1
|
Fraiha ALS, da Silva Santos BSÁ, Aguilar NR, Gallinari GC, de Mendonça Angelo ALP, Costa JMC, Correia PA, Faustino LP, de Souza Silva TB, Guedes RMC, Guedes MIMC, de Magalhães Vieira Machado A, Costa EA, Lobato ZIP. Immunization and challenge trials in a murine model using different inactivated recombinant vaccines against H1N1 swine influenza virus circulating in Brazil. Vaccine 2024; 45:126638. [PMID: 39709805 DOI: 10.1016/j.vaccine.2024.126638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
In Brazil, at least four lineages of influenza A virus circulate pig population: 2009 H1N1 flu pandemic (pH1N1), human-seasonal origin H3N2, H1N1 and H1N2 (huH1 lineages) viruses. Studies related to the occurrence of swine influenza A virus (SIAV) in Brazilian herds have been detecting an increase of occurrence of huH1 lineages. This study aimed to construct recombinant vaccines against the huH1N1 virus and test the immunogens in a murine model. The virus was constructed by reverse genetics using plasmids encoding the HA and NA sequences from a wild huH1N1 virus isolated from an infected pig. Amplified virus was inactivated, and oil-in-water (OW) and gel polymer (GP) adjuvants were used to formulate the vaccines. C57Bl6 mice received two doses with 3 weeks interval by the intramuscular route. Animals were randomly divided into 8 groups (G1-G8): G1 received OW vaccine and G2 PBS plus OW adjuvant; G3 received GP vaccine and G4 PBS plus GP adjuvant; G5 received the live virus by the intranasal route while G6 only PBS; G7 and G8 did not receive any treatment. Serum samples were collected before vaccination and after the first and second dose. Except for G8, three weeks post boost animals were challenged with a wild huH1N1 virus and observed for weight changes. After infection, bronchoalveolar lavage fluid (BALF) and lungs were collected from animals of each group for viral titers and immunohistochemistry (IHC) analysis, respectively. After booster, vaccinated groups seroconverted and the vaccines induced protection upon challenge. Reverse Genetics technique can be used to produce new and quickly updated swine influenza vaccines which is promising to control the virus in Brazilian herds. Future studies may focus on using the technology to produce multivalent recombinant vaccines against distinct strains of SIAVs circulating in Brazilian pig herds.
Collapse
Affiliation(s)
- Ana Luiza Soares Fraiha
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Nágila Rocha Aguilar
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grazielle Cossenzo Gallinari
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Julia Machado Caetano Costa
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Angélica Correia
- Department of Veterinary Clinic and Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lídia Paula Faustino
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | | | | | | | | | - Erica Azevedo Costa
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Zélia Inês Portela Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Wang L, Shi L, Liu H, Zhang J, Yang W, Schountz T, Ma W. Incompatible packaging signals and impaired protein functions hinder reassortment of bat H17N10 or H18N11 segment 7 with human H1N1 influenza A viruses. J Virol 2024; 98:e0086424. [PMID: 39162567 PMCID: PMC11406886 DOI: 10.1128/jvi.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Novel bat H17N10 and H18N11 influenza A viruses (IAVs) are incapable of reassortment with conventional IAVs during co-infection. To date, the underlying mechanisms that inhibit bat and conventional IAV reassortment remain poorly understood. Herein, we used the bat influenza M gene in the PR8 H1N1 virus genetic background to determine the molecular basis that restricts reassortment of segment 7. Our results showed that NEP and M1 from bat H17N10 and H18N11 can interact with PR8 M1 and NEP, resulting in mediating PR8 viral ribonucleoprotein (vRNP) nuclear export and formation of virus-like particles with single vRNP. Further studies demonstrated that the incompatible packaging signals (PSs) of H17N10 or H18N11 M segment led to the failure to rescue recombinant viruses in the PR8 genetic background. Recombinant PR8 viruses (rPR8psH18M and rPR8psH17M) containing bat influenza M coding region flanked with the PR8 M PSs were rescued but displayed lower replication in contrast to the parental PR8 virus, which is due to a low efficiency of recombinant virus uncoating correlating with the functions of the bat M2. Our studies reveal molecular mechanisms of the M gene that hinder reassortment between bat and conventional IAVs, which will help to understand the biology of novel bat IAVs. IMPORTANCE Reassortment is one of the mechanisms in fast evolution of influenza A viruses (IAVs) and responsible for generating pandemic strains. To date, why novel bat IAVs are incapable of reassorting with conventional IAVs remains completely understood. Here, we attempted to rescue recombinant PR8 viruses with M segment from bat IAVs to understand the molecular mechanisms in hindering their reassortment. Results showed that bat influenza NEP and M1 have similar functions as respective counterparts of PR8 to medicating viral ribonucleoprotein nuclear export. Moreover, the incompatible packaging signals of M genes from bat and conventional IAVs and impaired bat M2 functions are the major reasons to hinder their reassortment. Recombinant PR8 viruses with bat influenza M open reading frames were generated but showed attenuation, which correlated with the functions of the bat M2 protein. Our studies provide novel insights into the molecular mechanisms that restrict reassortment between bat and conventional IAVs.
