1
|
Huang J, Hu Y, Niu Z, Hao W, Ketema H, Wang Z, Xu J, Sheng L, Cai Y, Yu Z, Cai Y, Zhang W. Preclinical Efficacy of Cap-Dependent and Independent mRNA Vaccines against Bovine Viral Diarrhea Virus-1. Vet Sci 2024; 11:373. [PMID: 39195827 PMCID: PMC11359904 DOI: 10.3390/vetsci11080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an RNA virus associated with severe economic losses in animal production. Effective vaccination and viral surveillance are urgent for the prevention and control of BVDV infection. However, the application of traditional modified live vaccines and inactivated vaccines is faced with tremendous challenges. In the present study, we describe the preclinical efficacy of two BVDV mRNA vaccines tested in mice and guinea pigs, followed by a field trial in goats, where they were compared to a commercial vaccine (formaldehyde inactivated). The two mRNAs were engineered to express the envelope protein E2 of BVDV-1, the most prevalent subtype across the world, through a 5' cap-dependent or independent fashion. Better titers of neutralizing antibodies against BVDV-1 were achieved using the capped RNA in the sera of mice and guinea pigs, with maximum values reaching 9.4 and 13.7 (by -log2), respectively, on the 35th day post-vaccination. At the same time point, the antibody levels in goats were 9.1 and 10.2 for the capped and capless RNAs, respectively, and there were no significant differences compared to the commercial vaccine. The animals remained healthy throughout the experiment, as reflected by their normal leukogram profiles. Collectively, our findings demonstrate that mRNA vaccines have good safety and immunogenicity, and we laid a strong foundation for the further exploitation of efficient and safe BVDV vaccines.
Collapse
Affiliation(s)
- Jing Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Yaping Hu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Zikang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Wei Hao
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Hirpha Ketema
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Zhipeng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Junjie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Le Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Yuze Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, China;
| | - Zhenghong Yu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| |
Collapse
|
2
|
Fritzen JTT, Zucoloto NZ, Lorenzetti E, Alfieri AF, Alfieri AA. Outbreak of persistently infected heifer calves with bovine viral diarrhea virus subgenotypes 1b and 1d in a BVDV-vaccinated open dairy herd. Acta Trop 2024; 254:107198. [PMID: 38531427 DOI: 10.1016/j.actatropica.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Bovine viral diarrhea virus (BVDV) infection has a significant economic impact on beef and dairy industries worldwide. Fetal infection with a non-cytopathic strain may lead to the birth of persistently infected (PI) offspring, which is the main event in the epidemiological chain of BVDV infection. This report describes the birth of 99 BVDV-PI heifer calves within 52 days of birth in a regular BVDV-vaccinated Brazilian dairy cattle herd and the subgenotypes of the infecting field strains. This study was conducted in a high-yielding open dairy cattle herd that frequently acquired heifers from neighboring areas for replacement. The farm monitors the birth of PI calves by screening all calves born using an ELISA (IDEXX) for BVDV antigen detection. All calves aged 1-7 days were evaluated. For positive and suspected results, the ELISA was repeated when the calves were close to one month old. A total of 294 heifer calves were evaluated between February and March 2021. Of these, 99 (33.7 %) had positive ELISA results and were considered PI calves. To evaluate the predominant BVDV species and subgenotypes in this outbreak, whole blood samples were collected from 31 calves born during the study period. All samples were submitted to the RT-PCR assay for the partial amplification of the BVDV 5'-UTR region, and these amplicons were subjected to nucleotide sequencing. Phylogenetic analysis identified BVDV-1b and BVDV-1d in 16 and 13 heifer calves, respectively. In two calves, it was not possible to determine the BVDV-1 subgenotype. Detection of PI animals and monitoring of circulating BVDV subgenotype strains are central to disease control. This study shows that regular BVDV vaccination alone may be insufficient to prevent BVDV infection in high-yielding open dairy cattle herds. Other biosecurity measures must be adopted to avoid the purchase of cattle with acute infections by BVDV or BVDV-PI, which can cause a break in the health profile of the herd and economic losses.
Collapse
Affiliation(s)
- Juliana Torres Tomazi Fritzen
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Natalia Zaparoli Zucoloto
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar, Arapongas, Paraná, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
3
|
Calado AM, Seixas F, Dos Anjos Pires M. Virus as Teratogenic Agents. Methods Mol Biol 2024; 2753:105-142. [PMID: 38285335 DOI: 10.1007/978-1-0716-3625-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Viral infectious diseases are important causes of reproductive disorders, as abortion, fetal mummification, embryonic mortality, stillbirth, and congenital abnormalities in animals and in humans. In this chapter, we provide an overview of some virus, as important agents in teratology.We begin by describing the Zika virus, whose infection in humans had a very significant impact in recent years and has been associated with major health problems worldwide. This virus is a teratogenic agent in humans and has been classified as a public health emergency of international concern (PHEIC).Then, some viruses associated with reproductive abnormalities on animals, which have a significant economic impact on livestock, are described, as bovine herpesvirus, bovine viral diarrhea virus, Schmallenberg virus, Akabane virus, and Aino virus.For all viruses mentioned in this chapter, the teratogenic effects and the congenital malformations associated with fetus and newborn are described, according to the most recent scientific publications.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
4
|
Mishchenko AV, Mishchenko VA, Gulyukin MI, Oganesyan AS, Alexeyenkova SV, Zaberezhny AD, Gulyukin AМ. [Persistent form of bovine viral diarrhea]. Vopr Virusol 2023; 68:465-478. [PMID: 38156563 DOI: 10.36233/0507-4088-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 12/30/2023]
Abstract
The review provides an analysis of literature data on the persistent form of Bovine Viral diarrhea/Mucosal disease (BVD) and is focused on virus and host factors, including those related to immune response, that contribute the persistence of the virus. BVD is a cattle disease widespread throughout the world that causes significant economic damage to dairy and beef cattle. The disease is characterized by a variety of clinical signs, including damage to the digestive and respiratory organs, abortions, stillbirths and other failures of reproductive functions.
