variability in therapeutic hypothermia eligibility criteria for neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2024; 96:1153-1161. [PMID: 38649726 PMCID: PMC11521984 DOI: 10.1038/s41390-024-03184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Early induced therapeutic hypothermia represents the cornerstone treatment in neonates with probable hypoxic-ischemic encephalopathy. The selection of patients for treatment usually involves meeting criteria indicating evidence of perinatal hypoxia-ischemia and the presence of moderate or severe encephalopathy. In this review, we highlight the variability that exists between some of the different regional and national eligibility guidelines. Determining the potential presence of perinatal hypoxia-ischemia may require either one, two or three signs amongst history of acute perinatal event, prolonged resuscitation at delivery, abnormal blood gases and low Apgar score, with a range of cutoff values. Clinical neurological exams often define the severity of encephalopathy differently, with varying number of domains required for determining eligibility and blurred interpretation of findings assigned to different severity grades in different systems. The role of early electrophysiological assessment is weighted differently. A clinical implication is that infants may receive different care depending on the location in which they are born. This could also impact epidemiological data, as inference of rates of moderate-severe encephalopathy based on therapeutic hypothermia rates are misleading and influenced by different eligibility methods used. We would advocate that a universally endorsed single severity staging of encephalopathy is vital for standardizing management and neonatal outcome. IMPACT: Variability exists between regional and national therapeutic hypothermia eligibility guidelines for neonates with probable hypoxic-ischemic encephalopathy. Differences are common in both criteria indicating perinatal hypoxia-ischemia and criteria defining moderate or severe encephalopathy. The role of early electrophysiological assessment is also weighted unequally. This reflects in different individual care and impacts research data. A universally endorsed single severity staging of encephalopathy would be crucial for standardizing management.
Collapse
Affiliation(s)
- Jacopo Proietti
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- Department of Engineering for Innovation Medicine, Innovation Biomedicine section, University of Verona, Verona, Italy
| | - Geraldine B Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Brian H Walsh
- INFANT Research Centre, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Dickman JA, Keene JC, Natarajan N, Morgan LA, Carrasco M. A Comparison of Treatment Practices for Newborn Seizure Management Across Level II and III Neonatal Intensive Care Units in the United States. Pediatr Neurol 2024; 161:108-112. [PMID: 39368245 DOI: 10.1016/j.pediatrneurol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 09/08/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Neonatal seizures (NS) represent an important clinical manifestation among critically ill infants and are often the first sign of underlying brain injury. Early recognition and treatment are essential to reduce morbidity and mortality. The present study investigated the NS management and treatment approaches employed by level II/III neonatal intensive care units (NICUs) across the United States to identify areas of consensus and variability. METHODS Personnel associated with level II/III NICUs were directly surveyed with an electronic questionnaire. Access to neurology specialists, on-site electroencephalography (EEG) monitoring, and use of antiseizure medications was directly queried. A total of 51 NICUs participated in this survey. RESULTS Twenty-five percent of the surveyed NICUs reported having an established clinical practice pathway available for treating NS. Twenty-four percent endorsed having written guidelines that provided a formal definition for the concept of "neonatal seizures." Although the majority of NICUs reported having phenobarbital available for rapid seizure management, most NICUs lacked access to additional antiseizure medications for treatment escalation. Twenty-four percent of the surveyed NICUs had no access to EEG monitoring available to them on-site. Daytime and overnight access to neurology consultants was limited and variable. CONCLUSIONS Findings were consistent with a lack of equitable access for NS treatment. Areas of potential improvement include development and implementation of a protocol for rapidly treating NS that emphasizes enhanced access to EEG and rapid neurology consultation, acknowledging and improving upon resource limitations. These developments may eventually provide earlier detection, evaluation, and treatment of seizures in newborns, contributing to improved long-term outcomes.
Collapse
Affiliation(s)
- Jacky A Dickman
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer C Keene
- Division of Child Neurology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Niranjana Natarajan
- Division of Child Neurology, Department of Neurology, University of Washington, Seattle, Washington
| | - Lindsey A Morgan
- Division of Child Neurology, Department of Neurology, University of Washington, Seattle, Washington
| | - Melisa Carrasco
- Section of Pediatric Neurology, Department of Neurology, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
3
|
Sandoval Karamian AG, DiGiovine MP, Massey SL. Neonatal Seizures. Pediatr Rev 2024; 45:381-393. [PMID: 38945992 DOI: 10.1542/pir.2023-006016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 07/02/2024]
Affiliation(s)
- Amanda G Sandoval Karamian
- Division of Neurology, Department of Pediatrics, University of Utah School of Medicine and Primary Children's Hospital, Salt Lake City, UT
| | - Marissa P DiGiovine
- Division of Neurology, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Shavonne L Massey
- Division of Neurology, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
4
|
Stieren ES, Rottkamp CA, Brooks-Kayal AR. Neonatal Seizures. Neoreviews 2024; 25:e338-e349. [PMID: 38821905 DOI: 10.1542/neo.25-6-e338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 06/02/2024]
Abstract
Neonatal seizures are common among patients with acute brain injury or critical illness and can be difficult to diagnose and treat. The most common etiology of neonatal seizures is hypoxic-ischemic encephalopathy, with other common causes including ischemic stroke and intracranial hemorrhage. Neonatal clinicians can use a standardized approach to patients with suspected or confirmed neonatal seizures that entails laboratory testing, neuromonitoring, and brain imaging. The primary goals of management of neonatal seizures are to identify the underlying cause, correct it if possible, and prevent further brain injury. This article reviews recent evidence-based guidelines for the treatment of neonatal seizures and discusses the long-term outcomes of patients with neonatal seizures.
Collapse
Affiliation(s)
- Emily S Stieren
- Division of Neonatology, Department of Pediatrics, University of California, Davis, Sacramento, CA
| | - Catherine A Rottkamp
- Division of Neonatology, Department of Pediatrics, University of California, Davis, Sacramento, CA
| | - Amy R Brooks-Kayal
- Department of Neurology, University of California, Davis, Sacramento, CA
| |
Collapse
|
5
|
Davies HG, Thorley EV, Al-Bahadili R, Sutton N, Burt J, Hookham L, Karampatsas K, Lambach P, Muñoz F, Cutland CL, Omer S, Le Doare K. Defining and reporting adverse events of special interest in comparative maternal vaccine studies: a systematic review. Vaccine X 2024; 18:100464. [PMID: 38495929 PMCID: PMC10943481 DOI: 10.1016/j.jvacx.2024.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction The GAIA (Global Alignment on Immunisation Safety Assessment in Pregnancy) consortium was established in 2014 with the aim of creating a standardised, globally coordinated approach to monitoring the safety of vaccines administered in pregnancy. The consortium developed twenty-six standardised definitions for classifying obstetric and infant adverse events. This systematic review sought to evaluate the current state of adverse event reporting in maternal vaccine trials following the publication of the case definitions by GAIA, and the extent to which these case definitions have been adopted in maternal vaccine safety research. Methods A comprehensive search of published literature was undertaken to identify maternal vaccine research studies. PubMed, EMBASE, Web of Science, and Cochrane were searched using a combination of MeSH terms and keyword searches to identify observational or interventional studies that examined vaccine safety in pregnant women with a comparator group. A two-reviewer screening process was undertaken, and a narrative synthesis of the results presented. Results 14,737 titles were identified from database searches, 435 titles were selected as potentially relevant, 256 were excluded, the remaining 116 papers were included. Influenza vaccine was the most studied (25.0%), followed by TDaP (20.7%) and SARS-CoV-2 (12.9%).Ninety-one studies (78.4%) were conducted in high-income settings. Forty-eight (41.4%) utilised electronic health-records. The majority focused on reporting adverse events of special interest (AESI) in pregnancy (65.0%) alone or in addition to reactogenicity (27.6%). The most frequently reported AESI were preterm birth, small for gestational age and hypertensive disorders. Fewer than 10 studies reported use of GAIA definitions. Gestational age assessment was poorly described; of 39 studies reporting stillbirths 30.8% provided no description of the gestational age threshold. Conclusions Low-income settings remain under-represented in comparative maternal vaccine safety research. There has been poor uptake of GAIA case definitions. A lack of harmonisation and standardisation persists limiting comparability of the generated safety data.
Collapse
Affiliation(s)
- Hannah G Davies
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
- MRC, UVRI & LSHTM Uganda Research Centre, Entebbe, Uganda
- Makerere University John Hopkins Research Unit, Kampala, Uganda
| | - Emma V Thorley
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Rossul Al-Bahadili
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Natalina Sutton
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Jessica Burt
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Lauren Hookham
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Kostas Karampatsas
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | | - Flor Muñoz
- Paediatric Infectious Diseases Department, Baylor College of Medicine, Houston, TX, USA
| | - Clare L Cutland
- Wits African Leadership in Vaccinology Expertise (Wits-Alive), School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Saad Omer
- O’Donnell School of Public Health, UT Southwestern Medical Center, Texas, USA
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
- Makerere University John Hopkins Research Unit, Kampala, Uganda
- World Health Organization, Geneva, Switzerland
| |
Collapse
|
6
|
Krishnan V, Ujjanappa V, Vegda H, Annayappa MK, Wali P, Fattepur S, Chandriah S, Devadas S, Kariappa M, Gireeshan VK, Thamunni AV, Montaldo P, Burgod C, Garegrat R, Muraleedharan P, Pant S, Newton CR, Cross JH, Bassett P, Shankaran S, Thayyil S, Pressler RM. Sequential levetiracetam and phenytoin in electroencephalographic neonatal seizures unresponsive to phenobarbital: a multicenter prospective observational study in India. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 25:100371. [PMID: 39021480 PMCID: PMC467079 DOI: 10.1016/j.lansea.2024.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 02/06/2024] [Indexed: 07/20/2024]
Abstract
Background Although levetiracetam and phenytoin are widely used antiseizure medications (ASM) in neonates, their efficacy on seizure freedom is unclear. We evaluated electroencephalographic (EEG) seizure freedom following sequential levetiracetam and phenytoin in neonatal seizures unresponsive to phenobarbital. Methods We recruited neonates born ≥35 weeks and aged <72 h who had continued electrographic seizures despite phenobarbital, from three Indian hospitals, between 20 June 2020 and 31 July 2022. The neonates were treated with intravenous levetiracetam (20 mg/kg x 2 doses, second line) followed by phenytoin (20 mg/kg x 2 doses, third line) if seizures persisted. The primary outcome was complete seizure freedom, defined as an absence of seizures on EEG for at least 60 min within 40 min from the start of infusion. Findings Of the 206 neonates with continued seizures despite phenobarbital, 152 received levetiracetam with EEG. Of these one EEG was missing, 47 (31.1%) were in status epilepticus, and primary outcome data were available in 145. Seizure freedom occurred in 20 (13.8%; 95% CI 8.6%-20.5%) after levetiracetam; 16 (80.0%) responded to the first dose and 4 (20.0%) to the second dose. Of the 125 neonates with persisting seizures after levetiracetam, 114 received phenytoin under EEG monitoring. Of these, the primary outcome data were available in 104. Seizure freedom occurred in 59 (56.7%; 95% CI 46.7%-66.4%) neonates; 54 (91.5%) responded to the first dose and 5 (8.5%) to the second dose. Interpretation With the conventional doses, levetiracetam was associated with immediate EEG seizure cessation in only 14% of phenobarbital unresponsive neonatal seizures. Additional treatment with phenytoin along with levetiracetam attained seizure freedom in further 57%. Safety and efficacy of higher doses of levetiracetam should be evaluated in well-designed randomised controlled trials. Funding National Institute for Health and Care Research (NIHR) Research and Innovation for Global Health Transformation (NIHR200144).