Collapse
Affiliation(s)
- Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Graaf-Rau A, Schmies K, Breithaupt A, Ciminski K, Zimmer G, Summerfield A, Sehl-Ewert J, Lillie-Jaschniski K, Helmer C, Bielenberg W, Grosse Beilage E, Schwemmle M, Beer M, Harder T. Reassortment incompetent live attenuated and replicon influenza vaccines provide improved protection against influenza in piglets. NPJ Vaccines 2024; 9:127. [PMID: 39003272 PMCID: PMC11246437 DOI: 10.1038/s41541-024-00916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission.
Collapse
Affiliation(s)
- Annika Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany.
| | - Kathrin Schmies
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany
| | | | - Carina Helmer
- SAN Group Biotech Germany GmbH, Hoeltinghausen, Germany
| | | | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| |
Collapse
|
4
|
Petro-Turnquist E, Pekarek MJ, Weaver EA. Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol 2024; 14:1336013. [PMID: 38633745 PMCID: PMC11021629 DOI: 10.3389/fcimb.2024.1336013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew J. Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
5
|
Su CM, Du Y, Rowland RRR, Wang Q, Yoo D. Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front Immunol 2023; 14:1172000. [PMID: 37138878 PMCID: PMC10149994 DOI: 10.3389/fimmu.2023.1172000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Type I interferons (IFNs-α/β) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Raymond R. R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dongwan Yoo,
| |
Collapse
|
6
|
Generation of an Attenuated Chimeric Bat Influenza A Virus Live-Vaccine Prototype. Microbiol Spectr 2022; 10:e0142422. [PMID: 36445145 PMCID: PMC9769755 DOI: 10.1128/spectrum.01424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recurring epizootic influenza A virus (IAV) infections in domestic livestock such as swine and poultry are associated with a substantial economic burden and pose a constant threat to human health. Therefore, universally applicable and safe animal vaccines are urgently needed. We recently demonstrated that a reassortment-incompatible chimeric bat H17N10 virus harboring the A/swan/Germany/R65/2006 (H5N1) surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) can be efficiently used as a modified live influenza vaccine (MLIV). To ensure vaccine safety and, thus, improve the applicability of this novel MLIV for mammalian usage, we performed consecutive passaging in eggs and chickens. Following passaging, we identified mutations in the viral polymerase subunits PB2 (I382S), PB1 (Q694H and I695K), and PA (E141K). Strikingly, recombinant chimeric viruses encoding these mutations showed no growth deficiencies in avian cells but displayed impaired growth in human cells and mice. Homologous prime-boost immunization of mice with one of these avian-adapted chimeric viruses, designated rR65mono/H17N10EP18, elicited a strong neutralizing antibody response and conferred full protection against lethal highly pathogenic avian influenza virus (HPAIV) H5N1 challenge infection. Importantly, the insertion of the avian-adaptive mutations into the conventional avian-like A/SC35M/1980 (H7N7) and prototypic human A/PR/8/34 (H1N1) viruses led to attenuated viral growth in human cells and mice. Collectively, our data show that the polymerase mutations identified here can be utilized to further improve the safety of our novel H17N10-based MLIV candidates for future mammalian applications. IMPORTANCE Recurring influenza A virus outbreaks in livestock, particularly in swine and chickens, pose a constant threat to humans. Live attenuated influenza vaccines (LAIVs) might be a potent tool to prevent epizootic outbreaks and the resulting human IAV infections; however, LAIVs have several disadvantages, especially in terms of reassortment with circulating IAVs. Notably, the newly identified bat influenza A viruses H17N10 and H18N11 cannot reassort with conventional IAVs. Chimeric bat influenza A viruses encoding surface glycoproteins of conventional IAV subtypes might thus function as safe and applicable modified live influenza vaccines (MLIVs).