Collapse
Affiliation(s)
| | - V A Mishchenko
- Federal Scientific Center VIEV
- Federal Animal Healthcare Center
| | | | | | | | - A D Zaberezhny
- All-Russian Research and Technological Institution of Industry
| | | |
Collapse
|
5
|
Hugues F, Cabezas I, Garigliany M, Rivas F, Casanova T, González EE, Sánchez O, Castillo R, Parra NC, Inostroza-Michael O, Moreno L, Hernández CE, Toledo JR. First report of bovine viral diarrhea virus subgenotypes 1d and 1e in southern Chile. Virol J 2023; 20:205. [PMID: 37679808 PMCID: PMC10486069 DOI: 10.1186/s12985-023-02170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) affects cattle worldwide causing severe productive and economic loss. In this study, we investigated the subgenotypes of BVDV circulating in cattle samples from the Aysén region, an active cattle breeding area located in southern Chile. Partial amplification of the 5' untranslated region (UTR) was performed by polymerase chain reaction (PCR), and twelve samples were analyzed by Sanger sequencing and phylogenetic analysis. Eight samples were identified as belonging to Pestivirus bovis subgenotype 1e, three to 1-b, and one to 1-d. The phylogenetic analyses performed revealed a marked distance between these now-identified strains and those previously reported in the country. These findings support the need to continually expand the analysis of the variability of the viral phylogeny for the currently circulating BVDV strains and to update the vaccines recommended for this livestock area and surrounding areas.
Collapse
Affiliation(s)
- Florence Hugues
- Departamento de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Ignacio Cabezas
- Departamento de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Mutien Garigliany
- Department of Pathology, Faculty of Veterinary Medicine, Université de Liège, Liège, Belgium
| | - Felipe Rivas
- Department of Pathology, Faculty of Veterinary Medicine, Université de Liège, Liège, Belgium
| | - Tomás Casanova
- Departamento de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Eddy E González
- Laboratorio de Biotecnología Y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, 4070386, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biotecnología Y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, 4070386, Concepción, Chile
| | | | - Natalie C Parra
- Laboratorio de Biotecnología Y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, 4070386, Concepción, Chile
| | - Oscar Inostroza-Michael
- Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro de Investigación en Recursos Naturales, HOLON SpA., Concepción, Chile
| | - Lucila Moreno
- Laboratorio de Ecología Parasitaria, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Cristián E Hernández
- Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.
- Universidad Católica de Santa María, Arequipa, Perú.
| | - Jorge R Toledo
- Laboratorio de Biotecnología Y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, 4070386, Concepción, Chile.
| |
Collapse
|
6
|
Kim UH, Kang SS, Jang SS, Kim SW, Chung KY, Kang DH, Park BH, Ha S. Bovine Viral Diarrhea Virus Antibody Level Variation in Newborn Calves after Vaccination of Late-Gestational Cows. Vet Sci 2023; 10:562. [PMID: 37756084 PMCID: PMC10535789 DOI: 10.3390/vetsci10090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
This study was conducted to confirm variation in bovine viral diarrhea virus (BVDV) antibody levels transferred to calves from their mother's colostrum after vaccination of late-gestational cows. Blood samples were drawn from 60 pregnant cows that had been vaccinated more than one year and less than two years previously. The samples were collected six weeks prior to the expected date of delivery. After sample collection, the cows were divided into two groups of 30. One group received 2 mL of BVDV vaccine, and a control group received 2 mL of phosphate-buffered saline (PBS). Blood was collected from the cows three weeks post-administration. Additional blood samples were taken from calves at 1, 4, 8, 12, 16, and 20 weeks after birth. The serum was separated from the collected blood, and BVDV antibody changes were confirmed by enzyme-linked immunosorbent assays. BVDV antibody levels were higher from 8 to 20 weeks of age in calves born to late-gestational BVDV-vaccinated cows than in calves born to control cows (p < 0.0083). Further analysis confirmed a slow decline in BVDV maternal antibodies in calves born to pregnant cows that produced high levels of BVDV antibodies following pre-calving BVDV vaccination. These results suggest that BVDV vaccination of cattle in late pregnancy may help to extend the duration of protection against BVDV infection in newborn calves.
