1
|
Wang R, Huang H, Yu C, Li X, Wang Y, Xie L. Current status and future directions for the development of human papillomavirus vaccines. Front Immunol 2024; 15:1362770. [PMID: 38983849 PMCID: PMC11231394 DOI: 10.3389/fimmu.2024.1362770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
The development of human papillomavirus (HPV) vaccines has made substantive progress, as represented by the approval of five prophylactic vaccines since 2006. Generally, the deployment of prophylactic HPV vaccines is effective in preventing newly acquired infections and incidences of HPV-related malignancies. However, there is still a long way to go regarding the prevention of all HPV infections and the eradication of established HPV infections, as well as the subsequent progression to cancer. Optimizing prophylactic HPV vaccines by incorporating L1 proteins from more HPV subtypes, exploring adjuvants that reinforce cellular immune responses to eradicate HPV-infected cells, and developing therapeutic HPV vaccines used either alone or in combination with other cancer therapeutic modalities might bring about a new era getting closer to the vision to get rid of HPV infection and related diseases. Herein, we summarize strategies for the development of HPV vaccines, both prophylactic and therapeutic, with an emphasis on the selection of antigens and adjuvants, as well as implications for vaccine efficacy based on preclinical studies and clinical trials. Additionally, we outline current cutting-edge insights on formulation strategies, dosing schedules, and age expansion among HPV vaccine recipients, which might play important roles in addressing barriers to vaccine uptake, such as vaccine hesitancy and vaccine availability.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Hongpeng Huang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Xuefeng Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yang Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Li K, Xia Y, Ye H, Sun X, Shi B, Wu J. Effectiveness and safety of immune response to SARS‑CoV‑2 vaccine in patients with chronic kidney disease and dialysis: A systematic review and meta‑analysis. Biomed Rep 2024; 20:78. [PMID: 38590946 PMCID: PMC10999903 DOI: 10.3892/br.2024.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/02/2024] [Indexed: 04/10/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) vaccination is the most effective way to prevent COVID-19. However, for chronic kidney disease patients on long-term dialysis, there is a lack of evidence regarding the efficacy and safety of the immune response to the vaccine. The present meta-analysis explores the efficacy and safety of COVID-19 vaccine in the immune response of patients with chronic kidney disease (CKD) undergoing dialysis. PubMed, Web of Science, Science Direct, and Cochrane Library databases were systematically searched from January 1, 2020, to December 31, 2022. Data analysis was performed using REVMAN 5.1s and Stata14 software. Baseline data and endpoint events were extracted, mainly including age, sex, dialysis vintage, body mass index (BMI), vaccine type and dose, history of COVID-19 infection, seropositivity rate, antibody titer, pain at injection site, headache and other safety events. The meta-analysis included 33 trials involving 81,348 patients. The immune efficacy of patients with CKD and dialysis was 80% (95 CI, 73-87%). The seropositivity rate of individuals without COVID-19 infection was 76.48% (3,824/5,000), while the seropositivity rate of individuals with COVID-19 infection was 80.82% (1,858/2,299). The standard mean difference of antibody titers in CKD and dialysis patients with or without COVID-19 infection was 27.73 (95% CI, -19.58-75.04). A total of nine studies reported the most common adverse events: Pain at the injection site, accounting for 18% (95 CI, 6-29%), followed by fatigue and headache, accounting for 8 (95 CI, 4-13%) and 6% (95 CI, 2-9%), respectively. COVID-19 vaccine benefitted patients with CKD undergoing dialysis with seropositivity rate ≥80%. Adverse events such as fatigue, headache, and pain at the injection site may occur after COVID-19 vaccination but the incidence is low.
