1
|
D’Addabbo A, Tong T, Crooks ET, Osawa K, Xu J, Thomas A, Allen JD, Crispin M, Binley JM. Impact of glycan depletion, glycan debranching and increased glycan charge on HIV-1 neutralization sensitivity and immunogenicity. Glycobiology 2024; 34:cwae063. [PMID: 39115361 PMCID: PMC11442005 DOI: 10.1093/glycob/cwae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 10/02/2024] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1 infected donors are vaccine paradigms. These bNAbs recognize envelope glycoprotein trimers that carry 75-90 oligomannose and complex-type glycans. Although bNAbs and their precursors must navigate past glycans, they usually also make some glycan contacts. Glycan-modified vaccines may therefore be useful to initiate and guide bNAb development. Here, we describe two ways to modify Env glycans for possible vaccine use: 1) using a cocktail of glycosidases (termed "NGAF3" (Neuraminidase, β-Galactosidase, N-Acetylglucosaminidase, endoglycosidase F3 (endo F3)) to deplete complex glycans to try to minimize bNAb-glycan clashes and 2) co-expressing β-1,4-galactosyltransferase 1 (B4G) and β-galactoside α-2,6 sialyltransferase 1 (ST6) during Env biosynthesis, creating bNAb-preferred glycan structures. Mass spectrometry revealed that NGAF3 removed glycan heads at 3/7 sites occupied by complex glycans. B4G overexpression resulted in hybrid glycan development whenever complex glycans were closely spaced. The glycan at position 611 in of Env's gp41 transmembrane subunit was uniquely isolated from the effects of both endo F3 and B4G. B4G and ST6 co-expression increased hybrid and sialylated glycan abundance, reducing glycan complexity. In rabbit vaccinations, B4G + ST6 virus-like particles (VLPs) induced less frequent, weaker titer NAbs, implying that ST6-mediated increased Env charge dampens vaccine antibodies. In some cases, vaccine sera preferentially neutralized B4G + ST6-modified pseudovirus. HIV-1+ donor plasma NAbs were generally more effective against B4G + ST6 modified pseudovirus, suggesting a preference for less complex and/or α-2,6 sialylated Env trimers. Collectively, our data suggest that B4G and ST6 Env modifications are best suited for intermediate or late vaccine shots.
Collapse
Affiliation(s)
- Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tommy Tong
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Emma T Crooks
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Keiko Osawa
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Jiamin Xu
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Alyssa Thomas
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James M Binley
- San Diego Biomedical Research Institute, 3525 Johns Hopkins Court, San Diego, CA 92121, United States
| |
Collapse
|
2
|
Hu K, Palmieri E, Samnuan K, Ricchetti B, Oldrini D, McKay PF, Wu G, Thorne L, Fooks AR, McElhinney LM, Goharriz H, Golding M, Shattock RJ, Micoli F. Generalized Modules for Membrane Antigens (GMMA), an outer membrane vesicle-based vaccine platform, for efficient viral antigen delivery. J Extracell Vesicles 2022; 11:e12247. [PMID: 36377074 PMCID: PMC9663859 DOI: 10.1002/jev2.12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Vaccine platforms enable fast development, testing, and manufacture of more affordable vaccines. Here, we evaluated Generalized Modules for Membrane Antigens (GMMA), outer membrane vesicles (OMVs) generated by genetically modified Gram-negative bacteria, as a vaccine platform for viral pathogens. Influenza A virus hemagglutinin (HA), either physically mixed with GMMA (HA+STmGMMA mix), or covalently linked to GMMA surface (HA-STmGMMA conjugate), significantly increased antigen-specific humoral and cellular responses, with HA-STmGMMA conjugate inducing further enhancement than HA+STmGMMA mix. HA-STmGMMA conjugate protected mice from lethal challenge. The versatility for this platform was confirmed by conjugation of rabies glycoprotein (RABVG) onto GMMA through the same method. RABVG+STmGMMA mix and RABVG-STmGMMA conjugate exhibited similar humoral and cellular response patterns and protection efficacy as the HA formulations, indicating relatively consistent responses for different vaccines based on the GMMA platform. Comparing to soluble protein, GMMA was more efficiently taken up in vivo and exhibited a B-cell preferential uptake in the draining lymph nodes (LNs). Together, GMMA enhances immunity against viral antigens, and the platform works well with different antigens while retaining similar immunomodulatory patterns. The findings of our study imply the great potential of GMMA-based vaccine platform also against viral infectious diseases.