Collapse
Affiliation(s)
- Ui-Hyung Kim
- Hanwoo Research Institute, National Institute of Animal Science, 4937, Gyeonggang-ro, Pyeongchang-gun 25340, Gangwon-do, Republic of Korea
| | - Sung-Sik Kang
- Hanwoo Research Institute, National Institute of Animal Science, 4937, Gyeonggang-ro, Pyeongchang-gun 25340, Gangwon-do, Republic of Korea
| | - Sun-Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, 4937, Gyeonggang-ro, Pyeongchang-gun 25340, Gangwon-do, Republic of Korea
| | - Sung Woo Kim
- Hanwoo Research Institute, National Institute of Animal Science, 4937, Gyeonggang-ro, Pyeongchang-gun 25340, Gangwon-do, Republic of Korea
| | - Ki-Yong Chung
- Department of Beef Science, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si 54874, Jeollabuk-do, Republic of Korea
| | - Dong-Hun Kang
- Department of Beef Science, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si 54874, Jeollabuk-do, Republic of Korea
| | - Bo-Hye Park
- Department of Beef Science, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si 54874, Jeollabuk-do, Republic of Korea
| | - Seungmin Ha
- Dairy Science Division, National Institute of Animal Science, 114 Sinbang 1-gil, Seonghwan-eup, Seobuk-gu, Cheonan-si 31000, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
7
|
Grange G, Mindeguia M, Gisbert P, Meyer G. Cross-Neutralization between Bovine Viral Diarrhea Virus (BVDV) Types 1 and 2 after Vaccination with a BVDV-1a Modified-Live-Vaccine. Vaccines (Basel) 2023; 11:1204. [PMID: 37515020 PMCID: PMC10383975 DOI: 10.3390/vaccines11071204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Control of Bovine Viral Diarrhea Virus types 1 and 2 (BVDV-1 and BVDV-2) involves removing persistently infected animals from the herd, ensuring the biosecurity level of the farms and vaccination for the prevention of fetal infection. Given pestiviruses high genetic and antigenic diversities, one challenge for a BVDV vaccine is to provide the broadest possible heterologous protection against most genotypes and sub-genotypes. The Modified-Live Mucosiffa® vaccine, which contains the BVDV-1 sub-genotype 1a (BVDV-1a) cytopathic Oregon C24 strain, was shown to protect fetuses of pregnant heifers against a challenge with a BVDV-1f Han strain. In this study, we tested the cross-neutralizing antibody (NA) response of 9 heifers at 28, 203- and 363-days post-vaccination with Mucosiffa® against recent and circulating European strains of BVDV-1a, -1b, -1e, -1f and BVDV-2a. We showed that Mucosiffa® vaccination generates a stable over time NA response against all BVDV strains. NA response was greater against BVDV-1a and -1b, with no significant differences between these sub-genotypes. Interestingly the NA response against the two BVDV-2a strains was similar to that observed against the BVDV-1f Han strain, which was the challenge strain used in fetal protection studies to validate the Mucosiffa® vaccine. These results suggest that Mucosiffa® vaccination provides humoral cross-immunity, which may protect against BVDV-1 and BVDV-2a infection.
Collapse
Affiliation(s)
| | - Marie Mindeguia
- Clinique Vétérinaire Amikuze, 64120 Béhasque-Lapiste, France
| | | | - Gilles Meyer
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, 31100 Toulouse, France
| |
Collapse
|
8
|
Enhancement of Vaccine-Induced T-Cell Responses by PD-L1 Blockade in Calves. Vaccines (Basel) 2023; 11:vaccines11030559. [PMID: 36992143 DOI: 10.3390/vaccines11030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions between programmed death 1 (PD-1) and PD-ligand 1 (PD-L1) cause functional exhaustion of T cells by inducing inhibitory signals, thereby attenuating effector functions of T cells. We have developed an anti-bovine PD-L1 blocking antibody (Ab) and have demonstrated that blockade of the interaction between PD-1 and PD-L1 reactivates T-cell responses in cattle. In the present study, we examined the potential utility of PD-1/PD-L1-targeted immunotherapy in enhancing T-cell responses to vaccination. Calves were inoculated with a hexavalent live-attenuated viral vaccine against bovine respiratory infections in combination with treatment with an anti-PD-L1 Ab. The expression kinetics of PD-1 in T cells and T-cell responses to viral antigens were measured before and after vaccination to evaluate the adjuvant effect of anti-PD-L1 Ab. PD-1 expression was upregulated in vaccinated calves after the administration of a booster vaccination. The activation status of CD4+, CD8+, and γδTCR+ T cells was enhanced by the combination of vaccination and PD-L1 blockade. In addition, IFN-γ responses to viral antigens were increased following combinatorial vaccination with PD-L1 blockade. In conclusion, the blockade of the PD-1/PD-L1 interaction enhances T-cell responses induced by vaccination in cattle, indicating the potential utility of anti-PD-L1 Ab in improving the efficacy of current vaccination programs.