Collapse
Affiliation(s)
- Kejia Li
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Yang Xia
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Hua Ye
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Xian Sun
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Bairu Shi
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| | - Jiajun Wu
- Department of Nephrology, The First People's Hospital of Jiashan, Jiaxing, Zhejiang 314100, P.R. China
| |
Collapse
|
3
|
Hu YM, Bi ZF, Zheng Y, Zhang L, Zheng FZ, Chu K, Li YF, Chen Q, Quan JL, Hu XW, Huang XC, Zhu KX, Wang-Jiang YH, Jiang HM, Zang X, Liu DL, Yang CL, Pan HX, Zhang QF, Su YY, Huang SJ, Sun G, Huang WJ, Huang Y, Wu T, Zhang J, Xia NS. Immunogenicity and safety of an Escherichia coli-produced human papillomavirus (types 6/11/16/18/31/33/45/52/58) L1 virus-like-particle vaccine: a phase 2 double-blind, randomized, controlled trial. Sci Bull (Beijing) 2023; 68:2448-2455. [PMID: 37743201 DOI: 10.1016/j.scib.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
The Escherichia coli-produced human papillomavirus (HPV) 16/18 bivalent vaccine (Cecolin) has received prequalification by the World Health Organization based on its high efficacy and good safety profile. We aimed to evaluate the immunogenicity and safety of the second-generation nonavalent HPV 6/11/16/18/31/33/45/52/58 vaccine (Cecolin 9) through the randomized, blinded phase 2 clinical trial. Eligible healthy women aged 18-45 years were randomly (1:1) allocated to receive three doses of 1.0 mL (270 µg) of Cecolin 9 or placebo with a 0-1-6-month schedule. The primary endpoint was the seroconversion rate and geometric mean titer of neutralizing antibodies (nAbs) one month after the full vaccination course (month 7). The secondary endpoint was the safety profile including solicited adverse reactions occurring within 7 d, adverse events (AEs) occurring within 30 d after each dose, and serious adverse events (SAEs) occurring during the 7-month follow-up period. In total, 627 volunteers were enrolled and randomly assigned to Cecolin 9 (n = 313) or placebo (n = 314) group in Jiangsu Province, China. Almost all participants in the per-protocol set for immunogenicity (PPS-I) seroconverted for nAbs against all the nine HPV types at month 7, while two failed to seroconvert for HPV 11 and one did not seroconvert for HPV 52. The incidence rates of total AEs in the Cecolin 9 and placebo groups were 80.8% and 72.9%, respectively, with the majority of them being mild and recovering shortly. None of the SAEs were considered related to vaccination. In conclusion, the E. coli-produced 9-valent HPV (9vHPV) vaccine candidate was well tolerated and immunogenic, which warrants further efficacy studies in larger populations.
Collapse
Affiliation(s)
- Yue-Mei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Public Health Research Institute of Jiangsu Province, Nanjing 210009, China
| | - Zhao-Feng Bi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ya Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Li Zhang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | | | - Kai Chu
- Jiangsu Provincial Center for Disease Control and Prevention, Public Health Research Institute of Jiangsu Province, Nanjing 210009, China
| | - Ya-Fei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Qi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Jia-Li Quan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xiao-Wen Hu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xing-Cheng Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Kong-Xin Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ya-Hui Wang-Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Han-Min Jiang
- Dongtai Center for Disease Control and Prevention, Yancheng 224200, China
| | - Xia Zang
- Dongtai Center for Disease Control and Prevention, Yancheng 224200, China
| | - Dong-Lin Liu
- Dongtai Center for Disease Control and Prevention, Yancheng 224200, China
| | - Chang-Lin Yang
- Dongtai Center for Disease Control and Prevention, Yancheng 224200, China
| | - Hong-Xing Pan
- Jiangsu Provincial Center for Disease Control and Prevention, Public Health Research Institute of Jiangsu Province, Nanjing 210009, China
| | - Qiu-Fen Zhang
- Xiamen Innovax Biotech Company, Xiamen 361027, China
| | - Ying-Ying Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Shou-Jie Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Guang Sun
- Xiamen Innovax Biotech Company, Xiamen 361027, China.