Collapse
Affiliation(s)
- Vaisakh Krishnan
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Vidya Ujjanappa
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Hemadri Vegda
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | | | - Pooja Wali
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | | | - Savitha Chandriah
- Department of Obstetrics and Gynecology, Bangalore Medical College and Research Institute, Bengaluru, India
| | - Sahana Devadas
- Department of Pediatrics, Bangalore Medical College and Research Institute, Bengaluru, India
| | - Mallesh Kariappa
- Department of Pediatrics, Bangalore Medical College and Research Institute, Bengaluru, India
| | | | | | - Paolo Montaldo
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
- Department of Neonatology, Università Degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Constance Burgod
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Reema Garegrat
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | | | - Stuti Pant
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | | | - J Helen Cross
- UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Seetha Shankaran
- Department of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, USA
- University of Texas at Austin, Dell Children’s Hospital, Austin, USA
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Imperial College, London, United Kingdom
| | - Ronit M. Pressler
- Department of Neurophysiology, Great Ormond Street Hospital, United Kingdom
- Department of Clinical Neuroscience, UCL-Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
7
|
Alemayehu T, Gebre T, Asmare B, Tafere Y, Kassie B, Tsega TD, Alemu M, Messelu MA. Incidence and predictors of neonatal seizures among neonates admitted in Debre Markos Comprehensive Specialized Hospital, Northwest Ethiopia. A prospective follow-up study. Heliyon 2024; 10:e29999. [PMID: 38707374 PMCID: PMC11066383 DOI: 10.1016/j.heliyon.2024.e29999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Neonatal seizures are the most common neurological problem among newborns. To date, scientific studies on the incidence and predictors of neonatal seizures in African countries, including Ethiopia are scarce. Therefore, this study aimed to assess the incidence and predictors of neonatal seizures among neonates admitted to Debre Markos comprehensive Specialized Hospital. Methods An institutional-based prospective follow-up study was conducted in Debre Markos comprehensive specialized hospital from February 1, 2022 to January 30, 2023. A systematic random sampling technique was used to select a total of 198 neonates. Data were entered into Epi-Data 4.2 and then exported to STATA version 14.1 for analysis. The Kaplan-Meier survival curve and the log-rank test were computed to explore the descriptive statistics. Variables with a p-value ≤0.2 in bi-variable Cox-regression were selected for multivariable Cox-regression analysis. Finally, a p-value of <0.05 was used to declare the statistical significance of the association with the outcome variable. Results The overall incidence rate of neonatal seizures was 35 per 1000 person-day observations. The mean follow-up time for this study was 123.4 h. The cumulative survival probability of neonates' at 0 to 24 and 0-72 h was 89.8 % and 81.71 %, respectively. The statistically significant predictors for the incidence of neonatal seizures were perinatal asphyxia (AHR = 10.95; 95%CI: 4.81, 24.93), subgaleal hemorrhage (AHR = 5.17; 95%CI: 2.09, 12.79), and gestational age <37 weeks (AHR = 4.62; 95%CI: 1.62, 13.22). Conclusions The incidence rate of neonatal seizures in this study was high. Neonates born with gestational age <37 weeks, having perinatal asphyxia, and having subgaleal hemorrhage were statistical predictors for the incidence of neonatal seizures. Thus, healthcare professionals should give special attention to neonates born with gestational age <37 weeks, prevent perinatal asphyxia and subgaleal hemorrhage.
Collapse
Affiliation(s)
- Tefera Alemayehu
- Debre Markos Comprehensive Specialized Hospital, Debre Markos, Ethiopia
| | - Tsige Gebre
- Department of Public Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bayachew Asmare
- Department of Human Nutrition, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yilkal Tafere
- Department of Public Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bekalu Kassie
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tilahun Degu Tsega
- Department of Public Health, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Mulu Alemu
- Debre Markos Comprehensive Specialized Hospital, Debre Markos, Ethiopia
| | - Mengistu Abebe Messelu
- Department of Nursing, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
8
|
Fang C, Yang L, Xiao F, Yan K, Zhou W. Genotype and phenotype features and prognostic factors of neonatal-onset pyridoxine-dependent epilepsy: A systematic review. Epilepsy Res 2024; 202:107363. [PMID: 38636407 DOI: 10.1016/j.eplepsyres.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is a rare autosomal recessive disorder due to a deficiency of α-aminoadipic semialdehyde dehydrogenase. This study aimed to systematically explore genotypic and phenotypic features and prognostic factors of neonatal-onset PDE. A literature search covering PubMed, Elsevier, and Web of Science was conducted from January 2006 to August 2023. We identified 56 eligible studies involving 169 patients and 334 alleles. The c.1279 G>C variant was the most common variant of neonatal-onset PDE (25.7 %). All patients were treated with pyridoxine; forty patients received dietary intervention therapy. 63.9 % of the patients were completely seizure-free; however, 68.6 % of the patients had neurodevelopmental delays. Additionally, homozygous c.1279 G>C variants were significantly associated with ventriculomegaly, abnormal white matter signal, and cysts (P<0.05). In contrast, homozygous c.1364 T>C was associated with clonic seizure (P=0.031). Pyridoxine used immediately at seizure onset was an independent protective factor for developmental delay (P=0.035; odds ratio [OR]: 3.14). Besides, pyridoxine used early in the neonatal period was a protective factor for language delay (P=0.044; OR: 4.59). In contrast, neonatal respiratory distress (P=0.001; OR: 127.44) and abnormal brain magnetic resonance imaging (P=0.049; OR: 3.64) were risk factors. Prenatal movement abnormality (P=0.041; OR: 20.56) and abnormal white matter signal (P=0.012; OR: 24.30) were risk factors for motor delay. Myoclonic seizure (P=0.023; OR: 7.13) and status epilepticus (P=0.000; OR: 9.93) were risk factors for breakthrough seizures. In conclusion, our study indicated that pyridoxine should be started immediately when unexplained neonatal seizures occur and not later than the neonatal period to prevent poor neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Chuchu Fang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lin Yang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kai Yan
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Pellinen J, Foster EC, Wilmshurst JM, Zuberi SM, French J. Improving epilepsy diagnosis across the lifespan: approaches and innovations. Lancet Neurol 2024; 23:511-521. [PMID: 38631767 DOI: 10.1016/s1474-4422(24)00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/19/2024]
Abstract
Epilepsy diagnosis is often delayed or inaccurate, exposing people to ongoing seizures and their substantial consequences until effective treatment is initiated. Important factors contributing to this problem include delayed recognition of seizure symptoms by patients and eyewitnesses; cultural, geographical, and financial barriers to seeking health care; and missed or delayed diagnosis by health-care providers. Epilepsy diagnosis involves several steps. The first step is recognition of epileptic seizures; next is classification of epilepsy type and whether an epilepsy syndrome is present; finally, the underlying epilepsy-associated comorbidities and potential causes must be identified, which differ across the lifespan. Clinical history, elicited from patients and eyewitnesses, is a fundamental component of the diagnostic pathway. Recent technological advances, including smartphone videography and genetic testing, are increasingly used in routine practice. Innovations in technology, such as artificial intelligence, could provide new possibilities for directly and indirectly detecting epilepsy and might make valuable contributions to diagnostic algorithms in the future.
Collapse
Affiliation(s)
- Jacob Pellinen
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Emma C Foster
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jo M Wilmshurst
- Red Cross War Memorial Children's Hospital and University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | - Sameer M Zuberi
- Royal Hospital for Children and University of Glasgow School of Health & Wellbeing, Glasgow, UK
| | - Jacqueline French
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Pavel AM, Rennie JM, de Vries LS, Mathieson SR, Livingstone V, Finder M, Foran A, Shah DK, Pressler RM, Weeke LC, Dempsey EM, Murray DM, Boylan GB. Temporal evolution of electrographic seizures in newborn infants with hypoxic-ischaemic encephalopathy requiring therapeutic hypothermia: a secondary analysis of the ANSeR studies. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:214-224. [PMID: 38246187 PMCID: PMC10864190 DOI: 10.1016/s2352-4642(23)00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Despite extensive research on neonatal hypoxic-ischaemic encephalopathy, detailed information about electrographic seizures during active cooling and rewarming of therapeutic hypothermia is sparse. We aimed to describe temporal evolution of seizures and determine whether there is a correlation of seizure evolution with 2-year outcome. METHODS This secondary analysis included newborn infants recruited from eight European tertiary neonatal intensive care units for two multicentre studies (a randomised controlled trial [NCT02431780] and an observational study [NCT02160171]). Infants were born at 36+0 weeks of gestation with moderate or severe hypoxic-ischaemic encephalopathy and underwent therapeutic hypothermia with prolonged conventional video-electroencephalography (EEG) monitoring for 10 h or longer from the start of rewarming. Seizure burden characteristics were calculated based on electrographic seizures annotations: hourly seizure burden (minutes of seizures within an hour) and total seizure burden (minutes of seizures within the entire recording). We categorised infants into those with electrographic seizures during active cooling only, those with electrographic seizures during cooling and rewarming, and those without seizures. Neurodevelopmental outcomes were determined using the Bayley's Scales of Infant and Toddler Development, Third Edition (BSID-III), the Griffiths Mental Development Scales (GMDS), or neurological assessment. An abnormal outcome was defined as death or neurodisability at 2 years. Neurodisability was defined as a composite score of 85 or less on any subscales for BSID-III, a total score of 87 or less for GMDS, or a diagnosis of cerebral palsy (dyskinetic cerebral palsy, spastic quadriplegia, or mixed motor impairment) or epilepsy. FINDINGS Of 263 infants recruited between Jan 1, 2011, and Feb 7, 2017, we included 129 infants: 65 had electrographic seizures (43 during active cooling only and 22 during and after active cooling) and 64 had no seizures. Compared with infants with seizures during active cooling only, those with seizures during and after active cooling had a longer seizure period (median 12 h [IQR 3-28] vs 68 h [35-86], p<0·0001), more seizures (median 12 [IQR 5-36] vs 94 [24-134], p<0·0001), and higher total seizure burden (median 69 min [IQR 22-104] vs 167 min [54-275], p=0·0033). Hourly seizure burden peaked at about 20-24 h in both groups, and infants with seizures during and after active cooling had a secondary peak at 85 h of age. When combined, worse EEG background (major abnormalities and inactive background) at 12 h and 24 h were associated with the seizure group: compared with infants with a better EEG background (normal, mild, or moderate abnormalities), infants with a worse EEG background were more likely to have seizures after cooling at 12 h (13 [54%] of 24 vs four [14%] of 28; odds ratio 7·09 [95% CI 1·88-26·77], p=0·0039) and 24 h (14 [56%] of 25 vs seven [18%] of 38; 5·64 [1·81-17·60], p=0·0029). There was a significant relationship between EEG grade at 12 h (four categories) and seizure group (p=0·020). High total seizure burden was associated with increased odds of an abnormal outcome at 2 years of age (odds ratio 1·007 [95% CI 1·000-1·014], p=0·046), with a medium negative correlation between total seizure burden and BSID-III cognitive score (rS=-0·477, p=0·014, n=26). INTERPRETATION Overall, half of infants with hypoxic-ischaemic encephalopathy had electrographic seizures and a third of those infants had seizures beyond active cooling, with worse outcomes. These results raise the importance of prolonged EEG monitoring of newborn infants with hypoxic-ischaemic encephalopathy not only during active cooling but throughout the rewarming phase and even longer when seizures are detected. FUNDING Wellcome Trust, Science Foundation Ireland, and the Irish Health Research Board.