Collapse
|
9
|
Immunogenicity of a secreted, C-terminally truncated, form of bovine viral diarrhea virus E2 glycoprotein as a potential candidate in subunit vaccine development. Sci Rep 2023; 13:296. [PMID: 36609424 PMCID: PMC9818055 DOI: 10.1038/s41598-022-26766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Both current live, attenuated, and killed virus vaccines for bovine viral diarrhea virus (BVDV) have their limitations. Here, we report the development of a BVDV subunit vaccine by (i) the expression of a secreted form of a recombinant E2 glycoprotein using BHK21 cells and (ii) determination of the immune responses in mice. The E2 glycoprotein was modified by deletion of the C-terminal transmembrane anchor domain and fusion to a V5 epitope tag. This allowed detection using anti-V5 monoclonal antibodies together with simple purification of the expressed, secreted, form of E2 from the cell media. Furthermore, we genetically fused green fluorescent protein (GFP) linked to E2 via a Thosea asigna virus 2A (T2A) ribosome skipping sequence thereby creating a self-processing polyprotein [GFP-T2A-BVDV-E2trunk-V5], producing discrete [GFP-T2A] and [E2trunk-V5] translation products: GFP fluorescence acts, therefore, as a surrogate marker of E2 expression, BALB/c mice were inoculated with [E2trunk-V5] purified from cell media and both humoral and cellular immune responses were observed. Our antigen expression system provides, therefore, both (i) a simple antigen purification protocol together with (ii) a feasible strategy for further, large-scale, production of vaccines.
Collapse
|
10
|
Katsura M, Fukushima M, Kameyama KI, Kokuho T, Nakahira Y, Takeuchi K. Novel bovine viral diarrhea virus (BVDV) virus-like particle vaccine candidates presenting the E2 protein using the SpyTag/SpyCatcher system induce a robust neutralizing antibody response in mice. Arch Virol 2023; 168:49. [PMID: 36609880 PMCID: PMC9825097 DOI: 10.1007/s00705-022-05653-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is a pathogen of commercial consequence in cattle. Although many modified live and killed vaccines are commercially available, their drawbacks precipitate the need for new effective vaccines. Virus-like particles (VLPs) are a safe and powerful technology used in several human and veterinary vaccines; however, it is difficult to produce large amounts of BVDV VLPs. In this study, we generated red-spotted grouper nervous necrosis virus (RGNNV) VLPs presenting the BVDV E2 protein (domain I to IIIb) of the Nose (BVDV-1) or KZ-91-CP (BVDV-2) strain by exploiting SpyTag/SpyCatcher technology. Mice immunized twice with 30 μg of RGNNV VLPs conjugated with 10 μg of E2 proteins of the Nose or KZ-91-CP strain with a 14-day interval elicited high (1:512,000 to 1:1,024,000) and moderate (1:25,600 to 1:102,400) IgG titers against E2 proteins of homologous and heterologous strains, respectively. In addition, this prime-boost regimen induced strong (1:800 to 1:3,200) and weak (~1:10) neutralization titers against homologous and heterologous BVDV strains, respectively. Our results indicate that conjugation of the E2 protein to RGNNV VLPs strongly enhances the antigenicity of the E2 protein and that RGNNV VLPs presenting the E2 protein are promising BVDV vaccine candidates.
Collapse
Affiliation(s)
- Miki Katsura
- grid.20515.330000 0001 2369 4728Laboratory of Environmental Microbiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Masaki Fukushima
- grid.20515.330000 0001 2369 4728Laboratory of Environmental Microbiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Ken-ichiro Kameyama
- grid.416882.10000 0004 0530 9488Exotic Disease Research Group, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo 187-0022 Japan
| | - Takehiko Kokuho
- grid.416882.10000 0004 0530 9488Exotic Disease Research Group, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo 187-0022 Japan
| | - Yoichi Nakahira
- grid.410773.60000 0000 9949 0476College of Agriculture, Ibaraki University, 3-21 Chuo, Ami, Ibaraki 300-0332 Japan
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
11
|
Smith BI, Cady SV, Aceto HW. Effect of formic acid treatment on colostrum quality, and on absorption and function of immunoglobulins: a randomized controlled trial in Holstein dairy calves. BMC Vet Res 2022; 18:318. [PMID: 35978339 PMCID: PMC9387083 DOI: 10.1186/s12917-022-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022] Open
Abstract