Collapse
Affiliation(s)
- Kai Hu
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Karnyart Samnuan
- Department of Infectious Diseases, Imperial College London, London, UK
| | | | - Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Guanghui Wu
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Leigh Thorne
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Lorraine M McElhinney
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Hooman Goharriz
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Megan Golding
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Robin J Shattock
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
3
|
Enhancement of CD4 Binding, Host Cell Entry, and Sensitivity to CD4bs Antibody Inhibition Conferred by a Natural but Rare Polymorphism in the HIV-1 Envelope. J Virol 2022; 96:e0185121. [PMID: 35862673 PMCID: PMC9327689 DOI: 10.1128/jvi.01851-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.
Collapse
|
4
|
Fu M, Xiao Y, Du T, Hu H, Ni F, Hu K, Hu Q. Fusion Proteins CLD and CLDmut Demonstrate Potent and Broad Neutralizing Activity against HIV-1. Viruses 2022; 14:v14071365. [PMID: 35891347 PMCID: PMC9323411 DOI: 10.3390/v14071365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) interacts with cellular receptors and mediates virus entry into target cells. Blocking Env-receptor interactions represents an effective interventional strategy for developing HIV-1 entry inhibitors. We previously designed a panel of CD4-linker-DC-SIGN (CLD) constructs by fusing the extracellular CD4 and DC-SIGN domains with various linkers. Such CLDs produced by the prokaryotic system efficiently inhibited HIV-1 infection and dissemination in vitro and ex vivo. In this study, following the construction and identification of the most promising candidate with a linker of 8 Gly4Ser repeats (named CLD), we further designed an improved form (named CLDmut) by back mutating Cys to Ser at amino acid 60 of CD4. Both CLD and CLDmut were produced in mammalian (293F) cells for better protein translation and modification. The anti-HIV-1 activity of CLD and CLDmut was assessed against the infection of a range of HIV-1 isolates, including transmitted and founder (T/F) viruses. While both CLD and CLDmut efficiently neutralized the tested HIV-1 isolates, CLDmut demonstrated much higher neutralizing activity than CLD, with an IC50 up to one log lower. The neutralizing activity of CLDmut was close to or more potent than those of the highly effective HIV-1 broadly neutralizing antibodies (bNAbs) reported to date. Findings in this study indicate that mammalian cell-expressed CLDmut may have the potential to be used as prophylaxis or/and therapeutics against HIV-1 infection.
Collapse
Affiliation(s)
- Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
| | - Yingying Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (M.F.); (Y.X.); (T.D.); (H.H.); (F.N.); (K.H.)
- Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
- Correspondence: ; Tel.: +86-27-8719-9992
| |
Collapse
|
5
|
Hu K, McKay PF, Samnuan K, Najer A, Blakney AK, Che J, O'Driscoll G, Cihova M, Stevens MM, Shattock RJ. Presentation of antigen on extracellular vesicles using transmembrane domains from viral glycoproteins for enhanced immunogenicity. J Extracell Vesicles 2022; 11:e12199. [PMID: 35233930 PMCID: PMC8888812 DOI: 10.1002/jev2.12199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
A vaccine antigen, when launched as DNA or RNA, can be presented in various forms, including intracellular, secreted, membrane-bound, or on extracellular vesicles (EVs). Whether an antigen in one or more of these forms is superior in immune induction remains unclear. In this study, we used GFP as a model antigen and first compared the EV-loading efficiency of transmembrane domains (TMs) from various viral glycoproteins, and then investigated whether EV-bound GFP (EV-GFP) would enhance immune induction. Our data showed that GFP fused to viral TMs was successfully loaded onto the surface of EVs. In addition, GFP-bound EVs were predominantly associated with the exosome marker CD81. Immunogenicity study with EV-GFP-producing plasmids in mice demonstrated that antigen-specific IgG and IgA were significantly increased in EV-GFP groups, compared to soluble and intracellular GFP groups. Similarly, GFP-specific T cell response-related cytokines produced by antigen-stimulated splenocytes were also enhanced in mice immunized with EV-GFP constructs. Immunogenicity study with purified soluble GFP and GFP EVs further confirmed the immune enhancement property of EV-GFP in mice. In vitro uptake assays indicated that EV-GFP was more efficiently taken up than soluble GFP by mouse splenocytes and such uptake was B cell preferential. Taken together, our data indicate that viral TMs can efficiently load antigens onto the EV surface, and that EV-bound antigen enhances both humoral and cell-mediated antigen-specific responses.
Collapse
Affiliation(s)
- Kai Hu
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Paul F. McKay
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Karnyart Samnuan
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Adrian Najer
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Anna K. Blakney
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Junyi Che
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Gwen O'Driscoll
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK,Division of Radiotherapy and ImagingThe Institute of Cancer ResearchLondonUK
| | - Martina Cihova
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | | |
Collapse
|
6
|
Lin H, Zeng W, Lei Y, Chen D, Nie Z. Tuftelin 1 (TUFT1) Promotes the Proliferation and Migration of Renal Cell Carcinoma via PI3K/AKT Signaling Pathway. Pathol Oncol Res 2021; 27:640936. [PMID: 34257606 PMCID: PMC8262214 DOI: 10.3389/pore.2021.640936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/17/2021] [Indexed: 12/25/2022]
Abstract
Tuftelin 1 (TUFT1), a protein functioning distinctively in different tissues, is reported to be elevated in several types of cancers and the elevation of TUFT1 is correlated with unfavorable clinicopathologic characteristics and poor survival. However, the involvement of TUFT1 in renal cell carcinoma (RCC) remains unknown. In the current study, we investigated the role of TUFT1 in RCC and potential underlying mechanisms. RT-PCR and Western blot analysis showed that both the mRNA and protein levels of TUFT1 were increased in primary RCC tissue and RCC cell lines. TUFT1 overexpression in RCC cells resulted in enhanced cell proliferation and migration while knockdown of TUFT1 by contrast decreased the growth and migration of the RCC cells, indicating TUFT1 expression is involved in RCC cell growth and migration. The involvement of TUFT1 in the epithelial-mesenchymal transition (EMT) of RCC cells was also determined by measuring the expression of EMT-related markers. Our data showed that TUFT1 overexpression promoted RCC cell EMT progression while knockdown of TUFT1 suppressed such process. Further signaling pathway inhibition assay revealed that TUFT1-induced RCC cell growth, migration and EMT was significantly suppressed by PI3K inhibitor, but not JNK or MEK inhibitors. In addition, TUFT1 overexpression enhanced the AKT phosphorylation, a key member of the PI3K signaling pathway, while PI3K inhibitor suppressed such process. Taken together, our study showed that TUFT1 expression was elevated in RCC and such elevation promoted the proliferation, migration and EMT of RCC cells in vitro, through PI3K/AKT signaling pathway. The findings of our current study imply that TUFT1 is involved in RCC tumorigenesis, and it may serve as a biomarker for RCC diagnosis and a potential target for RCC treatment.
Collapse
Affiliation(s)
- Hua Lin
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Weifeng Zeng
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yuhang Lei
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Desheng Chen
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Zhen Nie
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| |
Collapse
|