Collapse
Affiliation(s)
- Andreea M Pavel
- INFANT Research Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Janet M Rennie
- Institute for Women's Health, University College London, London, UK
| | - Linda S de Vries
- Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sean R Mathieson
- INFANT Research Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Vicki Livingstone
- INFANT Research Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Mikael Finder
- Department of Neonatal Medicine, Karolinska University Hospital, Stockholm, Sweden; Division of Paediatrics, Department CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Adrienne Foran
- Department of Neonatal Medicine, Rotunda Hospital, Dublin, Ireland
| | - Divyen K Shah
- Royal London Hospital, London, UK; London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ronit M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Lauren C Weeke
- Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eugene M Dempsey
- INFANT Research Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Research Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Geraldine B Boylan
- INFANT Research Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Spenard S, Ivan Salazar Cerda C, Cizmeci MN. Neonatal Seizures in Low- and Middle-Income Countries: A Review of the Literature and Recommendations for the Management. Turk Arch Pediatr 2024; 59:13-22. [PMID: 38454256 PMCID: PMC10837585 DOI: 10.5152/turkarchpediatr.2024.23250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 03/09/2024]
Abstract
Neonatal seizures are a common cause of neonatal intensive care unit (NICU) admission and a significant source of morbidity and mortality worldwide. Over the recent decades, there have been significant improvements in perinatal and neonatal medicine and electroencephalograp hic monitoring that have enhanced the diagnosis and treatment of neonatal seizures in highincome countries. However, the management of neonatal seizures remains a major challenge in low- to middle-income countries, where the availabilityof resources is limited. The purpose of this article is to present a comprehensive review of the current evidence on the etiology, pathophysiology, diagnosis, and treatment of neonatal seizures and to offer practical management recommendations that could be implemented in resource-limited settings. Cite this article as: Spenard S, Ivan Salazar Cerda C, Cizmeci MN. Neonatal seizures in low and middleincome countries: Review of the literature and recommendations for the management. Turk Arch Pediatr. 2024;59(1):13-22.
Collapse
Affiliation(s)
- Sarah Spenard
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Carlos Ivan Salazar Cerda
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mehmet N. Cizmeci
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Cornet MC, Kuzniewicz M, Scheffler A, Forquer H, Hamilton E, Newman TB, Wu YW. Perinatal Hypoxic-Ischemic Encephalopathy: Incidence Over Time Within a Modern US Birth Cohort. Pediatr Neurol 2023; 149:145-150. [PMID: 37883841 PMCID: PMC10842130 DOI: 10.1016/j.pediatrneurol.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Recent studies suggest that the incidence of perinatal hypoxic-ischemic encephalopathy (HIE) may be increasing in developed countries. However, this observed increase may be due to increased ascertainment and increased treatment with therapeutic hypothermia rather than an increase in disease burden. In a US population-based cross-sectional study, we determined the incidence of perinatal HIE over time. METHODS The study population included all 289,793 live-born infants ≥35 weeks gestational age born at 15 Kaiser Permanente Northern California hospitals between 2012 and 2019. Perinatal HIE was defined as the presence of both neonatal acidosis (i.e., cord blood pH < 7 or base deficit ≥10, or base deficit ≥10 on first infant gas) and neonatal encephalopathy confirmed by medical record review. Hospital discharge diagnoses of HIE were determined by extracting International Classification of Disease diagnostic codes for HIE assigned upon hospital discharge. RESULTS The population incidence of perinatal HIE was 1.7 per 1000. Although the incidence of perinatal HIE did not change significantly, both hospital discharge diagnoses of HIE and treatment with therapeutic hypothermia increased significantly during the study period. The sensitivity and positive predictive value of a hospital discharge diagnosis of HIE for identifying perinatal HIE confirmed by chart review were 72% and 79%, respectively. CONCLUSIONS During the study years, the incidence of perinatal HIE remained stable despite increases in hospital discharge diagnoses of HIE and in the use of therapeutic hypothermia. Our findings underscore the importance of applying stringent diagnostic criteria when diagnosing this complex condition.
Collapse
Affiliation(s)
- Marie-Coralie Cornet
- Department of Pediatrics, University of California San Francisco, San Francisco, California.
| | - Michael Kuzniewicz
- Department of Pediatrics, Kaiser Permanente, Northern California, Oakland, California; Division of Research, Kaiser Permanente, Northern California, Oakland, California
| | - Aaron Scheffler
- Department of Biostatistics, University of California San Francisco, San Francisco, California
| | - Heather Forquer
- Division of Research, Kaiser Permanente, Northern California, Oakland, California
| | - Emily Hamilton
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Obstetrical Consultant, PeriGen, Cary, North Carolina
| | - Thomas B Newman
- Department of Pediatrics, University of California San Francisco, San Francisco, California; Department of Biostatistics, University of California San Francisco, San Francisco, California
| | - Yvonne W Wu
- Department of Pediatrics, University of California San Francisco, San Francisco, California; Department of Neurology, University of California San Francisco, San Francisco, California
| |
Collapse
|
13
|
Abiramalatha T, Thanigainathan S, Ramaswamy VV, Pressler R, Brigo F, Hartmann H. Anti-seizure medications for neonates with seizures. Cochrane Database Syst Rev 2023; 10:CD014967. [PMID: 37873971 PMCID: PMC10594593 DOI: 10.1002/14651858.cd014967.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Newborn infants are more prone to seizures than older children and adults. The neuronal injury caused by seizures in neonates often results in long-term neurodevelopmental sequelae. There are several options for anti-seizure medications (ASMs) in neonates. However, the ideal choice of first-, second- and third-line ASM is still unclear. Further, many other aspects of seizure management such as whether ASMs should be initiated for only-electrographic seizures and how long to continue the ASM once seizure control is achieved are elusive. OBJECTIVES 1. To assess whether any ASM is more or less effective than an alternative ASM (both ASMs used as first-, second- or third-line treatment) in achieving seizure control and improving neurodevelopmental outcomes in neonates with seizures. We analysed EEG-confirmed seizures and clinically-diagnosed seizures separately. 2. To assess maintenance therapy with ASM versus no maintenance therapy after achieving seizure control. We analysed EEG-confirmed seizures and clinically-diagnosed seizures separately. 3. To assess treatment of both clinical and electrographic seizures versus treatment of clinical seizures alone in neonates. SEARCH METHODS We searched MEDLINE, Embase, CENTRAL, Epistemonikos and three databases in May 2022 and June 2023. These searches were not limited other than by study design to trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) that included neonates with EEG-confirmed or clinically diagnosed seizures and compared (1) any ASM versus an alternative ASM, (2) maintenance therapy with ASM versus no maintenance therapy, and (3) treatment of clinical or EEG seizures versus treatment of clinical seizures alone. DATA COLLECTION AND ANALYSIS Two review authors assessed trial eligibility, risk of bias and independently extracted data. We analysed treatment effects in individual trials and reported risk ratio (RR) for dichotomous data, and mean difference (MD) for continuous data, with respective 95% confidence interval (CI). We used GRADE to assess the certainty of evidence. MAIN RESULTS We included 18 trials (1342 infants) in this review. Phenobarbital versus levetiracetam as first-line ASM in EEG-confirmed neonatal seizures (one trial) Phenobarbital is probably more effective than levetiracetam in achieving seizure control after first loading dose (RR 2.32, 95% CI 1.63 to 3.30; 106 participants; moderate-certainty evidence), and after maximal loading dose (RR 2.83, 95% CI 1.78 to 4.50; 106 participants; moderate-certainty evidence). However, we are uncertain about the effect of phenobarbital when compared to levetiracetam on mortality before discharge (RR 0.30, 95% CI 0.04 to 2.52; 106 participants; very low-certainty evidence), requirement of mechanical ventilation (RR 1.21, 95% CI 0.76 to 1.91; 106 participants; very low-certainty evidence), sedation/drowsiness (RR 1.74, 95% CI 0.68 to 4.44; 106 participants; very low-certainty evidence) and epilepsy post-discharge (RR 0.92, 95% CI 0.48 to 1.76; 106 participants; very low-certainty evidence). The trial did not report on mortality or neurodevelopmental disability at 18 to 24 months. Phenobarbital versus phenytoin as first-line ASM in EEG-confirmed neonatal seizures (one trial) We are uncertain about the effect of phenobarbital versus phenytoin on achieving seizure control after maximal loading dose of ASM (RR 0.97, 95% CI 0.54 to 1.72; 59 participants; very low-certainty evidence). The trial did not report on mortality or neurodevelopmental disability at 18 to 24 months. Maintenance therapy with ASM versus no maintenance therapy in clinically diagnosed neonatal seizures (two trials) We are uncertain about the effect of short-term maintenance therapy with ASM versus no maintenance therapy during the hospital stay (but discontinued before discharge) on the risk of repeat seizures before hospital discharge (RR 0.76, 95% CI 0.56 to 1.01; 373 participants; very low-certainty evidence). Maintenance therapy with ASM compared to no maintenance therapy may have little or no effect on mortality before discharge (RR 0.69, 95% CI 0.39 to 1.22; 373 participants; low-certainty evidence), mortality at 18 to 24 months (RR 0.94, 95% CI 0.34 to 2.61; 111 participants; low-certainty evidence), neurodevelopmental disability at 18 to 24 months (RR 0.89, 95% CI 0.13 to 6.12; 108 participants; low-certainty evidence) and epilepsy post-discharge (RR 3.18, 95% CI 0.69 to 14.72; 126 participants; low-certainty evidence). Treatment of both clinical and electrographic seizures versus treatment of clinical seizures alone in neonates (two trials) Treatment of both clinical and electrographic seizures when compared to treating clinical seizures alone may have little or no effect on seizure burden during hospitalisation (MD -1871.16, 95% CI -4525.05 to 782.73; 68 participants; low-certainty evidence), mortality before discharge (RR 0.59, 95% CI 0.28 to 1.27; 68 participants; low-certainty evidence) and epilepsy post-discharge (RR 0.75, 95% CI 0.12 to 4.73; 35 participants; low-certainty evidence). The trials did not report on mortality or neurodevelopmental disability at 18 to 24 months. We report data from the most important comparisons here; readers are directed to Results and Summary of Findings tables for all comparisons. AUTHORS' CONCLUSIONS Phenobarbital as a first-line ASM is probably more effective than levetiracetam in achieving seizure control after the first loading dose and after the maximal loading dose of ASM (moderate-certainty evidence). Phenobarbital + bumetanide may have little or no difference in achieving seizure control when compared to phenobarbital alone (low-certainty evidence). Limited data and very low-certainty evidence preclude us from drawing any reasonable conclusion on the effect of using one ASM versus another on other short- and long-term outcomes. In neonates who achieve seizure control after the first loading dose of phenobarbital, maintenance therapy compared to no maintenance ASM may have little or no effect on all-cause mortality before discharge, mortality by 18 to 24 months, neurodevelopmental disability by 18 to 24 months and epilepsy post-discharge (low-certainty evidence). In neonates with hypoxic-ischaemic encephalopathy, treatment of both clinical and electrographic seizures when compared to treating clinical seizures alone may have little or no effect on seizure burden during hospitalisation, all-cause mortality before discharge and epilepsy post-discharge (low-certainty evidence). All findings of this review apply only to term and late preterm neonates. We need well-designed RCTs for each of the three objectives of this review to improve the precision of the results. These RCTs should use EEG to diagnose seizures and should be adequately powered to assess long-term neurodevelopmental outcomes. We need separate RCTs evaluating the choice of ASM in preterm infants.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Neonatology, KMCH Institute of Health Sciences and Research (KMCHIHSR), Coimbatore, Tamil Nadu, India
- KMCH Research Foundation, Coimbatore, Tamil Nadu, India
| | | | | | - Ronit Pressler
- Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK
- Clinical Neurophysiology and Neonatology, Cambridge University Hospital, Cambridge, UK
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK
| | - Francesco Brigo
- Neurology, Hospital of Merano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University, Merano-Meran, Italy
- Innovation Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano-Bozen, Italy
| | - Hans Hartmann
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Pressler RM, Abend NS, Auvin S, Boylan G, Brigo F, Cilio MR, De Vries LS, Elia M, Espeche A, Hahn CD, Inder T, Jette N, Kakooza-Mwesige A, Mader S, Mizrahi EM, Moshé SL, Nagarajan L, Noyman I, Nunes ML, Samia P, Shany E, Shellhaas RA, Subota A, Triki CC, Tsuchida T, Vinayan KP, Wilmshurst JM, Yozawitz EG, Hartmann H. Treatment of seizures in the neonate: Guidelines and consensus-based recommendations-Special report from the ILAE Task Force on Neonatal Seizures. Epilepsia 2023; 64:2550-2570. [PMID: 37655702 DOI: 10.1111/epi.17745] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Seizures are common in neonates, but there is substantial management variability. The Neonatal Task Force of the International League Against Epilepsy (ILAE) developed evidence-based recommendations about antiseizure medication (ASM) management in neonates in accordance with ILAE standards. Six priority questions were formulated, a systematic literature review and meta-analysis were performed, and results were reported following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 standards. Bias was evaluated using the Cochrane tool and risk of Bias in non-randomised studies - of interventions (ROBINS-I), and quality of evidence was evaluated using grading of recommendations, assessment, development and evaluation (GRADE). If insufficient evidence was available, then expert opinion was sought using Delphi consensus methodology. The strength of recommendations was defined according to the ILAE Clinical Practice Guidelines development tool. There were six main recommendations. First, phenobarbital should be the first-line ASM (evidence-based recommendation) regardless of etiology (expert agreement), unless channelopathy is likely the cause for seizures (e.g., due to family history), in which case phenytoin or carbamazepine should be used. Second, among neonates with seizures not responding to first-line ASM, phenytoin, levetiracetam, midazolam, or lidocaine may be used as a second-line ASM (expert agreement). In neonates with cardiac disorders, levetiracetam may be the preferred second-line ASM (expert agreement). Third, following cessation of acute provoked seizures without evidence for neonatal-onset epilepsy, ASMs should be discontinued before discharge home, regardless of magnetic resonance imaging or electroencephalographic findings (expert agreement). Fourth, therapeutic hypothermia may reduce seizure burden in neonates with hypoxic-ischemic encephalopathy (evidence-based recommendation). Fifth, treating neonatal seizures (including electrographic-only seizures) to achieve a lower seizure burden may be associated with improved outcome (expert agreement). Sixth, a trial of pyridoxine may be attempted in neonates presenting with clinical features of vitamin B6-dependent epilepsy and seizures unresponsive to second-line ASM (expert agreement). Additional considerations include a standardized pathway for the management of neonatal seizures in each neonatal unit and informing parents/guardians about the diagnosis of seizures and initial treatment options.