Background Good quality colostrum is characterized by high immunoglobulin concentration and low pathogen load. Some methods of pathogen reduction can decrease immunoglobulin concentration and potentially affect their function. Objectives were to determine the effect of formic acid treatment on colostral bacterial and immunoglobulin (IgG) levels before feeding, and serum immunoglobulin concentration and neutralizing capabilities after feeding. Fifteen female Holstein calf pairs born < 12 h apart from different dams were randomly assigned to receive four liters of either untreated pooled (both dams) colostrum (MC) or colostrum acidified to pH 4.0–4.5 (AC). Colostrum characteristics estimated; pH, bacterial load, IgG concentration, and neutralization of Infectious Bovine Rhinotracheitis (IBRV/BoHV-1), Bovine Viral Diarrhea (BVDV) Types 1 and 2. Blood samples were collected on days 1, 3 and monthly for 6 months and were analyzed for IgG, and both viral plus leptospiral neutralization, and total protein (day 3 only). Results Compared to MC (mean 6.7, SD 0.4; median 6.8, range 6.0–7.3), AC pH was significantly reduced (mean 4.3, SD 0.2; median 4.3, range 4.0–4.5; P < 0.001). Total coliform count (cfu/mL) was also reduced (MC mean 149, SD 444; median 1, range 0–1,700; AC mean 8, SD 31; median 0, range 0–120; P = 0.02). Colostrum IgG concentration was not significantly different between MC (mean 93.3, SD 39.7; median 92.8, range 36.7–164.4 g/L) and AC (mean 101.9, SD 36.7; median 108.3, range 33.8–164.4 g/L; P = 0.54). In calves, serum IgG peaked on day 3 (MC mean 26.1, SD 34.9; median 169.2, range 8.3–151.0 g/L; AC mean 30.2, SD 48.7; median 188.8, range 3.1–204.4 g/L; P = 0.77), and apparent efficiency of IgG absorption was not different between groups (MC mean 24.3, SD 11.4, median 25.3, range 8.6–51.3%; AC mean 22.6, SD 21.7, median 21.6, range 4.1–58.9%; P = 0.65). Thereafter, IgG levels declined but did not differ between groups. MC and AC serum neutralizing titers for IBRV, BVDV Types 1 and 2, or Leptospira interrogans serovars Canicola, and Pomona and L. borgpetersenii serovar Hardjo were not different. Conclusions Colostrum acidification significantly decreased bacterial load fed to newborn calves without affecting colostral IgG concentration or virus neutralization. In addition, acid treatment did not affect serum IgG concentration in calves or its activity against common pathogens.
Collapse
Affiliation(s)
- Billy I Smith
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, 382 West Street Road, Kennett Square, 19348, PA, USA.
| | - Sarah V Cady
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, 382 West Street Road, Kennett Square, 19348, PA, USA
| | - Helen W Aceto
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, 382 West Street Road, Kennett Square, 19348, PA, USA
| |
Collapse
|
12
|
Lack of Fetal Protection against Bovine Viral Diarrhea Virus in a Vaccinated Heifer. Viruses 2022; 14:v14020311. [PMID: 35215904 PMCID: PMC8879756 DOI: 10.3390/v14020311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the report was to present the circulation of BVDV (bovine viral diarrhea virus) in the cattle population and determine the cause of the failure of vaccination failure leading to the birth of the PI (persistently infected) calf. The case study was carried out at the BVDV-free animal breeding center and cattle farm, where the vaccination program against BVDV was implemented in 2012, and each newly introduced animal was serologically and virologically tested for BVDV. In this case, a blood sample was taken from a 9-month-old breeding bull. Positive RT-PCR and negative ELISA serology results were obtained. The tests were repeated at 2-week intervals, and the results confirmed the presence of the virus and the absence of specific antibodies, i.e., persistent infection. Additionally, sequencing and phylogenetic analysis were performed, and the BVDV-1d subgenotype was detected. The results of this study showed that pregnant heifers and cows that are vaccinated multiple times with the killed vaccine containing BVDV-1a may not be fully protected against infection with other subgenotypes of BVDV, including their fetuses, which can become PI calves.
Collapse
|
13
|
Vaccination of Sheep with Bovine Viral Diarrhea Vaccines Does Not Protect against Fetal Infection after Challenge of Pregnant Ewes with Border Disease Virus. Vaccines (Basel) 2021; 9:vaccines9080805. [PMID: 34451930 PMCID: PMC8402421 DOI: 10.3390/vaccines9080805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
Border Disease (BD) is a major sheep disease characterized by immunosuppression, congenital disorders, abortion, and birth of lambs persistently infected (PI) by Border Disease Virus (BDV). Control measures are based on the elimination of PI lambs, biosecurity, and frequent vaccination which aims to prevent fetal infection and birth of PI. As there are no vaccines against BDV, farmers use vaccines directed against the related Bovine Viral Diarrhea Virus (BVDV). To date, there is no published evidence of cross-effectiveness of BVDV vaccination against BDV infection in sheep. We tested three commonly used BVDV vaccines, at half the dose used in cattle, for their efficacy of protection against a BDV challenge of ewes at 52 days of gestation. Vaccination limits the duration of virus-induced leukopenia after challenge, suggesting partial protection in transient infection. Despite the presence of BDV neutralizing antibodies in vaccinated ewes on the day of the challenge, fetuses of vaccinated and unvaccinated sheep were, two months after, highly positive for BDV RNA loads and seronegative for antibodies. Therefore, BVDV vaccination at half dose was not sufficient to prevent ovine fetal infection by BDV in a severe challenge model and can only be reconsidered as a complementary mean in BD control.