| | - Wei-Jin Huang
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Yue Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Ting Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Wang T, Luan L, Deng J, Liu N, Wu Q, Gong T, Zhu J, Zhang Z, Zhang J. Prevalence and human papillomavirus (HPV) genotype distribution in Suzhou, China. Hum Vaccin Immunother 2023; 19:2241309. [PMID: 37519009 PMCID: PMC10392751 DOI: 10.1080/21645515.2023.2241309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is a known pathogenic factor of cervical cancer. To develop scientific guidance for cervical cancer screening and HPV vaccination, we analyzed HPV genotypes in Suzhou City, China. This study utilized data from the cervical cancer screening project in Suzhou from 2016 to 2021. A total of 444,471 female residents who voluntarily underwent HPV testing were included in the study. The overall HR-HPV prevalence was 10.2%. The three most common HR-HPV genotypes were HPV52 (2.81%), HPV58 (1.64%), and HPV16 (1.46%). The rate of HPV infection increased with age. Having a junior school education or higher was a protective factor compared to having an education level below junior school. The overall HPV infection rate showed a downwards trend from 2016 to 2021. HPV16 exhibited the fastest annual decline rate, followed by HPV18. As the severity of cervical intraepithelial neoplasia increases, the detection rate of HPV infection significantly increased. In conclusion, in addition to cervical cancer screening, it is important to pay attention to health promotion and education for low-educated women aged 45-59. Considering the distribution of HPV genotypes, prioritizing the administration of high-valency HPV vaccines to local seventh-grade female students is recommended.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Epidemiology, School of Public Health, National Vaccine Innovation Platfrom, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Luan
- Department of Epidemiology, School of Public Health, National Vaccine Innovation Platfrom, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Immunization Program, Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Jingjing Deng
- Department of Immunization Program, Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Na Liu
- Department of Immunization Program, Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Qianlan Wu
- Department of Healthcare, Suzhou Maternal and Child Health Care and Family Planning Service Center, Suzhou, Jiangsu, China
| | - Tian Gong
- Department of Healthcare, Suzhou Maternal and Child Health Care and Family Planning Service Center, Suzhou, Jiangsu, China
| | - Jie Zhu
- Office of General Administration, Suzhou Health and Family Planning Statistics Information Center, Suzhou, Jiangsu, China
| | - Zhuoyu Zhang
- Department of Epidemiology, School of Public Health, National Vaccine Innovation Platfrom, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhang
- Department of Epidemiology, School of Public Health, National Vaccine Innovation Platfrom, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Immunization Program, Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Li M, Zhao C, Zhao Y, Li J, Wei L. Immunogenicity, efficacy, and safety of human papillomavirus vaccine: Data from China. Front Immunol 2023; 14:1112750. [PMID: 36993948 PMCID: PMC10040563 DOI: 10.3389/fimmu.2023.1112750] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
The incidence rate and mortality rate of cervical cancer have steadily increased in young women in China. Therefore, it is critical to improve HPV vaccination rates, particularly for the younger population. There are currently five types of prophylactic vaccines in China: bivalent HPV vaccine (AS04-HPV-16/18), quadrivalent HPV vaccine, 9-valent HPV vaccine, homemade Escherichia coli-produced HPV bivalent vaccine, and Pichia pastoris produced HPV bivalent vaccine. All these five HPV vaccines have completed relevant clinical trials in China, and have been proven to be generally well-tolerated and immunogenic, efficacious against persistent HPV-related infections and genital precancerous lesions (data for 9-valent HPV vaccine is absent), and have demonstrated acceptable safety profiles, as previously shown in global studies. Given that the HPV vaccination rate in China is still very low, additional HPV vaccine coverage is needed to reduce the incidence and mortality rates of cervical cancer.
Collapse
Affiliation(s)
- Mingzhu Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Chao Zhao
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Yun Zhao
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jingran Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Lihui Wei
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
Zhao FH, Wu T, Hu YM, Wei LH, Li MQ, Huang WJ, Chen W, Huang SJ, Pan QJ, Zhang X, Hong Y, Zhao C, Li Q, Chu K, Jiang YF, Li MZ, Tang J, Li CH, Guo DP, Ke LD, Wu X, Yao XM, Nie JH, Lin BZ, Zhao YQ, Guo M, Zhao J, Zheng FZ, Xu XQ, Su YY, Zhang QF, Sun G, Zhu FC, Li SW, Li YM, Pan HR, Zhang J, Qiao YL, Xia NS. Efficacy, safety, and immunogenicity of an Escherichia coli-produced Human Papillomavirus (16 and 18) L1 virus-like-particle vaccine: end-of-study analysis of a phase 3, double-blind, randomised, controlled trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1756-1768. [PMID: 36037823 DOI: 10.1016/s1473-3099(22)00435-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This Escherichia coli-produced bivalent HPV 16 and 18 vaccine was well tolerated and effective against HPV 16 and 18 associated high-grade genital lesions and persistent infection in interim analysis of this phase 3 trial. We now report data on long-term efficacy and safety after 66 months of follow-up. METHODS This phase 3, double-blind, randomised, controlled trial was done in five study sites in China. Eligible participants were women aged 18-45 years, with intact cervix and 1-4 lifetime sexual partners. Women who were pregnant or breastfeeding, had chronic disease or immunodeficiency, or had HPV vaccination history were excluded. Women were stratified by age (18-26 and 27-45 years) and randomly (1:1) allocated by software (block randomisation with 12 codes to a block) to receive three doses of the E coli-produced HPV 16 and 18 vaccine or hepatitis E vaccine (control) and followed-up for 66 months. The primary outcomes were high-grade genital lesions and persistent infection (longer than 6 months) associated with HPV 16 or 18 in the per-protocol susceptible population. This trial was registered with ClinicalTrials.gov, NCT01735006. FINDINGS Between Nov 22, 2012, and April 1, 2013, 8827 women were assessed for eligibility. 1455 women were excluded, and 7372 women were enrolled and randomly assigned to receive the HPV vaccine (n=3689) or control (n=3683). Vaccine efficacy was 100·0% (95% CI 67·2-100·0) against high-grade genital lesions (0 [0%] of 3310 participants in the vaccine group and 13 [0·4%] of 3302 participants in the control group) and 97·3% (89·9-99·7) against persistent infection (2 [0·1%] of 3262 participants in the vaccine group and 73 [2·2%] of 3271 participants in the control group) in the per-protocol population. Serious adverse events occurred at a similar rate between vaccine (267 [7·2%] of 3691 participants) and control groups (290 [7·9%] of 3681); none were considered related to vaccination. INTERPRETATION The E coli-produced HPV 16 and 18 vaccine was well tolerated and highly efficacious against HPV 16 and 18 associated high-grade genital lesions and persistent infection and would supplement the global HPV vaccine availability and accessibility for cervical cancer prevention. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, Fujian Provincial Project, Fundamental Funds for the Central Universities, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and Xiamen Innovax.