Collapse
Affiliation(s)
- Ronit M Pressler
- Clinical Neuroscience, UCL-Great Ormond Street Institute of Child Health, London, UK
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nicholas S Abend
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stéphan Auvin
- Department Medico-Universitaire Innovation Robert-Debré, Robert Debré Hospital, Public Hospital Network of Paris, Pediatric Neurology, University of Paris, Paris, France
| | - Geraldine Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano, Italy
- Innovation Research and Teaching Service (SABES-ASDAA), Teaching Hospital of Paracelsus Medical Private University, Bolzano-Bozen, Italy
| | - Maria Roberta Cilio
- Division of Pediatric Neurology, Saint-Luc University Hospital, and Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Linda S De Vries
- Department of Neonatology, University Medical Center, Utrecht, the Netherlands
| | - Maurizio Elia
- Unit of Neurology and Clinical Neurophysiopathology, Oasi Research Institute-IRCCS, Troina, Italy
| | - Alberto Espeche
- Department of Neurology, Hospital Materno Infantil, Salta, Argentina
| | - Cecil D Hahn
- Department of Pediatrics, Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Terrie Inder
- Department of Pediatrics, Newborn Medicine, Children's Hospital of Orange County, University of California, Irvine, Irvine, California, USA
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Silke Mader
- Scientific Affairs, European Foundation for the Care of Newborn Infants, Munich, Germany
| | - Eli M Mizrahi
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
- Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, and Montefiore Medical Center, Bronx, New York, USA
| | - Lakshmi Nagarajan
- Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital and University of Western Australia, Nedlands, Western Australia, Australia
| | - Iris Noyman
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Pediatric Neurology Unit, Pediatric Division, Soroka Medical Center, Beer-Sheva, Israel
| | - Magda L Nunes
- Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS School of Medicine and the Brain Institute, Porto Alegre, Brazil
| | - Pauline Samia
- Departments of Pediatrics and Child Health, Aga Khan University, Nairobi, Kenya
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Eilon Shany
- Department of Neonatology, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Renée A Shellhaas
- Department of Neurology, Washington University, St. Louis, Missouri, USA
| | - Ann Subota
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chahnez Charfi Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax Medical School, University of Sfax, Sfax, Tunisia
| | - Tammy Tsuchida
- Departments of Neurology and Pediatrics, Children's National Health System, George Washington University School of Medicine, Washington, District of Columbia, USA
| | | | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elissa G Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Hans Hartmann
- Clinic for Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Weldegerima K, Gebremariam DS, Haftu H, Berhe G, Hadgu A, Mohammedamin MM. Neonatal Seizure Pattern, Outcome, and its Predictors Among Neonates Admitted to NICU of Ayder Comprehensive Specialized Hospital, Mekelle, Tigray, Ethiopia. Int J Gen Med 2023; 16:4343-4355. [PMID: 37781273 PMCID: PMC10540696 DOI: 10.2147/ijgm.s414420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Background Seizure is the most frequently observed symptom of neurological disorders and an important determinant of outcome during neonatal period. In clinical practice, it is prevalent and observed in neonates admitted to hospital in low-resources countries, but due to the paucity of studies in these regions, little is known about its pattern, clinical outcomes of hospitalization, and its predictors. Therefore, aims to evaluate seizure patterns, clinical outcomes, and its predictors among neonates admitted to the NICU of ACSH, Mekelle, and Tigray. Methods A hospital-based cross-sectional study design was conducted among neonates with neonatal seizures admitted to NICU of Ayder Comprehensive Specialized Hospital. Data collection was done from record reviews. SPSS Version 25 was used. Descriptive statistics and bivariate logistic regressions where a p-value of <0.05 is considered statistically significant. Results Out of 1622 NICU admissions, 155 (9.6%) were cases of neonatal seizure. The most frequently observed types of seizure in this study were subtle 70 (45.1%) and tonic 49 (31.6%) respectively. At the end of hospitalization 70.3% of neonates were discharged improved, 21.3% of neonates died and 8.4% of neonates had severe neurologic deficits. Poorly controlled seizures (AOR 4.8, 95% CI 2.6-9.2), prolonged duration of labor (AOR 4.3, 95% CI 2.2-8.8) and seizure onset <72 hours (AOR 3.7, 95% CI 1.6-8.5), respectively, were found to be independent predictors of poor neonatal outcome. Conclusion Of all neonatal admissions, neonatal seizure was observed in close to 9.6%. The most frequently observed type of seizure was subtle. Of those admitted neonates, 30% had poor outcomes following the end of their hospitalization or when they leave against medical advice for lack of improvement). Poorly controlled seizures, prolonged duration of labor, and seizure onset <72 hours were independent predictors of poor neonatal outcomes.
Collapse
Affiliation(s)
- Kiros Weldegerima
- Mekelle University, College of Health Sciences, School of Medicine, Department of Pediatrics and Child Health, Mekelle, Ethiopia
| | - Dawit Seyoum Gebremariam
- Mekelle University, College of Health Sciences, School of Medicine, Department of Pediatrics and Child Health, Mekelle, Ethiopia
| | - Hansa Haftu
- Mekelle University, College of Health Sciences, School of Medicine, Department of Pediatrics and Child Health, Mekelle, Ethiopia
| | - Gebretsadik Berhe
- Mekelle University, College of Health Sciences, School of Public Health, Department of Epidemiology, Mekelle, Ethiopia
| | - Amanuel Hadgu
- Mekelle University, College of Health Sciences, School of Medicine, Department of Pediatrics and Child Health, Mekelle, Ethiopia
| | - Mohammed Mustefa Mohammedamin
- Mekelle University, College of Health Sciences, School of Medicine, Department of Pediatrics and Child Health, Mekelle, Ethiopia
| |
Collapse
|
16
|
Davies HG, Bowman C, Watson G, Dodd C, Jones CE, Munoz FM, Heath PT, Cutland CL, Le Doare K. Standardizing case definitions for monitoring the safety of maternal vaccines globally: GAIA definitions, a review of progress to date. Int J Gynaecol Obstet 2023; 162:29-38. [PMID: 37194339 DOI: 10.1002/ijgo.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
In 2014, the Global Alignment on Immunization safety Assessment in pregnancy consortium (GAIA) was formed, with the goal of developing a harmonized, globally-concerted approach to actively monitor the safety of vaccines in pregnancy. A total of 26 standardized definitions for the classification of adverse events have been developed. The aim of this review was to identify and describe studies undertaken to assess the performance of these definitions. A literature search was undertaken to identify published studies assessing the performance of the definitions, and reference lists were snowballed. Data were abstracted by two investigators and a narrative review of the results is presented. Four studies that have evaluated 13 GAIA case definitions (50%) were identified. Five case definitions have been assessed in high-income settings only. Recommendations have been made by the investigators to improve the performance of the definitions. These include ensuring consistency across definitions, removal of the potential for ambiguity or variations in interpretation and ensuring that higher-level criteria are acceptable at lower levels of confidence. Future research should prioritize the key case definitions that have not been assessed in low- and middle-income settings, as well as the 13 that have not undergone any validation.
Collapse
Affiliation(s)
- Hannah G Davies
- Centre for Paediatric and Neonatal Infection, Institute of Infection & Immunity, St George's, University of London, London, UK
- Makerere University Johns Hopkins University Research Collaboration, Kampala, Uganda
| | - Conor Bowman
- Department of Microbiology, University College London Hospital, London, UK
| | - Gabriella Watson
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton, Southampton, UK
| | - Caitlin Dodd
- Julius Global Health, Universitair Medisch Centrum, Utrecht, the Netherlands
| | - Christine E Jones
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton and NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Flor M Munoz
- Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Paul T Heath
- Centre for Paediatric and Neonatal Infection, Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Clare L Cutland
- African Leadership in Vaccinology Expertise (Alive), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kirsty Le Doare
- Centre for Paediatric and Neonatal Infection, Institute of Infection & Immunity, St George's, University of London, London, UK
- Makerere University Johns Hopkins University Research Collaboration, Kampala, Uganda
| |
Collapse
|
17
|
Li L, Deng Y, Chen J, Xie L, Lan X, Hu Y, Hong S, Jiang L. Clinical and electroencephalography characteristics of 45 patients with neonatal seizures. Neurophysiol Clin 2023; 53:102886. [PMID: 37295040 DOI: 10.1016/j.neucli.2023.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES The aim of our study was to retrospectively research the semiology of neonatal seizures (NSs) based on the 2021 classification scheme of the International League Against Epilepsy, and the relationship between etiology and electroclinical features. METHODS Patients admitted to Children's Hospital of Chongqing Medical University from May 1, 2020 to March 30, 2022 and diagnosed with NSs were included to retrospectively investigate the etiology, seizure characteristics, prognosis, and ictal and interictal video electroencephalography (EEG) characteristics. RESULTS Of the 45 patients, 73.3% had definite etiology. Twenty-seven patients had electro-clinical seizures, of which two had both electro-clinical and electrographic-only seizures. Electrographic-only seizures were reported in 18 patients. The tonic, clonic, and electrographic-only seizures were associated with various etiologies. Both tonic and clonic seizures occurred in acute symptomatic seizures and were associated with neonatal epilepsy. 50% of tonic seizures were related to genetic factors. Among the clonic seizures, 50.0% occurred in acute symptomatic seizures. Epileptic spasms always indicated neonatal epilepsy. There were few patients who experienced automatisms and sequential seizures, and these two seizure types were associated with brain malformation and genetic factors, respectively. Patients with a normal interictal EEG had acute symptomatic seizures. whereas the interictal EEG of patients with neonatal epilepsy mainly showed burst-suppression or multifocal discharges. The ictal EEG recordings were related to seizure semiology. CONCLUSION Seizure semiology and video EEG are suggestive of potential causes but do not provide a definite etiology.