Collapse
|
14
|
Do modified live virus vaccines against bovine viral diarrhea induce fetal cross-protection against HoBi-like Pestivirus? Vet Microbiol 2021; 260:109178. [PMID: 34330023 DOI: 10.1016/j.vetmic.2021.109178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
Bovine Pestivirus heterogeneity is a major challenge for vaccines against bovine viral diarrhea (BVD). In breeding herds, fetal protection is a high priority issue. To some degree, fetal infections in vaccinated heifers have been attributed to the antigenic diversity of bovine Pestiviruses. The purpose of this study was to assess fetal protection against a divergent bovine Pestivirus (Hobi-like Pestivirus, HoBiPeV) with a commercially available modified live vaccine (MLV) claiming fetal protection against BVDV 1 and BVDV 2 up to one year after the first inoculation. Five vaccinated and four unvaccinated heifers were challenged by intranasal inoculation with the HoBiPeV Italy-1/10-1 strain between 82 and 89 days after insemination, i.e. between 4 and 6 months after vaccination. At challenge, neutralizing antibody titers to HoBiPeV in vaccinated heifers were low or even undetectable. Of the four unvaccinated heifers, one control animal aborted (fetus not available) and the remaining three gave birth to HoBiPeV positive calves. Among the heifers of the vaccinated group, one aborted the fetus in the sixth month of pregnancy, which tested Pestivirus negative, while three others gave birth to healthy, HoBiPeV negative calves; the remaining heifer delivered one HoBiPeV positive calf. The results suggest that the BVDV vaccine might be able to elicit a partial fetal protection against HobiPeV, even in absence of a strong specific antibody response.
Collapse
|
15
|
Martínez-Rodríguez LC, Guzmán-Barragán BL, Ordoñez D, Tafur-Gómez GA. Cattle seroprevalence and risk factors associated with bovine viral diarrhea in the northeastern of Colombia. Trop Anim Health Prod 2021; 53:377. [PMID: 34184109 DOI: 10.1007/s11250-021-02774-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Bovine viral diarrhea (BVD) is one of the most common and economically significant viral infections in cattle. Different risk factors have been associated with viral exposure and transmission, generating endemic regions with different biotype circulations. To find the BVD status in the northeastern region of Colombia, this study aimed to determine the seroprevalence and risk factors associated with the disease in non-vaccinated farms. For this purpose, a two-time point sampling strategy was developed, obtaining serum from 1157 animals housed in 25 farms distributed in 46 townships, thus for antibody detection against non-structural protein 3 (NS3, p80) of bovine viral diarrhea virus (BVDV) using an indirect ELISA test. For the first time in Colombia, the presence of serological persistent cattle was evaluated in 1047 animals 3 weeks later of first sampling. The information on a standardized questionnaire with closed and dichotomic answers was used to calculate the putative risk factors. The association analysis by univariate and multivariate logistic regression reported odds ratios (OR) with a 95% of confidence interval (C.I). The overall seroprevalence was 65% (95% CI 62.5-72.9%), with variations according to age ranges. The prevalence of persistent serological positive corresponded to 37.7% (95% CI 34.2-41.5). The risk factors found by multivariate analyses were the lease of pastures (OR = 2.071 CI 1.485-3.690), the use of the same needle (OR = 2.249 CI 1.354-3.736), the molasses supplementation (OR = 2.742 CI 1.156-5.807), and the native Creole breed (OR = 1.895 CI 1.416-2.804). The results of this study confirmed the endemism and higher common exposure to BVDV, as well as the presence of serological persistent cattle in Valledupar, Colombia.
Collapse
Affiliation(s)
- Lorena Catalina Martínez-Rodríguez
- Grupo de Investigación Ciencia UDES, Programa de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Santander, Valledupar, Cesar, Colombia
| | | | - Diego Ordoñez
- Universidad de Ciencias Aplicadas y Ambientales - U.D.C.A, Bogotá, 111166, Colombia
| | | |
Collapse
|
16
|
Antos A, Miroslaw P, Rola J, Polak MP. Vaccination Failure in Eradication and Control Programs for Bovine Viral Diarrhea Infection. Front Vet Sci 2021; 8:688911. [PMID: 34268349 PMCID: PMC8275834 DOI: 10.3389/fvets.2021.688911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Vaccination against bovine viral diarrhea (BVD) is one of the key elements to protect cattle herds from this economically important disorder. Bovine viral diarrhea virus (BVDV) is a pestivirus infecting animals at all ages with significant impact on reproductive, digestive, and respiratory systems. Financial burden caused by this pathogen prompts many farmers to introduce vaccination as the control and prophylactic measure especially when persistently infected (PI) individuals, being the main source of the virus in the herd, are removed after test-and-cull approach. The aim of the study was to compare the serological response in cattle herds where new PI calves were identified without prior removal of PI animals or despite their removal and after the introduction of whole herd vaccination against BVDV infection. Overall seroprevalence in 5 vaccinated herds was 91.7 and 83.3% using ELISA and virus neutralization test, respectively. Despite high titers for both vaccine and field strains of BVDV in analyzed herds the analysis of comparative strength of neutralization indicated that 41.4% of positive samples did not have a predominant titer against one specific subtype of BVDV. In 3 herds BVDV-1b subtype was identified while in 2 others it was BVDV-1d, while the vaccine used was based on BVDV-1a which was never identified in Poland so far. To increase the success of the BVDV eradication program, a careful approach is suggested when planning herd vaccination. Comparison of existing field strains and their similarity with vaccine strains at antigenic and genetic levels can be a useful approach to increase the effectiveness of vaccination and efficient protection of fetuses from persistent infection.