Collapse
|
7
|
Graaf A, Petric PP, Sehl-Ewert J, Henritzi D, Breithaupt A, King J, Pohlmann A, Deutskens F, Beer M, Schwemmle M, Harder T. Cold-passaged isolates and bat-swine influenza a chimeric viruses as modified live-attenuated vaccines against influenza a viruses in pigs. Vaccine 2022; 40:6255-6270. [PMID: 36137904 DOI: 10.1016/j.vaccine.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Swine influenza A virus (swIAV) infections in pig populations cause considerable morbidity and economic losses. Frequent reverse zoonotic incursions of human IAV boost reassortment opportunities with authentic porcine and avian-like IAV in swine herds potentially enhancing zoonotic and even pre-pandemic potential. Vaccination using adjuvanted inactivated full virus vaccines is frequently used in attempting control of swIAV infections. Accelerated antigenic drift of swIAV in large swine holdings and interference of maternal antibodies with vaccine in piglets can compromise these efforts. Potentially more efficacious modified live-attenuated vaccines (MLVs) bear the risk of reversion of MLV to virulence. Here we evaluated new MLV candidates based on cold-passaged swIAV or on reassortment-incompetent bat-IAV-swIAV chimeric viruses. Serial cold-passaging of various swIAV subtypes did not yield unambiguously temperature-sensitive mutants although safety studies in mice and pigs suggested some degree of attenuation. Chimeric bat-swIAV expressing the hemagglutinin and neuraminidase of an avian-like H1N1, in contrast, proved to be safe in mice and pigs, and a single nasal inoculation induced protective immunity against homologous challenge in pigs. Reassortant-incompetent chimeric bat-swIAV vaccines could aid in reducing the amount of swIAV circulating in pig populations, thereby increasing animal welfare, limiting economic losses and lowering the risk of zoonotic swIAV transmission.
Collapse
Affiliation(s)
- Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Philipp P Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Kumari S, Chaudhari J, Huang Q, Gauger P, De Almeida MN, Liang Y, Ly H, Vu HLX. Immunogenicity and Protective Efficacy of a Recombinant Pichinde Viral-Vectored Vaccine Expressing Influenza Virus Hemagglutinin Antigen in Pigs. Vaccines (Basel) 2022; 10:vaccines10091400. [PMID: 36146478 PMCID: PMC9505097 DOI: 10.3390/vaccines10091400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Influenza A virus of swine (IAV-S) is an economically important swine pathogen. The IAV-S hemagglutinin (HA) surface protein is the main target for vaccine development. In this study, we evaluated the feasibility of using the recombinant tri-segmented Pichinde virus (rPICV) as a viral vector to deliver HA antigen to protect pigs against IAV-S challenge. Four groups of weaned pigs (T01–T04) were included in the study. T01 was injected with PBS to serve as a non-vaccinated control. T02 was inoculated with rPICV expressing green fluorescence protein (rPICV-GFP). T03 was vaccinated with rPICV expressing the HA antigen of the IAV-S H3N2 strain (rPICV-H3). T04 was vaccinated with the recombinant HA protein antigen of the same H3N2 strain. Pigs were vaccinated twice at day 0 and day 21 and challenged at day 43 by intra-tracheal inoculation with the homologous H3N2 IAV-S strain. After vaccination, all pigs in T03 and T04 groups were seroconverted and exhibited high titers of plasma neutralizing antibodies. After challenge, high levels of IAV-S RNA were detected in the nasal swabs and bronchioalveolar lavage fluid of pigs in T01 and T02 but not in the T03 and T04 groups. Similarly, lung lesions were observed in T01 and T02, but not in the T03 and T04 groups. No significant difference in terms of protection was observed between the T03 and T04 group. Collectively, our results demonstrate that the rPICV-H3 vectored vaccine elicited protective immunity against IAV-S challenge. This study shows that rPICV is a promising viral vector for the development of vaccines against IAV-S.