Collapse
Affiliation(s)
- Luying Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Yu Deng
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Jin Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China.
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Xinghui Lan
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Siqi Hong
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders (Chongqing), NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, NO. 136 Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
18
|
Pin JN, Leonardi L, Nosadini M, Cavicchiolo ME, Guariento C, Zarpellon A, Perilongo G, Raffagnato A, Toldo I, Baraldi E, Sartori S. Efficacy and safety of ketamine for neonatal refractory status epilepticus: case report and systematic review. Front Pediatr 2023; 11:1189478. [PMID: 37334223 PMCID: PMC10275409 DOI: 10.3389/fped.2023.1189478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Background Evidence-based data on treatment of neonatal status epilepticus (SE) are scarce. We aimed to collect data on the efficacy and safety of ketamine for the treatment of neonatal SE and to assess its possible role in the treatment of neonatal SE. Methods We described a novel case and conducted a systematic literature review on neonatal SE treated with ketamine. The search was carried out in Pubmed, Cochrane, Clinical Trial Gov, Scopus and Web of Science. Results Seven published cases of neonatal SE treated with ketamine were identified and analyzed together with our novel case. Seizures typically presented during the first 24 h of life (6/8). Seizures were resistant to a mean of five antiseizure medications. Ketamine, a NMDA receptor antagonist, appeared to be safe and effective in all neonates treated. Neurologic sequelae including hypotonia and spasticity were reported for 4/5 of the surviving children (5/8). 3/5 of them were seizure free at 1-17 months of life. Discussion Neonatal brain is more susceptible to seizures due to a shift towards increased excitation because of a paradoxical excitatory effect of GABA, a greater density of NMDA receptors and higher extracellular concentrations of glutamate. Status epilepticus and neonatal encephalopathy could further enhance these mechanisms, providing a rationale for the use of ketamine in this setting. Conclusions Ketamine in the treatment of neonatal SE showed a promising efficacy and safety profile. However, further in-depth studies and clinical trials on larger populations are needed.
Collapse
Affiliation(s)
- Jacopo Norberto Pin
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Master in Pediatrics and Pediatric Subspecialties, University Hospital of Padua, Padova, Italy
| | - Letizia Leonardi
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Margherita Nosadini
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute “Città della Speranza”, Padova, Italy
| | - Maria Elena Cavicchiolo
- Department of Women’s and Children’s Health, Neonatal Intensive Care Unit, University Hospital of Padua, Padova, Italy
| | - Chiara Guariento
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Anna Zarpellon
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Alessia Raffagnato
- Department of Women’s and Children’s Health, Child and Adolescent Neuropsychiatric Unit, University Hospital of Padua, Padova, Italy
| | - Irene Toldo
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
| | - Eugenio Baraldi
- Department of Women’s and Children’s Health, Neonatal Intensive Care Unit, University Hospital of Padua, Padova, Italy
| | - Stefano Sartori
- Department of Women’s and Children’s Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padua, Padova, Italy
- Master in Pediatrics and Pediatric Subspecialties, University Hospital of Padua, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute “Città della Speranza”, Padova, Italy
- Department of Neuroscience, University Hospital of Padua, Padova, Italy
| |
Collapse
|
19
|
Affiliation(s)
- Elissa Yozawitz
- From the Isabelle Rapin Division of Child Neurology of the Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
20
|
Doandes FM, Manea AM, Lungu N, Brandibur T, Cioboata D, Costescu OC, Zaharie M, Boia M. The Role of Amplitude-Integrated Electroencephalography (aEEG) in Monitoring Infants with Neonatal Seizures and Predicting Their Neurodevelopmental Outcome. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050833. [PMID: 37238381 DOI: 10.3390/children10050833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Newborn monitoring in neonatal intensive care units (NICU) is mandatory, but neurological and especially electroencephalographic (EEG) monitoring can be overlooked or delayed until the newborn is clinically stable. However, the neonatal period is associated with the highest risk of seizures in humans, and the clinical symptoms may often be discrete, but the evolution and long-term neurodevelopmental disorders in these patients may be important. In response to this issue, we conducted a study to evaluate newborns who experienced neonatal seizures (NS) in the NICU and monitored their long-term neurological development. We enrolled 73 term and preterm newborns who underwent EEG monitoring using amplitude-integrated electroencephalography (aEEG). We then followed their neurological development until around 18 months of age, with 59 patients remaining in the long-term study. A total of 22% of patients with NS developed epilepsy, 12% cerebral palsy, 19% severe neurodevelopmental disabilities, and 8.5% died within the first 18 months of life. Our findings indicate that aEEG background pattern is a strong predictor of unfavorable neurological outcomes, with an odds ratio of 20.4174 (p < 0.05). Additionally, higher Apgar scores were associated with better outcomes (p < 0.05), with the odds of unfavorable neurological outcomes decreasing by 0.7-fold for every point increase in Apgar score. Furthermore, we found a statistically significant association between preterm birth and unfavorable neurological outcomes (p = 0.0104). Our study highlights the importance of early EEG monitoring in the NICU and provides valuable insights into predictors of unfavorable neurological outcomes in newborns who experienced NS.
Collapse
Affiliation(s)
- Florina Marinela Doandes
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Aniko Maria Manea
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Nicoleta Lungu
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Timea Brandibur
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Daniela Cioboata
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Oana Cristina Costescu
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Mihaela Zaharie
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Marioara Boia
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
21
|
van de Meent M, Kleuskens DG, Ganzevoort W, Gordijn SJ, Kooi EMW, Onland W, van Rijn BB, Duvekot JJ, Kornelisse RF, Al-Nasiry S, Jellema RK, Knol HM, Manten GTR, Mulder-de Tollenaer SM, Derks JB, Groenendaal F, Bekker MN, Schuit E, Lely AT, Kooiman J. OPtimal TIming of antenatal COrticosteroid administration in pregnancies complicated by early-onset fetal growth REstriction (OPTICORE): study protocol of a multicentre, retrospective cohort study. BMJ Open 2023; 13:e070729. [PMID: 36931680 PMCID: PMC10030622 DOI: 10.1136/bmjopen-2022-070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Early-onset fetal growth restriction (FGR) requires timely, often preterm, delivery to prevent fetal hypoxia causing stillbirth or neurologic impairment. Antenatal corticosteroids (CCS) administration reduces neonatal morbidity and mortality following preterm birth, most effectively when administered within 1 week preceding delivery. Optimal timing of CCS administration is challenging in early-onset FGR, as the exact onset and course of fetal hypoxia are unpredictable. International guidelines do not provide a directive on this topic. In the Netherlands, two timing strategies are commonly practiced: administration of CCS when the umbilical artery shows (A) a pulsatility index above the 95thh centile and (B) absent or reversed end-diastolic velocity (a more progressed disease state). This study aims to (1) use practice variation to compare CCS timing strategies in early-onset FGR on fetal and neonatal outcomes and (2) develop a dynamic tool to predict the time interval in days until delivery, as a novel timing strategy for antenatal CCS in early-onset FGR. METHODS AND ANALYSIS A multicentre, retrospective cohort study will be performed including pregnancies complicated by early-onset FGR in six tertiary hospitals in the Netherlands in the period between 2012 and 2021 (estimated sample size n=1800). Main exclusion criteria are multiple pregnancies and fetal congenital or genetic abnormalities. Routinely collected data will be extracted from medical charts. Primary outcome for the comparison of the two CCS timing strategies is a composite of perinatal, neonatal and in-hospital mortality. Secondary outcomes include the COSGROVE core outcome set for FGR. A multivariable, mixed-effects model will be used to compare timing strategies on study outcomes. Primary outcome for the dynamic prediction tool is 'days until birth'. ETHICS AND DISSEMINATION The need for ethical approval was waived by the Ethics Committee (University Medical Center Utrecht). Results will be published in open-access, peer-reviewed journals and disseminated by presentations at scientific conferences. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT05606497.
Collapse
Affiliation(s)
- Mette van de Meent
- Department of Obstetrics and Gynaecology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dianne G Kleuskens
- Department of Obstetrics and Gynaecology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wessel Ganzevoort
- Department of Obstetrics and Gynaecology, Amsterdam University Medical Center, location AMC, Amsterdam, Netherlands
| | - Sanne J Gordijn
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth M W Kooi
- Department of Pediatrics, University Medical Center Groningen, Groningen, Netherlands
| | - Wes Onland
- Department of Pediatrics, Amsterdam University Medical Center, location AMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam, Netherlands
| | - Bas B van Rijn
- Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, Netherlands
| | - Johannes J Duvekot
- Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, Netherlands
| | | | - Salwan Al-Nasiry
- Department of Obstetrics and Gynaecology, Maastricht UMC+, Maastricht, Netherlands
| | - Reint K Jellema
- Department of Pediatrics, Maastricht UMC+, Maastricht, Netherlands
| | - H Marieke Knol
- Department of Obstetrics and Gynaecology, Isala Zwolle, Zwolle, Netherlands
| | | | | | - Jan B Derks
- Department of Obstetrics and Gynaecology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mireille N Bekker
- Department of Obstetrics and Gynaecology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - A Titia Lely
- Department of Obstetrics and Gynaecology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Judith Kooiman
- Department of Obstetrics and Gynaecology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
22
|
Waak M, Laing J, Nagarajan L, Lawn N, Harvey AS. Continuous electroencephalography in the intensive care unit: A critical review and position statement from an Australian and New Zealand perspective. CRIT CARE RESUSC 2023; 25:9-19. [PMID: 37876987 PMCID: PMC10581281 DOI: 10.1016/j.ccrj.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objectives This article aims to critically review the literature on continuous electroencephalography (cEEG) monitoring in the intensive care unit (ICU) from an Australian and New Zealand perspective and provide recommendations for clinicians. Design and review methods A taskforce of adult and paediatric neurologists, selected by the Epilepsy Society of Australia, reviewed the literature on cEEG for seizure detection in critically ill neonates, children, and adults in the ICU. The literature on routine EEG and cEEG for other indications was not reviewed. Following an evaluation of the evidence and discussion of controversial issues, consensus was reached, and a document that highlighted important clinical, practical, and economic considerations regarding cEEG in Australia and New Zealand was drafted. Results This review represents a summary of the literature and consensus opinion regarding the use of cEEG in the ICU for detection of seizures, highlighting gaps in evidence, practical problems with implementation, funding shortfalls, and areas for future research. Conclusion While cEEG detects electrographic seizures in a significant proportion of at-risk neonates, children, and adults in the ICU, conferring poorer neurological outcomes and guiding treatment in many settings, the health economic benefits of treating such seizures remain to be proven. Presently, cEEG in Australian and New Zealand ICUs is a largely unfunded clinical resource that is subsequently reserved for the highest-impact patient groups. Wider adoption of cEEG requires further research into impact on functional and health economic outcomes, education and training of the neurology and ICU teams involved, and securement of the necessary resources and funding to support the service.
