1
|
Kitro A, Imad HA, Pisutsan P, Matsee W, Sirikul W, Sapbamrer R, Rapheal E, Fernandez S, Cotrone TS, Farmer AR, Hunsawong T, Silachamroon U, Chatapat L, Olanwijitwong J, Salee P, Anderson KB, Piyaphanee W. Seroprevalence of dengue, Japanese encephalitis and Zika among long-term expatriates in Thailand. J Travel Med 2024; 31:taae022. [PMID: 38335250 DOI: 10.1093/jtm/taae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Travel to Southeast Asia increases the likelihood of acquiring mosquito-borne Flavivirus infections such as dengue (DENV), Japanese encephalitis (JEV) and Zika viruses (ZIKV). Expatriates are long-term travellers who have a higher risk of mosquito-borne illness at their destination country. The purpose of this study was to evaluate the seroprevalence of DENV, JEV and ZIKV infections and the determinants contributing to seropositivity among expatriates living in Thailand. METHODS A cross-sectional study was performed from December 2017 to February 2020. Expatriates from non-Flavivirus endemic countries were recruited. 5 mL of blood was collected for DENV 1-4, JEV and ZIKV antibody testing by plaque reduction neutralization test (PRNT50). Individuals with vaccination histories or diagnoses for dengue, Japanese encephalitis, yellow fever and tick-borne encephalitis were excluded. RESULTS Among 254 participants, most participants (83.1%) were male, the mean age was 65 years and the median duration of stay in Thailand was 6 years. Seroprevalence rate of any Flavivirus, non-specific DENV, DENV1-4, JEV and ZIKV were 34.3, 30.7, 20.5, 18.1, 18.9, 10.6, 4.7 and 2.8%, respectively. The presence of neutralizing antibodies against DENV1-4 positively correlates with the duration of stay in Thailand. DENV seropositivity was associated with living in urban areas (aOR 2.75, 95% CI 1.36-5.57). Expatriates were unlikely to have detectable anti-JEV antibodies regardless of time spent in a JEV-endemic area. No risk factors were identified that were significantly associated with JEV or ZIKV seropositivity. Only 48.4% received pre-travel counselling services, while only 18.9% visited a travel medicine specialist. CONCLUSIONS A high proportion (34.3%) of long-term expatriates living in Thailand were seropositive for flavivirus, mainly from dengue (30.7%). To minimize risk, travel medicine practitioners should provide adequate pre-travel health risk information on mosquito-borne flavivirus infection and offer advice on mosquito bite prevention strategies. Dengue vaccine might be considered in high-risk travellers such as long-term expatriate.
Collapse
Affiliation(s)
- Amornphat Kitro
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental and Occupational Medicine Excellence Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hisham Ahmed Imad
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Suita 565-0871, Japan
| | - Phimphan Pisutsan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wasin Matsee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Data Analytics and Knowledge Synthesis for Health Care, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratana Sapbamrer
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental and Occupational Medicine Excellence Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Erica Rapheal
- School of Public Health, University of Minnesota, Minnesota, MN 55414, USA
| | - Stefan Fernandez
- Department of Virology, US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Thomas S Cotrone
- Department of Virology, US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Aaron R Farmer
- Department of Virology, US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Taweewun Hunsawong
- Department of Virology, US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Udomsak Silachamroon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Lapakorn Chatapat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jutarmas Olanwijitwong
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Parichat Salee
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kathryn B Anderson
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Watcharapong Piyaphanee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Monath TP. Japanese Encephalitis: Risk of Emergence in the United States and the Resulting Impact. Viruses 2023; 16:54. [PMID: 38257754 PMCID: PMC10820346 DOI: 10.3390/v16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Japanese encephalitis virus is a mosquito-borne member of the Flaviviridae family. JEV is the leading cause of viral encephalitis in Asia and is characterized by encephalitis, high lethality, and neurological sequelae in survivors. The virus also causes severe disease in swine, which are an amplifying host in the transmission cycle, and in horses. US agricultural authorities have recently recognized the threat to the swine industry and initiated preparedness activities. Other mosquito-borne viruses exotic to the Western Hemisphere have been introduced and established in recent years, including West Nile, Zika, and chikungunya viruses, and JEV has recently invaded continental Australia for the first time. These events amply illustrate the potential threat of JEV to US health security. Susceptible indigenous mosquito vectors, birds, feral and domestic pigs, and possibly bats, constitute the receptive ecological ingredients for the spread of JEV in the US. Fortunately, unlike the other virus invaders mentioned above, an inactivated whole virus JE vaccine (IXIARO®) has been approved by the US Food and Drug Administration for human use in advance of a public health emergency, but there is no veterinary vaccine. This paper describes the risks and potential consequences of the introduction of JEV into the US, the need to integrate planning for such an event in public health policy, and the requirement for additional countermeasures, including antiviral drugs and an improved single dose vaccine that elicits durable immunity in both humans and livestock.