Collapse
Affiliation(s)
- Aleksandra Antos
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Pawel Miroslaw
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | | |
Collapse
|
17
|
Al-Kubati AAG, Hussen J, Kandeel M, Al-Mubarak AIA, Hemida MG. Recent Advances on the Bovine Viral Diarrhea Virus Molecular Pathogenesis, Immune Response, and Vaccines Development. Front Vet Sci 2021; 8:665128. [PMID: 34055953 PMCID: PMC8160231 DOI: 10.3389/fvets.2021.665128] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
The bovine viral diarrhea virus (BVDV) consists of two species and various subspecies of closely related viruses of varying antigenicity, cytopathology, and virulence-induced pathogenesis. Despite the great ongoing efforts to control and prevent BVDV outbreaks and the emergence of new variants, outbreaks still reported throughout the world. In this review, we are focusing on the molecular biology of BVDV, its molecular pathogenesis, and the immune response of the host against the viral infection. Special attention was paid to discuss some immune evasion strategies adopted by the BVDV to hijack the host immune system to ensure the success of virus replication. Vaccination is one of the main strategies for prophylaxis and contributes to the control and eradication of many viral diseases including BVDV. We discussed the recent advances of various types of currently available classical and modern BVDV vaccines. However, with the emergence of new strains and variants of the virus, it is urgent to find some other novel targets for BVDV vaccines that may overcome the drawbacks of some of the currently used vaccines. Effective vaccination strategy mainly based on the preparation of vaccines from the homologous circulating strains. The BVDV-E2 protein plays important role in viral infection and pathogenesis. We mapped some important potential neutralizing epitopes among some BVDV genomes especially the E2 protein. These novel epitopes could be promising targets against the currently circulating strains of BVDV. More research is needed to further explore the actual roles of these epitopes as novel targets for the development of novel vaccines against BVDV. These potential vaccines may contribute to the global eradication campaign of the BVDV.
Collapse
Affiliation(s)
- Anwar A G Al-Kubati
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah I A Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
18
|
Sangewar N, Waghela SD, Yao J, Sang H, Bray J, Mwangi W. Novel Potent IFN-γ-Inducing CD8 + T Cell Epitopes Conserved among Diverse Bovine Viral Diarrhea Virus Strains. THE JOURNAL OF IMMUNOLOGY 2021; 206:1709-1718. [PMID: 33762324 DOI: 10.4049/jimmunol.2001424] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022]
Abstract
Studies of immune responses elicited by bovine viral diarrhea virus (BVDV) vaccines have primarily focused on the characterization of neutralizing B cell and CD4+ T cell epitopes. Despite the availability of commercial vaccines for decades, BVDV prevalence in cattle has remained largely unaffected. There is limited knowledge regarding the role of BVDV-specific CD8+ T cells in immune protection, and indirect evidence suggests that they play a crucial role during BVDV infection. In this study, the presence of BVDV-specific CD8+ T cells that are highly cross-reactive in cattle was demonstrated. Most importantly, novel potent IFN-γ-inducing CD8+ T cell epitopes were identified from different regions of BVDV polyprotein. Eight CD8+ T cell epitopes were identified from the following structural BVDV Ags: Erns, E1, and E2 glycoproteins. In addition, from nonstructural BVDV Ags Npro, NS2-3, NS4A-B, and NS5A-B, 20 CD8+ T cell epitopes were identified. The majority of these IFN-γ-inducing CD8+ T cell epitopes were found to be highly conserved among more than 200 strains from BVDV-1 and -2 genotypes. These conserved epitopes were also validated as cross-reactive because they induced high recall IFN-γ+CD8+ T cell responses ex vivo in purified bovine CD8+ T cells isolated from BVDV-1- and -2-immunized cattle. Altogether, 28 bovine MHC class I-binding epitopes were identified from key BVDV Ags that can elicit broadly reactive CD8+ T cells against diverse BVDV strains. The data presented in this study will lay the groundwork for the development of a contemporary CD8+ T cell-based BVDV vaccine capable of addressing BVDV heterogeneity more effectively than current vaccines.