Collapse
Affiliation(s)
- Michaela Waak
- Paediatric Critical Care Research Group, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, Australia
| | - Joshua Laing
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
- Comprehensive Epilepsy Program, Alfred Health, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lakshmi Nagarajan
- Department of Neurology, Perth Children's Hospital, Perth, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| | - Nicholas Lawn
- Western Australian Adult Epilepsy Service, Sir Charles Gardiner Hospital, Perth, Australia
| | - A. Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Neurosciences Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
23
|
Abstract
A key goal of neonatal neurocritical care is improved outcomes, and brain monitoring plays an essential role. The recent NEST trial reported no outcome benefits using aEEG monitoring compared to clinical seizure identification among neonates treated for seizures. However, the study failed to prove the effects of monitoring on seizure treatment in the first place.
Collapse
|
24
|
El-Dib M, Abend NS, Austin T, Boylan G, Chock V, Cilio MR, Greisen G, Hellström-Westas L, Lemmers P, Pellicer A, Pressler RM, Sansevere A, Tsuchida T, Vanhatalo S, Wusthoff CJ, Wintermark P, Aly H, Chang T, Chau V, Glass H, Lemmon M, Massaro A, Wusthoff C, deVeber G, Pardo A, McCaul MC. Neuromonitoring in neonatal critical care part I: neonatal encephalopathy and neonates with possible seizures. Pediatr Res 2022:10.1038/s41390-022-02393-1. [PMID: 36476747 DOI: 10.1038/s41390-022-02393-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022]
Abstract
The blooming of neonatal neurocritical care over the last decade reflects substantial advances in neuromonitoring and neuroprotection. The most commonly used brain monitoring tools in the neonatal intensive care unit (NICU) are amplitude integrated EEG (aEEG), full multichannel continuous EEG (cEEG), and near-infrared spectroscopy (NIRS). While some published guidelines address individual tools, there is no consensus on consistent, efficient, and beneficial use of these modalities in common NICU scenarios. This work reviews current evidence to assist decision making for best utilization of neuromonitoring modalities in neonates with encephalopathy or with possible seizures. Neuromonitoring approaches in extremely premature and critically ill neonates are discussed separately in the companion paper. IMPACT: Neuromonitoring techniques hold promise for improving neonatal care. For neonatal encephalopathy, aEEG can assist in screening for eligibility for therapeutic hypothermia, though should not be used to exclude otherwise eligible neonates. Continuous cEEG, aEEG and NIRS through rewarming can assist in prognostication. For neonates with possible seizures, cEEG is the gold standard for detection and diagnosis. If not available, aEEG as a screening tool is superior to clinical assessment alone. The use of seizure detection algorithms can help with timely seizures detection at the bedside.
Collapse
Affiliation(s)
- Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nicholas S Abend
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Geraldine Boylan
- INFANT Research Centre & Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Valerie Chock
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - M Roberta Cilio
- Department of Pediatrics, Division of Pediatric Neurology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Gorm Greisen
- Department of Neonatology, Rigshospitalet, Copenhagen University Hospital & Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lena Hellström-Westas
- Department of Women's and Children's Health, Uppsala University, and Division of Neonatology, Uppsala University Hospital, Uppsala, Sweden
| | - Petra Lemmers
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital, Madrid, Spain; Neonatology Group, IdiPAZ, Madrid, Spain
| | - Ronit M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, and Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK
| | - Arnold Sansevere
- Department of Neurology and Pediatrics, George Washington University School of Medicine and Health Sciences; Children's National Hospital Division of Neurophysiology, Epilepsy and Critical Care, Washington, DC, USA
| | - Tammy Tsuchida
- Department of Neurology and Pediatrics, George Washington University School of Medicine and Health Sciences; Children's National Hospital Division of Neurophysiology, Epilepsy and Critical Care, Washington, DC, USA
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, Children's Hospital, BABA Center, Neuroscience Center/HILIFE, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
de Corrêa NC, Bom JMDS, Scherer MR, Nunes ML. Clinical profile of a cohort of neonates with seizures: Association between semiology, etiology, and electroencephalographic findings. Pediatr Neonatol 2022; 63:582-589. [PMID: 35922262 DOI: 10.1016/j.pedneo.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Seizures are the most common sign of neurologic dysfunction, reflecting a wide variety of central nervous system disorders. METHODS A retrospective cross-sectional study of neonates with a clinical diagnosis of seizures was conducted in order to verify relationships between clinical aspects and EEG findings. Patients were divided into 3 groups according to the EEG recording available as: 1) with confirmatory ictal EEG; 2) with altered but non-ictal EEG; and 3) without any EEG recording. Variables related to pregnancy and birth history, neonatal complications, and seizure semiology (by video or clinical description) were compared to EEG findings. RESULTS 97 neonates were included (39.1% preterm, 54.6% male), 71 with available EEG data (56.3% with ictal EEG). The group without EEG presented clinical characteristics significantly different from the others such as extreme prematurity, low birth weight, and higher neonatal mortality (P = 0.002, 0.001, and 0.003, respectively). The most common etiology was hypoxic-ischemic encephalopathy (HIE) (46.4%) followed by vascular disorders, which predominated in extremely preterm neonates (P = 0.006). Sequential seizure was the most common type (44.6%) and was more frequently identified in term neonates (46%). In 51.2% of the ictal recordings the main finding was electrographic seizure without clinical manifestation. Discharge using antiseizure medication was higher among those with ictal or altered non-ictal EEG (P < 0.001). CONCLUSIONS HIE is still a frequently etiology for neonatal seizures. Even if the patients in the sample were not under continuous EEG, the substantial proportion of electrographic seizures without clinical manifestations detected suggests the importance of continuous EEG monitoring in neonates at increased risk of seizures.
Collapse
Affiliation(s)
- Natália Corrêa de Corrêa
- Board Certified on Pediatrics, Neonatal Intensive Care Unit, Hospital Sao Lucas, PUCRS, Porto Alegre, RS, Brazil
| | | | | | - Magda Lahorgue Nunes
- Brain Institute, Porto Alegre, RS, Brazil; School of Medicine, PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Hashish M, Bassiouny MR. Neonatal seizures: stepping outside the comfort zone. Clin Exp Pediatr 2022; 65:521-528. [PMID: 35381172 PMCID: PMC9650361 DOI: 10.3345/cep.2022.00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022] Open
Abstract
Seizures are the most common neurological disorders in newborns. Managing neonatal seizures is challenging, especially for neurologists who are not neonatal specialists. Acute brain injury during ischemic insult is a key component of seizure occurrence, while genetic and metabolic disorders play less prevalent but more severe roles. The diagnosis of neonatal seizure is ambiguous, as the subjective differentiation between seizure and nonepileptic events is difficult; therefore, electrographic recording is the gold standard for diagnosis. The detection of electrographic seizures by neonatologists is currently facilitated by amplitude-integrated electroencephalography availability in many neonatal intensive care units. Although it is less sensitive than conventional electroencephalography, it is better to record all risky neonates to filter the abnormal events as early as possible to enable the initiation of dedicated therapy at proper dose and time and facilitate the initial response to antiepileptic drugs. This, in turn, helps maintain the balance between unnecessary drug use and their neurotoxic effects. Moreover, the early treatment of electrographic seizures plays a vital role in the suppression of subsequent abnormal brain electricity (status epilepticus) and shortening the hospital stay. An explicit understanding of seizure etiology and pathophysiology should direct attention to the proper prescription of short- and long-term antiepileptic medications to solve the challenging issue of whether neonatal seizures progress to postneonatal epilepsy and long-term cognitive deficits. This review addresses recent updates in different aspects of neonatal seizures, particularly electrographic discharge, including their definition, etiology, classification, diagnosis, management, and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Menna Hashish
- Neonatal Intensive Care Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | | |
Collapse
|
27
|
Davies H, Afrika S, Olema R, Rukundo G, Ouma J, Greenland M, Voysey M, Mboizi R, Sekikubo M, Le Doare K. Protocol for a pregnancy registry of maternal and infant outcomes in Uganda –The PREPARE Study. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17809.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Pregnancy is associated with complications which must be differentiated from adverse events associated with the administration of vaccines during pregnancy both in clinical trials and post licensure surveillance. The frequency of pregnancy related complications varies significantly by geographical location and the prevalence of pregnancy and neonatal outcomes are poorly documented in most low-resource settings. In preparation for Group B Streptococcus maternal vaccination trials, we describe a protocol for a pregnancy register at Kawempe National Referral Hospital, Kampala, Uganda to describe pregnancy maternal and infant outcomes. Methods: The study has two components. Firstly, an active, prospective surveillance cohort consisting of pregnant women in their first or second trimester recruited and followed up through their hospital scheduled antenatal visits, delivery and their infants through their extended programme of immunisation visits until 14 weeks of age. Data on obstetric and neonatal outcomes defined by the Brighton Collaboration Global Alliance of Immunisation Safety Assessment in Pregnancy criteria will be collected. Secondly, a passive surveillance cohort collecting data through routine electronic health records on all women and infants attending care at KNRH. Data will be collected on vaccinations and medications including antiretroviral therapy received in antenatal clinic and prior to hospital discharge. Discussion: Conducting vaccine research in resource-limited settings is essential for equity and to answer priority safety questions specific to these settings. It requires improved vaccine safety monitoring, which is especially pertinent in maternal vaccine research. During a trial, understanding the epidemiology and background rates of adverse events in the study population is essential to establish thresholds which indicate a safety signal. These data need to be systematically and reliably collected. This study will describe rates of adverse pregnancy outcomes in a cohort of 4,000 women and infants and any associated medications or vaccines received at a new vaccine trial site in Uganda.
Collapse
|
28
|
Guidotti I, Lugli L, Ori L, Roversi MF, Casa Muttini ED, Bedetti L, Pugliese M, Cavalleri F, Stefanelli F, Ferrari F, Berardi A. Neonatal seizures treatment based on conventional multichannel EEG monitoring: an overview of therapeutic options. Expert Rev Neurother 2022; 22:623-638. [PMID: 35876114 DOI: 10.1080/14737175.2022.2105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Seizures are the main neurological emergency during the neonatal period and are mostly acute and focal. The prognosis mainly depends on the underlying etiology. Conventional multichannel video-electroencephalographic (cEEG) monitoring is the gold standard for diagnosis, but treatment remains a challenge. AREAS COVERED : This review, based on PubMed search over the last 4 decades, focuses on the current treatment options for neonatal seizures based on cEEG monitoring. There is still no consensus on seizure therapy, owing to poor scientific evidence. Traditionally, the first-line treatments are phenobarbital and phenytoin, followed by midazolam and lidocaine, but their efficacy is limited. Therefore, current evidence strongly suggests the use of alternative antiseizure medications. Randomized controlled trials of new drugs are ongoing. EXPERT OPINION : Therapy for neonatal seizures should be prompt and tailored, based on semeiology, mirror of the underlying cause, and cEEG features. Further research should focus on antiseizure medications that directly act on the etiopathogenetic mechanism responsible for seizures and are therefore more effective in seizure control.