Collapse
Affiliation(s)
- Fang-Hui Zhao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Yue-Mei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Li-Hui Wei
- Peking University People's Hospital, Beijing, China
| | - Ming-Qiang Li
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Wei-Jin Huang
- National Institute for Food and Drug Control, Beijing, China
| | - Wen Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Shou-Jie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Qin-Jing Pan
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xun Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ying Hong
- the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Zhao
- Peking University People's Hospital, Beijing, China
| | - Qing Li
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Kai Chu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Yun-Fei Jiang
- the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ming-Zhu Li
- Peking University People's Hospital, Beijing, China
| | - Jie Tang
- Funing Center for Disease Control and Prevention, Funing, Jiangsu, China
| | - Cai-Hong Li
- Xinmi Maternal and Child Health Hospital, Xinmi, Henan, China
| | - Dong-Ping Guo
- Yangcheng Maternal and Child Health Hospital, Yangcheng, Shanxi, China
| | - Li-Dong Ke
- Fengning Hospital of Traditional Chinese Medicine, Fengning, Hebei, China
| | - Xin Wu
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Xing-Mei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jian-Hui Nie
- National Institute for Food and Drug Control, Beijing, China
| | - Bi-Zhen Lin
- Xiamen Innovax Biotech Xiamen, Fujian, China
| | - Yu-Qian Zhao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Meng Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | | | - Xiao-Qian Xu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | | | - Guang Sun
- Xiamen Innovax Biotech Xiamen, Fujian, China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Shao-Wei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Yi-Min Li
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | | | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China.
| | - You-Lin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China; Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, China
| |
Collapse
|
7
|
Chen Q, Zhu K, Liu X, Zhuang C, Huang X, Huang Y, Yao X, Quan J, Lin H, Huang S, Su Y, Wu T, Zhang J, Xia N. The Protection of Naturally Acquired Antibodies Against Subsequent SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. Emerg Microbes Infect 2022; 11:793-803. [PMID: 35195494 PMCID: PMC8920404 DOI: 10.1080/22221751.2022.2046446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 01/18/2023]
Abstract
The specific antibodies induced by SARS-CoV-2 infection may provide protection against a subsequent infection. However, the efficacy and duration of protection provided by naturally acquired immunity against subsequent SARS-CoV-2 infection remain controversial. We systematically searched for the literature describing COVID-19 reinfection published before 07 February 2022. The outcomes were the pooled incidence rate ratio (IRR) for estimating the risk of subsequent infection. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included studies. Statistical analyses were conducted using the R programming language 4.0.2. We identified 19 eligible studies including more than 3.5 million individuals without the history of COVID-19 vaccination. The efficacy of naturally acquired antibodies against reinfection was estimated at 84% (pooled IRR = 0.16, 95% CI: 0.14-0.18), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.09, 95% CI = 0.07-0.12) than asymptomatic infection (pooled IRR = 0.28, 95% CI = 0.14-0.54). In the subgroup analyses, the pooled IRRs of COVID-19 infection in health care workers (HCWs) and the general population were 0.22 (95% CI = 0.16-0.31) and 0.14 (95% CI = 0.12-0.17), respectively, with a significant difference (P = 0.02), and those in older (over 60 years) and younger (under 60 years) populations were 0.26 (95% CI = 0.15-0.48) and 0.16 (95% CI = 0.14-0.19), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. In conclusion, naturally acquired antibodies against SARS-CoV-2 can significantly reduce the risk of subsequent infection, with a protection efficacy of 84%.Registration number: CRD42021286222.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Kongxin Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xiaohui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Chunlan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingcheng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yue Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Xingmei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jiali Quan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Hongyan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen City, Fujian Province, People’s Republic of China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen City, Fujian Province, People's Republic of China