Collapse
Affiliation(s)
- Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506; and
| |
Collapse
|
19
|
Persistent infection of American bison (Bison bison) with bovine viral diarrhea virus and bosavirus. Vet Microbiol 2020; 252:108949. [PMID: 33338948 DOI: 10.1016/j.vetmic.2020.108949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/29/2020] [Indexed: 01/01/2023]
Abstract
Bovine viral diarrhea viruses (BVDV) are significant pathogens of cattle, leading to losses associated with reproductive failure, respiratory disease and immune dysregulation. While cattle are the reservoir for BVDV, a wide range of domestic and wild ruminants are susceptible to infection and disease caused by BVDV. Samples from four American bison (Bison bison) from a captive herd were submitted for diagnostic testing due to their general unthriftiness. Metagenomic sequencing on pooled nasal swabs and serum identified co-infection with a BVDV and a bovine bosavirus. The BVDV genome was more similar to the vaccine strain Oregon C24 V than to other BVDV sequences in GenBank, with 92.7 % nucleotide identity in the open reading frame. The conserved 5'-untranslated region was 96.3 % identical to Oregon C24 V. Bosavirus has been previously identified in pooled fetal bovine serum but its clinical significance is unknown. Sequencing results were confirmed by virus isolation and PCR detection of both viruses in serum and nasal swab samples from two of the four bison. One animal was co-infected with both BVDV and bosavirus while separate individuals were positive solely for BVDV or bosavirus. Serum and nasal swabs from these same animals collected 51 days later remained positive for BVDV and bosavirus. These results suggest that both viruses can persistently infect bison. While the etiological significance of bosavirus infection is unknown, the ability of BVDV to persistently infect bison has implications for BVDV control and eradication programs. Possible synergy between BVDV and bosavirus persistent infection warrants further study.
Collapse
|
20
|
Sangewar N, Hassan W, Lokhandwala S, Bray J, Reith R, Markland M, Sang H, Yao J, Fritz B, Waghela SD, Abdelsalam KW, Chase CCL, Mwangi W. Mosaic Bovine Viral Diarrhea Virus Antigens Elicit Cross-Protective Immunity in Calves. Front Immunol 2020; 11:589537. [PMID: 33281819 PMCID: PMC7690067 DOI: 10.3389/fimmu.2020.589537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) is an important pathogen that plays a significant role in initiating Bovine Respiratory Disease Complex (BRDC) in cattle. The disease causes multi-billion dollar losses globally due to high calf mortality and increased morbidity leading to heavy use of antibiotics. Current commercial vaccines provide limited cross-protection with several drawbacks such as safety, immunosuppression, potential reversion to virulence, and induction of neonatal pancytopenia. This study evaluates two prototype vaccines containing multiple rationally designed recombinant mosaic BVDV antigens for their potential to confer cross-protection against diverse BVDV strains. Genes encoding three novel mosaic antigens, designated E2123, NS2-31, and NS2-32, were designed in silico and expressed in mammalian cells for the formulation of a prototype protein-based vaccine. The mosaic antigens contain highly conserved protective epitopes from BVDV-1a, -1b, and -2, and included unique neutralizing epitopes from disparate strains to broaden coverage. We tested immunogenicity and protective efficacy of Expi293TM-expressed mosaic antigens (293F-E2123, 293F-NS2-31, and 293F-NS2-32), and baculovirus-expressed E2123 (Bac-E2123) mosaic antigen in calves. The Expi293TM-expressed antigen cocktail induced robust BVDV-specific cross-reactive IFN-γ responses, broadly neutralizing antibodies, and following challenge with a BVDV-1b strain, the calves had significantly (p < 0.05) reduced viremia and clinical BVD disease compared to the calves vaccinated with a commercial killed vaccine. The Bac-E2123 antigen was not as effective as the Expi293TM-expressed antigen cocktail, but it protected calves from BVD disease better than the commercial killed vaccine. The findings support feasibility for development of a broadly protective subunit BVDV vaccine for safe and effective management of BRD.
Collapse
Affiliation(s)
- Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Wisam Hassan
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rachel Reith
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Mary Markland
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianxiu Yao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Bailey Fritz
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Karim W Abdelsalam
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
21
|
Riitho V, Strong R, Larska M, Graham SP, Steinbach F. Bovine Pestivirus Heterogeneity and Its Potential Impact on Vaccination and Diagnosis. Viruses 2020; 12:v12101134. [PMID: 33036281 PMCID: PMC7601184 DOI: 10.3390/v12101134] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Bovine Pestiviruses A and B, formerly known as bovine viral diarrhoea viruses (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, responsible for significant economic losses. Bovine viral diarrhoea control programmes are in effect in several high-income countries but less so in low- and middle-income countries where bovine pestiviruses are not considered in disease control programmes. However, bovine pestiviruses are genetically and antigenically diverse, which affects the efficiency of the control programmes. The emergence of atypical ruminant pestiviruses (Pestivirus H or BVDV-3) from various parts of the world and the detection of Pestivirus D (border disease virus) in cattle highlights the challenge that pestiviruses continue to pose to control measures including the development of vaccines with improved cross-protective potential and enhanced diagnostics. This review examines the effect of bovine pestivirus diversity and emergence of atypical pestiviruses in disease control by vaccination and diagnosis.
Collapse
Affiliation(s)
- Victor Riitho
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
| | - Rebecca Strong
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland;
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK;
- School of Veterinary Medicine, University of Surrey, Guilford GU2 7XH, UK
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
- School of Veterinary Medicine, University of Surrey, Guilford GU2 7XH, UK
- Correspondence:
| |
Collapse
|