Collapse
Affiliation(s)
- Isotta Guidotti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Licia Lugli
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Ori
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Maria Federica Roversi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Elisa Della Casa Muttini
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Bedetti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Marisa Pugliese
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Francesca Cavalleri
- Division of Neuroradiology, Department of Neuroscience, Nuovo Ospedale Civile S. Agostino-Estense, Modena, Italy
| | - Francesca Stefanelli
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Ferrari
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Alberto Berardi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| |
Collapse
|
29
|
Susnerwala S, Joshi A, Deshmukh L, Londhe A. Levetiracetam or Phenobarbitone as a First-Line Anticonvulsant in Asphyxiated Term Newborns? An Open-Label, Single-Center, Randomized, Controlled, Pragmatic Trial. Hosp Pediatr 2022; 12:647-653. [PMID: 35673948 DOI: 10.1542/hpeds.2021-006415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Neonatal seizures are one of the most challenging problems for experts across the globe. Although there is no consensus on the "ideal" treatment of neonatal seizures, phenobarbitone has been the drug of choice for decades. Unfortunately, although extensively studied in adults and children, levetiracetam lacks rigorous evaluation in the neonatal population, despite its frequent use as an off-label drug. The objective of this open-label, randomized, active-control, single-center, pragmatic trial was to compare the effectiveness of levetiracetam with phenobarbitone for term asphyxiated infants as a first-line drug. METHODS The participants included in this study were inborn term asphyxiated infants with seizures in the first 48 hours of life. Infants satisfying the inclusion criteria were randomized to receive levetiracetam (20 mg/kg) or phenobarbitone (20 mg/kg). Clinical seizure control was noted. Infants who failed to respond to the primary drug were given the other group drug. RESULTS Of 103 eligible infants, 82 were randomly assigned (44 levetiracetam group, 38 phenobarbitone group). Clinical seizure control with the primary drug and maintenance of the same for 24 hours was observed in 29 infants (65.9%) in the levetiracetam group and 13 infants (34.2%) in the phenobarbitone group (P < .05, relative risk 0.52, 95% confidence interval 0.32-0.84). Of the infants in the phenobarbitone group who did not respond to the primary drug, 57.8% were controlled after adding levetiracetam. CONCLUSION Levetiracetam can be used with effectiveness as a first- and second-line drug in asphyxiated term infants. A more extensive study on pharmacokinetics and optimal regimen is required.
Collapse
|
30
|
Diagnosis and Management of Seizures in the Preterm Infant. Semin Pediatr Neurol 2022; 42:100971. [PMID: 35868735 DOI: 10.1016/j.spen.2022.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022]
Abstract
The risk of seizure is increased in premature neonates compared to full term infants, with a distinct profile of etiologies, timing and character. Despite improvements in neonatal care, preterm infants with seizure continue to have higher risk of abnormal neurodevelopmental outcomes when compared to preterm infants without seizures, or to full term infants with seizures. Very limited evidence guides the care of this challenging population, therefore, management of the preterm neonate with seizure is largely extrapolated from the care of full-term neonates. A critical need exists for well-designed clinical trials investigating and validating the safety, efficacy, and outcomes of seizure management in this vulnerable population.
Collapse
|
31
|
Mutanga JN, Whitaker BI, Forshee RA. Regulatory considerations for study of infant protection through maternal immunization. Vaccine 2022; 40:3556-3565. [PMID: 35570075 DOI: 10.1016/j.vaccine.2022.04.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Childhood Immunization is one of the critical strategies to decrease infant morbidity and mortality due to infectious diseases, but primary immunization schedules for infants in most countries start at 2 months of age. Childhood vaccines therefore begin providing adequate protection later in life, leaving infants vulnerable to infectious diseases and creating an immunity gap that results in higher morbidity and mortality among younger infants. Maternal immunization, the practice of vaccinating individuals during pregnancy, reduces the risk of infant infection primarily through the transfer of protective maternal antibodies to the fetus during late pregnancy. Although much progress has been made in public health policies to support maternal immunization research, inclusion of pregnant individuals and children in clinical trials remains challenging. This has resulted in paucity of evidence regarding safety and effectiveness of vaccines to support licensure of products intended for use during pregnancy and lactation to prevent disease in the infant. In addition, although safeguards for clinical research in pregnancy are supportive, experimental vaccines, e.g., Respiratory Syncytial Virus, are more complicated to study because data on safety, efficacy, and dosing are limited. This requires randomized controlled trials with safety monitoring for the mother, the fetus, and the infant with follow-up for at least 1 year or longer to assess long-term health outcomes that may be associated with peripartum vaccine exposure. The goal of this paper is to discuss the general regulatory considerations for clinical research to evaluate safety and effectiveness of vaccines administered during pregnancy to protect infants from disease. This could be useful to inform future vaccine trials. This discussion is not intended to provide agency guidance nor to articulate agency policy.
Collapse
Affiliation(s)
- Jane Namangolwa Mutanga
- US Food and Drug Administration, Center for Biologics Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.
| | - Barbee I Whitaker
- US Food and Drug Administration, Center for Biologics Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Richard A Forshee
- US Food and Drug Administration, Center for Biologics Evaluation and Research, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| |
Collapse
|
32
|
Pavel AM, Rennie JM, de Vries LS, Blennow M, Foran A, Shah DK, Pressler RM, Kapellou O, Dempsey EM, Mathieson SR, Pavlidis E, Weeke LC, Livingstone V, Murray DM, Marnane WP, Boylan GB. Neonatal Seizure Management: Is the Timing of Treatment Critical? J Pediatr 2022; 243:61-68.e2. [PMID: 34626667 PMCID: PMC9067353 DOI: 10.1016/j.jpeds.2021.09.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To assess the impact of the time to treatment of the first electrographic seizure on subsequent seizure burden and describe overall seizure management in a large neonatal cohort. STUDY DESIGN Newborns (36-44 weeks of gestation) requiring electroencephalographic (EEG) monitoring recruited to 2 multicenter European studies were included. Infants who received antiseizure medication exclusively after electrographic seizure onset were grouped based on the time to treatment of the first seizure: antiseizure medication within 1 hour, between 1 and 2 hours, and after 2 hours. Outcomes measured were seizure burden, maximum seizure burden, status epilepticus, number of seizures, and antiseizure medication dose over the first 24 hours after seizure onset. RESULTS Out of 472 newborns recruited, 154 (32.6%) had confirmed electrographic seizures. Sixty-nine infants received antiseizure medication exclusively after the onset of electrographic seizure, including 21 infants within 1 hour of seizure onset, 15 between 1 and 2 hours after seizure onset, and 33 at >2 hours after seizure onset. Significantly lower seizure burden and fewer seizures were noted in the infants treated with antiseizure medication within 1 hour of seizure onset (P = .029 and .035, respectively). Overall, 258 of 472 infants (54.7%) received antiseizure medication during the study period, of whom 40 without electrographic seizures received treatment exclusively during EEG monitoring and 11 with electrographic seizures received no treatment. CONCLUSIONS Treatment of neonatal seizures may be time-critical, but more research is needed to confirm this. Improvements in neonatal seizure diagnosis and treatment are also needed.
Collapse
Affiliation(s)
- Andreea M. Pavel
- INFANT Research Centre, Cork, Ireland,Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
| | - Janet M. Rennie
- Institute for Women's Health, University College London, London, United Kingdom
| | - Linda S. de Vries
- Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mats Blennow
- Department of Neonatal Medicine, Karolinska University Hospital, Stockholm, Sweden,Division of Pediatrics, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Adrienne Foran
- Department of Neonatal Medicine, Rotunda Hospital, Dublin, Ireland
| | - Divyen K. Shah
- Department of Neonatology, Royal London Hospital, London, United Kingdom,The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Ronit M. Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
| | - Olga Kapellou
- Department of Neonatology, Homerton University Hospital NHS Foundation Trust, London, United Kingdom
| | - Eugene M. Dempsey
- INFANT Research Centre, Cork, Ireland,Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
| | - Sean R. Mathieson
- INFANT Research Centre, Cork, Ireland,Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
| | - Elena Pavlidis
- INFANT Research Centre, Cork, Ireland,Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
| | - Lauren C. Weeke
- Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vicki Livingstone
- INFANT Research Centre, Cork, Ireland,Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M. Murray
- INFANT Research Centre, Cork, Ireland,Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
| | - William P. Marnane
- INFANT Research Centre, Cork, Ireland,Department of Electrical & Electronic Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - Geraldine B. Boylan
- INFANT Research Centre, Cork, Ireland,Department of Pediatrics and Child Health, University College Cork, Cork, Ireland,Reprint requests: Geraldine B. Boylan, PhD, INFANT Research Centre and Department of Paediatrics and Child Health, University College Cork, Paediatric Academic Unit, 2nd Floor, Cork University Hospital, Wilton, Cork, Ireland T12 DFK4
| |
Collapse
|
33
|
Chalia M, Hartmann H, Pressler R. Practical Approaches to the Treatment of Neonatal Seizures. Curr Treat Options Neurol 2022. [DOI: 10.1007/s11940-022-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Abiramalatha T, Thanigainathan S, Ramaswamy VV, Pressler R, Brigo F, Hartmann H. Antiseizure medications for neonates with seizures. Hippokratia 2022. [DOI: 10.1002/14651858.cd014967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thangaraj Abiramalatha
- Neonatology; Kovai Medical Center and Hospital (KMCH); KMCH Institute of Health Sciences and Research; Coimbatore India
| | | | | | | | - Francesco Brigo
- Department of Neurological and Movement Sciences. Section of Clinical Neurology; University of Verona; Verona Italy
| | | |
Collapse
|
35
|
Vegda H, Krishnan V, Variane G, Bagayi V, Ivain P, Pressler RM. Neonatal Seizures-Perspective in Low-and Middle-Income Countries. Indian J Pediatr 2022; 89:245-253. [PMID: 35050459 PMCID: PMC8857130 DOI: 10.1007/s12098-021-04039-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023]
Abstract
Neonatal seizures are the commonest neurological emergency and are associated with poor neurodevelopmental outcome. While they are generally difficult to diagnose and treat, they pose a significant clinical challenge for physicians in low- and middle-income countries (LMIC). They are mostly provoked seizures caused by an acute brain insult such as hypoxic-ischemic encephalopathy (HIE), ischemic stroke, intracranial hemorrhage, infections of the central nervous system, or acute metabolic disturbances. Early onset epilepsy syndromes are less common. Clinical diagnosis of seizures in the neonatal period are frequently inaccurate, as clinical manifestations are difficult to distinguish from nonseizure behavior. Additionally, a high proportion of seizures are electrographic-only without any clinical manifestations, making diagnosis with EEG or aEEG a necessity. Only focal clonic and focal tonic seizures can be diagnosed clinically with adequate diagnostic certainty. Prompt diagnosis and timely treatment are important, with evidence suggesting that early treatment improves the response to antiseizure medication. The vast majority of published studies are from high-income countries, making extrapolation to LMIC impossible, thus highlighting the urgent need for a better understanding of the etiologies, comorbidities, and drug trials evaluating safety and efficacy in LMIC. In this review paper, the authors present the latest data on etiology, diagnosis, classification, and guidelines for the management of neonates with the emphasis on low-resource settings.
Collapse
Affiliation(s)
- Hemadri Vegda
- Center of Perinatal Neuroscience, Department of Brain Sciences, Imperial College, London, UK.,Neonatal Intensive Care Unit, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Vaisakh Krishnan
- Center of Perinatal Neuroscience, Department of Brain Sciences, Imperial College, London, UK.,Institute of Maternal and Child Health, Calicut Medical College, Kozhikode, Kerala, India
| | - Gabriel Variane
- Protecting Brains & Saving Futures, McGill University Health Center/Research Institute of the McGill University Health Center, São Paulo - SP, Brazil
| | - Vaishnavi Bagayi
- Center of Perinatal Neuroscience, Department of Brain Sciences, Imperial College, London, UK.,Neonatal Intensive Care Unit, Karnataka Institute of Medical Sciences, Hubbali, Karnataka, India
| | - Phoebe Ivain
- Center for Perinatal Neuroscience, Brain Sciences Department, Imperial College of Science Technology and Medicine, London, UK
| | - Ronit M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, UK. .,Department of Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, WCIN IEH, UK.
| |
Collapse
|
36
|
Sansone V, Dall'Oglio I, Gesualdo F, Cancani F, Cecchetti C, Di Nardo M, Rossi A, De Ranieri C, Alvaro R, Tiozzo E, Gawronski O. Narrative Diaries in Pediatrics: A Scoping Review. J Pediatr Nurs 2021; 59:e93-e105. [PMID: 33622642 DOI: 10.1016/j.pedn.2021.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
PROBLEM Health diaries with both clinical and narrative elements have been widely used in pediatrics to study children's and families' experiences of illness and coping strategies. The objective of this study is to obtain a synthesis of the literature about narrative health diaries using the PRISMA extension for scoping reviews. ELIGIBILITY CRITERIA Sources were limited to: English language; narrative diaries; children/adolescents and/or parents/caregivers. SAMPLE The following databases were searched: PubMed, Embase and CINAHL with no time limits. RESULTS Among 36 articles included the most common context where a diary was implemented was the home (61%), the hospital (17%) and the school (14%). The most common diarist is the child or adolescent (50%). Paper diary was the most common type (53%), followed by the video diary (19%), the e-diary (8%) or the audio diary (8%). None of the studies explored the impact of the use of diaries on patient outcomes. CONCLUSIONS The narrative health diary is used to report patient experiences of illness or common life from the point of view of the child, adolescent or other family members. The diversity of the diaries found shows how the narrative diary may be 'adapted' to different settings and pediatric populations. IMPLICATIONS The narrative diary is a relevant tool for the exploration of children's and adolescents' experiences of illness and common life. Studies are still needed to describe the impact of narrative diaries keeping on children's health outcomes.