| |
Collapse
|
8
|
Yao X, He W, Wu X, Gu J, Zhang J, Lin B, Bi Z, Su Y, Huang S, Hu Y, Wu T, Zhang J, Xia N. Long-Term immunopersistence and safety of the Escherichia coli-produced HPV-16/18 bivalent vaccine in Chinese adolescent girls. Hum Vaccin Immunother 2022; 18:2061248. [PMID: 35417301 PMCID: PMC9897638 DOI: 10.1080/21645515.2022.2061248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study assessed long-term immunopersistence and safety of the Escherichia coli (E. coli)-produced HPV-16/18 bivalent vaccine. In total, 979 participants in the initial immunogenicity noninferiority study, including girls aged 9-14 years who were randomized in a 1:1 ratio to receive 2 doses at months 0 and 6 (n = 301) or 3 doses at months 0, 1 and 6 (n = 304); girls aged 15-17 years (n = 149) and women aged 18-26 years (n = 225) who received 3 doses of the vaccine, were invited to participate in follow-up to 30 months post vaccination (NCT03206255). Serum samples were collected at months 18 and 30, and anti-HPV-16/18 IgG antibodies were measured by enzyme-linked immunosorbent assay. Serious adverse events (SAEs) occurred from month 7 through month 30 were recorded. At month 30, in the per-protocol set, all participants remained seropositive, except for one girl in the 9-14 years (2 doses) group who seroconverted to negative for HPV-18. HPV-16 and HPV-18 antibody levels were higher in girls aged 9-17 years who received 3 doses (125.3 and 60.2 IU/ml) than in women aged 18-26 years who received 3 doses (72.6 and 28.3 IU/ml), and those in girls aged 9-14 years who received 2 doses (73.2 and 24.9 IU/ml) were comparable to those in women aged 18-26 years who received 3 doses. No SAEs were reported to be causally related to vaccination. The E. coli-produced bivalent HPV-16/18 vaccine is safe and induces persistent protective antibodies for up to 30 months after vaccination in girls aged 9-17 years receiving 2 or 3 doses.
Collapse
Affiliation(s)
- Xingmei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wengang He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xianghong Wu
- Integrated Business Department, Sheyang Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Jianxiang Gu
- Integrated Business Department, Sheyang Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Jing Zhang
- Integrated Business Department, Sheyang Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Bizhen Lin
- Quality Research Department, Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Zhaofeng Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yuemei Hu
- Department of Vaccine Evaluation, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China,CONTACT Ting Wu State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiang’an South Road, Xiamen, Fujian, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China,Yuemei Hu Jiangsu Provincial Center for Disease Control and Prevention, No 172 Jiangsu Road, Gulou District, Nanjing, Jiangsu, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| |
Collapse
|
9
|
Yao X, Chen W, Zhao C, Wei L, Hu Y, Li M, Lin Z, Lin B, Liu X, Hong Y, Li Q, Pan Q, Zhang X, Li M, Zhao Y, Zhang L, Xu H, Hu F, Zhao J, Huang Y, Sheng W, Zheng Y, Hu S, Su Y, Huang S, Pan H, Zhao F, Qiao Y, Wu T, Zhang J, Xia N. Naturally acquired HPV antibodies against subsequent homotypic infection: A large-scale prospective cohort study. LANCET REGIONAL HEALTH-WESTERN PACIFIC 2021; 13:100196. [PMID: 34527987 PMCID: PMC8403914 DOI: 10.1016/j.lanwpc.2021.100196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
Background Although recent studies have suggested that naturally acquired Human papillomavirus (HPV) antibodies are partly protective against subsequent homotypic infection, the extent of protection remains indecisive. Here, we evaluate the protective effect of neutralizing and IgG antibodies simultaneously. Methods In a cohort of 3634 women aged 18-45 years from the control arm of a phase III trial of the HPV-16/18 bivalent vaccine, participants were tested for neutralizing antibodies by pseudovirion-based neutralization assay (PBNA) and IgG antibodies by enzyme-linked immunosorbent assay (ELISA) at baseline. HPV-16/18 incident and persistent infections were identified using cervical specimens periodically collected during the 5·5 years of follow-up. The protective effects of HPV-16/18 neutralizing and IgG antibodies against homotypic infection were assessed using a Cox proportional hazard model. Findings For the persistent infection (PI) endpoints of HPV-16/18 lasting for over 6/12 months, a prevalence of type-specific neutralizing antibodies was highly protective (6-month PI: hazard ratio (HR) = 0·16, 95% confidence interval (CI): 0·04, 0·65; 12-month PI: HR = 0·23, 95% CI: 0·06, 0·94), whereas a prevalence of IgG antibodies was associated with minor and non-significant protection (6-month PI: HR = 0·66, 95% CI: 0·40, 1·09; 12-month PI: HR = 0·66, 95% CI: 0·36, 1·20). After increasing the cut-off value to the median IgG level, the risk of 6-month PI was significantly lower in seropositive vs seronegative women (HR = 0·38, 95% CI: 0·18, 0·83). Interpretation Naturally acquired antibodies are associated with a substantially reduced risk of subsequent homotypic infection. Funding NSFC; The Fujian Province Health Education Joint Research Project; Xiamen Science and Technology Major Project; CIFMS; and Xiamen Innovax.