Collapse
Affiliation(s)
- Sushmita Kumari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Qinfeng Huang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
| | - Phillip Gauger
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Marcelo Nunes De Almeida
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yuying Liang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
| | - Hinh Ly
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
- Correspondence: (H.L.); (H.L.X.V.); Tel.: +1-612-625-3358 (H.L.); +1-402-472-4528 (H.L.X.V.)
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animals Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (H.L.); (H.L.X.V.); Tel.: +1-612-625-3358 (H.L.); +1-402-472-4528 (H.L.X.V.)
| |
Collapse
|
9
|
Nogales A, DeDiego ML, Martínez-Sobrido L. Live attenuated influenza A virus vaccines with modified NS1 proteins for veterinary use. Front Cell Infect Microbiol 2022; 12:954811. [PMID: 35937688 PMCID: PMC9354547 DOI: 10.3389/fcimb.2022.954811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza A viruses (IAV) spread rapidly and can infect a broad range of avian or mammalian species, having a tremendous impact in human and animal health and the global economy. IAV have evolved to develop efficient mechanisms to counteract innate immune responses, the first host mechanism that restricts IAV infection and replication. One key player in this fight against host-induced innate immune responses is the IAV non-structural 1 (NS1) protein that modulates antiviral responses and virus pathogenicity during infection. In the last decades, the implementation of reverse genetics approaches has allowed to modify the viral genome to design recombinant IAV, providing researchers a powerful platform to develop effective vaccine strategies. Among them, different levels of truncation or deletion of the NS1 protein of multiple IAV strains has resulted in attenuated viruses able to induce robust innate and adaptive immune responses, and high levels of protection against wild-type (WT) forms of IAV in multiple animal species and humans. Moreover, this strategy allows the development of novel assays to distinguish between vaccinated and/or infected animals, also known as Differentiating Infected from Vaccinated Animals (DIVA) strategy. In this review, we briefly discuss the potential of NS1 deficient or truncated IAV as safe, immunogenic and protective live-attenuated influenza vaccines (LAIV) to prevent disease caused by this important animal and human pathogen.
Collapse
Affiliation(s)
- Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Disease Intervention and Prevetion, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| |
Collapse
|
10
|
Kessler S, Harder TC, Schwemmle M, Ciminski K. Influenza A Viruses and Zoonotic Events-Are We Creating Our Own Reservoirs? Viruses 2021; 13:v13112250. [PMID: 34835056 PMCID: PMC8624301 DOI: 10.3390/v13112250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/16/2023] Open
Abstract
Zoonotic infections of humans with influenza A viruses (IAVs) from animal reservoirs can result in severe disease in individuals and, in rare cases, lead to pandemic outbreaks; this is exemplified by numerous cases of human infection with avian IAVs (AIVs) and the 2009 swine influenza pandemic. In fact, zoonotic transmissions are strongly facilitated by manmade reservoirs that were created through the intensification and industrialization of livestock farming. This can be witnessed by the repeated introduction of IAVs from natural reservoirs of aquatic wild bird metapopulations into swine and poultry, and the accompanied emergence of partially- or fully-adapted human pathogenic viruses. On the other side, human adapted IAV have been (and still are) introduced into livestock by reverse zoonotic transmission. This link to manmade reservoirs was also observed before the 20th century, when horses seemed to have been an important reservoir for IAVs but lost relevance when the populations declined due to increasing industrialization. Therefore, to reduce zoonotic events, it is important to control the spread of IAV within these animal reservoirs, for example with efficient vaccination strategies, but also to critically surveil the different manmade reservoirs to evaluate the emergence of new IAV strains with pandemic potential.
Collapse
Affiliation(s)
- Susanne Kessler
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Timm C. Harder
- Friedrich-Loeffler-Institut (FLI), Institute of Diagnostic Virology, 17493 Greifswald-Insel Riems, Germany;
| | - Martin Schwemmle
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Kevin Ciminski
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Correspondence:
| |
Collapse
|