Collapse
Affiliation(s)
- Thomas P Monath
- Quigley BioPharma LLC, 114 Water Tower Plaza No. 1042, Leominster, MA 01453, USA
| |
Collapse
|
3
|
Lau CL, Mills DJ, Mayfield H, Gyawali N, Johnson BJ, Lu H, Allel K, Britton PN, Ling W, Moghaddam T, Furuya-Kanamori L. A decision support tool for risk-benefit analysis of Japanese encephalitis vaccine in travellers. J Travel Med 2023; 30:taad113. [PMID: 37602668 DOI: 10.1093/jtm/taad113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND During pre-travel consultations, clinicians and travellers face the challenge of weighing the risks verus benefits of Japanese encephalitis (JE) vaccination due to the high cost of the vaccine, low incidence in travellers (~1 in 1 million), but potentially severe consequences (~30% case-fatality rate). Personalised JE risk assessment based on the travellers' demographics and travel itinerary is challenging using standard risk matrices. We developed an interactive digital tool to estimate risks of JE infection and severe health outcomes under different scenarios to facilitate shared decision-making between clinicians and travellers. METHODS A Bayesian network (conditional probability) model risk-benefit analysis of JE vaccine in travellers was developed. The model considers travellers' characteristics (age, sex, co-morbidities), itinerary (destination, departure date, duration, setting of planned activities) and vaccination status to estimate the risks of JE infection, the development of symptomatic disease (meningitis, encephalitis), clinical outcomes (hospital admission, chronic neurological complications, death) and adverse events following immunization. RESULTS In low-risk travellers (e.g. to urban areas for <1 month), the risk of developing JE and dying is low (<1 per million) irrespective of the destination; thus, the potential impact of JE vaccination in reducing the risk of clinical outcomes is limited. In high-risk travellers (e.g. to rural areas in high JE incidence destinations for >2 months), the risk of developing symptomatic disease and mortality is estimated at 9.5 and 1.4 per million, respectively. JE vaccination in this group would significantly reduce the risk of symptomatic disease and mortality (by ~80%) to 1.9 and 0.3 per million, respectively. CONCLUSION The JE tool may assist decision-making by travellers and clinicians and could increase JE vaccine uptake. The tool will be updated as additional evidence becomes available. Future work needs to evaluate the usability of the tool. The interactive, scenario-based, personalised JE vaccine risk-benefit tool is freely available on www.VaxiCal.com.
Collapse
Affiliation(s)
- Colleen L Lau
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Dr Deb The Travel Doctor, Travel Medicine Alliance, Brisbane, QLD, Australia
| | - Deborah J Mills
- Dr Deb The Travel Doctor, Travel Medicine Alliance, Brisbane, QLD, Australia
| | - Helen Mayfield
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Hongen Lu
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Kasim Allel
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Philip N Britton
- Department of Infectious Diseases and Microbiology, Children's Hospital Westmead, Westmead, NSW, Australia
- Child and Adolescent Health and Sydney ID, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Weiping Ling
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Tina Moghaddam
- School of Information Technology and Electrical Engineering, Faculty of Science, The University of Queensland, St Lucia, QLD, Australia
| | - Luis Furuya-Kanamori
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
4
|
Deng X, Yan R, Li ZQ, Tang XW, Zhou Y, He H. Economic and disease burden of Japanese encephalitis in Zhejiang Province, 2013-2018. PLoS Negl Trop Dis 2021; 15:e0009505. [PMID: 34153039 PMCID: PMC8248708 DOI: 10.1371/journal.pntd.0009505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/01/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Japanese encephalitis (JE) is a mosquito-borne disease and associated with high mortality and disability rate among symptomatic cases. In the absence of local data, this study estimated the economic burden and the disability-adjusted life years (DALYs) due to JE in Zhejiang Province, China during 2013-2018, to increase disease awareness and provide evidence for effective health policy. METHODOLOGY/PRINCIPLE FINDINGS We merged multiple data sources, including National Notifiable Disease Registry System (NNDRS), patient interviews and medical records from corresponding hospitals for JE cases which occurred during 2013-2018 in Zhejiang Province. Direct costs were extracted from hospitals' billing systems and patient interviews. Indirect costs and disease burden were calculated based on questionnaire survey from patient interviews and follow-up assessment by general practitioners. Given under-reporting, an expansion factor (EF) was applied to extrapolate the JE burden to the provincial level. The total economic burden of JE during 2013-2018 was estimated at US $12.01 million with an EF = 3. Of this, $8.32 million was due to direct economic cost and $3.69 million to indirect cost. The disease burden of JE was 42.75 DALYs per million population (28.44 YLD, 14.28 YLL) according to the 1990 Global Burden of Disease (GBD 1990) methodology and 80.01 DALYs (53.67YLD, 26.34YLL) according to the GBD 2010 methodology. Sensitivity analysis demonstrated that the overall economic burden varied from US$ 1.73-36.42 million. The greatest variation was due to the prognosis of illness (-85.57%-203.17%), followed by occupation (-34.07%-134.12%) and age (-72.97%-47.69%). CONCLUSIONS/SIGNIFICANCE JE imposes a heavy burden for families and society in Zhejiang Province. This study provides comprehensive empirical estimates of JE burden to increase awareness and strengthen knowledge of the public. These data may support provincial level public health decision making for prevention and control of JE. Ongoing surveillance for acute meningitis and encephalitis syndrome (AEMS) in sentinel hospitals, is needed to further refine estimates of JE burden.
Collapse
Affiliation(s)
- Xuan Deng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Rui Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Zi-qiao Li
- Xiamen University, Xiamen, People’s Republic of China
| | - Xue-wen Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Yang Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Hanqing He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|