Collapse
Affiliation(s)
- Vincenza Sansone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Department of Pediatric Oncology, AORN Santobono-Pausilipon, Naples, Italy.
| | - Immacolata Dall'Oglio
- Professional Development, Continuing Education and Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Gesualdo
- Department of Predictive and Preventive Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Cancani
- Pediatric Intensive Care Unit, Department of Critical Care, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Corrado Cecchetti
- Pediatric Intensive Care Unit, Department of Critical Care, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Department of Critical Care, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Rossi
- Clinical Psychology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rosaria Alvaro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Tiozzo
- Professional Development, Continuing Education and Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Orsola Gawronski
- Professional Development, Continuing Education and Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
37
|
Kaminiów K, Kozak S, Paprocka J. Neonatal Seizures Revisited. CHILDREN-BASEL 2021; 8:children8020155. [PMID: 33670692 PMCID: PMC7922511 DOI: 10.3390/children8020155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 12/29/2022]
Abstract
Seizures are the most common neurological disorder in newborns and are most prevalent in the neonatal period. They are mostly caused by severe disorders of the central nervous system (CNS). However, they can also be a sign of the immaturity of the infant’s brain, which is characterized by the presence of specific factors that increase excitation and reduce inhibition. The most common disorders which result in acute brain damage and can manifest as seizures in neonates include hypoxic-ischemic encephalopathy (HIE), ischemic stroke, intracranial hemorrhage, infections of the CNS as well as electrolyte and biochemical disturbances. The therapeutic management of neonates and the prognosis are different depending on the etiology of the disorders that cause seizures which can lead to death or disability. Therefore, establishing a prompt diagnosis and implementing appropriate treatment are significant, as they can limit adverse long-term effects and improve outcomes. In this review paper, we present the latest reports on the etiology, pathomechanism, clinical symptoms and guidelines for the management of neonates with acute symptomatic seizures.
Collapse
Affiliation(s)
- Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.)
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence:
| |
Collapse
|
38
|
Pressler RM, Cilio MR, Mizrahi EM, Moshé SL, Nunes ML, Plouin P, Vanhatalo S, Yozawitz E, de Vries LS, Puthenveettil Vinayan K, Triki CC, Wilmshurst JM, Yamamoto H, Zuberi SM. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia 2021; 62:615-628. [PMID: 33522601 DOI: 10.1111/epi.16815] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
Seizures are the most common neurological emergency in the neonatal period and in contrast to those in infancy and childhood, are often provoked seizures with an acute cause and may be electrographic-only. Hence, neonatal seizures may not fit easily into classification schemes for seizures and epilepsies primarily developed for older children and adults. A Neonatal Seizures Task Force was established by the International League Against Epilepsy (ILAE) to develop a modification of the 2017 ILAE Classification of Seizures and Epilepsies, relevant to neonates. The neonatal classification framework emphasizes the role of electroencephalography (EEG) in the diagnosis of seizures in the neonate and includes a classification of seizure types relevant to this age group. The seizure type is determined by the predominant clinical feature. Many neonatal seizures are electrographic-only with no evident clinical features; therefore, these are included in the proposed classification. Clinical events without an EEG correlate are not included. Because seizures in the neonatal period have been shown to have a focal onset, a division into focal and generalized is unnecessary. Seizures can have a motor (automatisms, clonic, epileptic spasms, myoclonic, tonic), non-motor (autonomic, behavior arrest), or sequential presentation. The classification allows the user to choose the level of detail when classifying seizures in this age group.
Collapse
Affiliation(s)
- Ronit M Pressler
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK.,Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Maria Roberta Cilio
- Division of Pediatric Neurology, Institute for Experimental and Clinical Research, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Eli M Mizrahi
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.,Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Magda L Nunes
- Pontificia Universidade Catolica do Rio Grande do Sul - PUCRS School of Medicine and the Brain Institute, Porto Alegre, RS, Brazil
| | - Perrine Plouin
- Department of Clinical Neurophysiology, Hospital Necker Enfant Malades, Paris, France
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology and BABA center Children's Hospital, HUS Imaging, Neuroscience Center, Helsinki Institute of Life Science, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.,Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Chahnez C Triki
- Department of Child Neurology, Hedi Chaker Hospital, LR19ES15 Sfax University, Sfax, Tunisia
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Hitoshi Yamamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children & Institute of Health & Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
39
|
Perinatal Brain Injury and Inflammation: Lessons from Experimental Murine Models. Cells 2020; 9:cells9122640. [PMID: 33302543 PMCID: PMC7764185 DOI: 10.3390/cells9122640] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Perinatal brain injury or neonatal encephalopathy (NE) is a state of disturbed neurological function in neonates, caused by a number of different aetiologies. The most prominent cause of NE is hypoxic ischaemic encephalopathy, which can often induce seizures. NE and neonatal seizures are both associated with poor neurological outcomes, resulting in conditions such as cerebral palsy, epilepsy, autism, schizophrenia and intellectual disability. The current treatment strategies for NE and neonatal seizures have suboptimal success in effectively treating neonates. Therapeutic hypothermia is currently used to treat NE and has been shown to reduce morbidity and has neuroprotective effects. However, its success varies between developed and developing countries, most likely as a result of lack of sufficient resources. The first-line pharmacological treatment for NE is phenobarbital, followed by phenytoin, fosphenytoin and lidocaine as second-line treatments. While these drugs are mostly effective at halting seizure activity, they are associated with long-lasting adverse neurological effects on development. Over the last years, inflammation has been recognized as a trigger of NE and seizures, and evidence has indicated that this inflammation plays a role in the long-term neuronal damage experienced by survivors. Researchers are therefore investigating the possible neuroprotective effects that could be achieved by using anti-inflammatory drugs in the treatment of NE. In this review we will highlight the current knowledge of the inflammatory response after perinatal brain injury and what we can learn from animal models.
Collapse
|
40
|
Abu-Raya B, Maertens K, Edwards KM, Omer SB, Englund JA, Flanagan KL, Snape MD, Amirthalingam G, Leuridan E, Damme PV, Papaevangelou V, Launay O, Dagan R, Campins M, Cavaliere AF, Frusca T, Guidi S, O'Ryan M, Heininger U, Tan T, Alsuwaidi AR, Safadi MA, Vilca LM, Wanlapakorn N, Madhi SA, Giles ML, Prymula R, Ladhani S, Martinón-Torres F, Tan L, Michelin L, Scambia G, Principi N, Esposito S. Global Perspectives on Immunization During Pregnancy and Priorities for Future Research and Development: An International Consensus Statement. Front Immunol 2020; 11:1282. [PMID: 32670282 PMCID: PMC7326941 DOI: 10.3389/fimmu.2020.01282] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Immunization during pregnancy has been recommended in an increasing number of countries. The aim of this strategy is to protect pregnant women and infants from severe infectious disease, morbidity and mortality and is currently limited to tetanus, inactivated influenza, and pertussis-containing vaccines. There have been recent advancements in the development of vaccines designed primarily for use in pregnant women (respiratory syncytial virus and group B Streptococcus vaccines). Although there is increasing evidence to support vaccination in pregnancy, important gaps in knowledge still exist and need to be addressed by future studies. This collaborative consensus paper provides a review of the current literature on immunization during pregnancy and highlights the gaps in knowledge and a consensus of priorities for future research initiatives, in order to optimize protection for both the mother and the infant.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kirsten Maertens
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Kathryn M. Edwards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Saad B. Omer
- Department of Internal Medicine (Infectious Diseases), Department of Epidemiology of Microbial Diseases, Yale School of Medicine, Yale School of Public Health, New Haven, CT, United States
| | - Janet A. Englund
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Katie L. Flanagan
- Faculty of Health Sciences, School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Matthew D. Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Gayatri Amirthalingam
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| | - Elke Leuridan
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Pierre Van Damme
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Vana Papaevangelou
- Third Department of Pediatrics, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens, Greece
| | - Odile Launay
- Université de Paris, Inserm, CIC 1417, F-CRIN I REIVAC, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Magda Campins
- Preventive Medicine and Epidemiology Department, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Anna Franca Cavaliere
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tiziana Frusca
- Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
| | - Sofia Guidi
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Miguel O'Ryan
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences and Associate Researcher, Millennium Institute of Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Ulrich Heininger
- Pediatric Infectious Diseases, University of Basel Children's Hospital, Basel, Switzerland
| | - Tina Tan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Ahmed R. Alsuwaidi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marco. A. Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Luz M. Vilca
- Unit of Obstetrics and Gynecology, Buzzi Hospital - ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shabir A. Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michelle L. Giles
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Roman Prymula
- School of Medicine Hradec Kralove, Institute of Social Medicine, Charles University Prague, Prague, Czechia
| | - Shamez Ladhani
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, University of Santiago, Santiago de Compostela, Spain
| | - Litjen Tan
- Immunization Action Coalition, St. Paul, MN, United States
| | - Lessandra Michelin
- Infectious Diseases and Vaccinology Division, Health Sciences Post Graduation Program, University of Caxias Do Sul, Caxias Do Sul, Brazil
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Susanna Esposito
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| |
Collapse
|
41
|
Pressler RM, Lagae L. Why we urgently need improved seizure and epilepsy therapies for children and neonates. Neuropharmacology 2019; 170:107854. [PMID: 31751548 DOI: 10.1016/j.neuropharm.2019.107854] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/22/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
In contrast to epilepsy in adolescents and adults, neonatal seizures and early onset epilepsy poses unique challenges with significant repercussion for treatment choices. Most importantly, high seizure burden and epileptic encephalopathy are associated with developmental, behavioural and cognitive problems. The causes are multifactorial and include etiology, seizure burden, epileptic encephalopathy, but also antiseizure medication. In contrast to adults and older children only very few drugs have been licenced for infants and neonates, and after a long delay. Very recently, extrapolation of adult data has become possible as a path to speed up drug development for younger children but this is not necessarily possible for infants and neonates. With the advances in understanding the molecular basis of many epilepsies, targeted therapies become available, for example for KCNQ2 mutation related epilepsies, Dravet syndrome or tuberous sclerosis complex. Drug trials in neonates are particularly challenging because of their inconspicuous clinical presentation, the need for continuous EEG monitoring, high co-morbidity, and poor response to antiepileptic drugs. There is an urgent need for development of new drugs, evaluation of safety and efficacy of current antiseizure drugs, as well as for national policies and guidelines for the management of seizures and epilepsy in neonates and infants. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Ronit M Pressler
- Neuroscience Unit, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Lieven Lagae
- Department Paediatric Neurology, University Hospitals, Leuven, Belgium
| |
Collapse
|