Collapse
Affiliation(s)
- Xingmei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wen Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Zhao
- Peking University People's Hospital, Beijing, China
| | - Lihui Wei
- Peking University People's Hospital, Beijing, China
| | - Yuemei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Mingqiang Li
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Bizhen Lin
- Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Xiaohui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ying Hong
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qing Li
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Qinjing Pan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingzhu Li
- Peking University People's Hospital, Beijing, China
| | - Yuqian Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huifang Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yue Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wei Sheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ya Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shangying Hu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Fanghui Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youlin Qiao
- Chinese Academy of Medical Sciences/Peking Union Medical College School of Population Medicine and Public Health, Beijing, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| |
Collapse
|
10
|
Zhuang CL, Lin ZJ, Bi ZF, Qiu LX, Hu FF, Liu XH, Lin BZ, Su YY, Pan HR, Zhang TY, Huang SJ, Hu YM, Qiao YL, Zhu FC, Wu T, Zhang J, Xia NS. Inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response. Emerg Microbes Infect 2021; 10:365-375. [PMID: 33583360 PMCID: PMC7928063 DOI: 10.1080/22221751.2021.1891002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concerns about vaccine safety are an important reason for vaccine hesitancy, however, limited information is available on whether common adverse reactions following vaccination affect the immune response. Data from three clinical trials of recombinant vaccines were used in this post hoc analysis to assess the correlation between inflammation-related solicited adverse reactions (ISARs, including local pain, redness, swelling or induration and systematic fever) and immune responses after vaccination. In the phase III trial of the bivalent HPV-16/18 vaccine (Cecolin®), the geometric mean concentrations (GMCs) for IgG anti-HPV-16 and -18 (P<0.001) were significantly higher in participants with any ISAR following vaccination than in those without an ISAR. Local pain, induration, swelling and systemic fever were significantly correlated with higher GMCs for IgG anti-HPV-16 and/or anti-HPV-18, respectively. Furthermore, the analyses of the immunogenicity bridging study of Cecolin® and the phase III trial of a hepatitis E vaccine yielded similar results. Based on these results, we built a scoring model to quantify the inflammation reactions and found that the high score of ISAR indicates the strong vaccine-induced antibody level. In conclusion, this study suggests inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response.
Collapse
Affiliation(s)
- Chun-Lan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Zhi-Jie Lin
- Xiamen Innovax Biotech CO., Ltd., Xiamen, People's Republic of China
| | - Zhao-Feng Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ling-Xian Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Fang-Fang Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Xiao-Hui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Bi-Zhen Lin
- Xiamen Innovax Biotech CO., Ltd., Xiamen, People's Republic of China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Hui-Rong Pan
- Xiamen Innovax Biotech CO., Ltd., Xiamen, People's Republic of China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Shou-Jie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yue-Mei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Public Health research institute of Jiangsu Province, Nanjing, People's Republic of China
| | - You-Lin Qiao
- Chinese Academy of Medical Sciences/Peking Union Medical College School of Population Medicine and Public Health, Beijing, People's Republic of China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Public Health research institute of Jiangsu Province, Nanjing, People's Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|