1
|
Tapia D, Reyes-Sandoval A, Sanchez-Villamil JI. Protein-based Nanoparticle Vaccine Approaches Against Infectious Diseases. Arch Med Res 2023; 54:168-175. [PMID: 36894463 DOI: 10.1016/j.arcmed.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
The field of vaccine development has seen an increase in the number of rationally designed technologies that increase effectiveness against vaccine-resistant pathogens, while not compromising safety. Yet, there is still an urgent need to expand and further understand these platforms against complex pathogens that often evade protective responses. Nanoscale platforms have been at the center of new studies, especially in the wake of the coronavirus disease 2019 (COVID-19), with the aim of deploying safe and effective vaccines in a short time period. The intrinsic properties of protein-based nanoparticles, such as biocompatibility, flexible physicochemical characteristics, and variety have made them an attractive platform against different infectious disease agents. In the past decade, several studies have tested both lumazine synthase-, ferritin-, and albumin-based nanoplatforms against a wide range of complex pathogens in pre-clinical studies. Owed to their success in pre-clinical studies, several studies are undergoing human clinical trials or are near an initial phase. In this review we highlight the different protein-based platforms, mechanisms of synthesis, and effectiveness of these over the past decade. In addition, some challenges, and future directions to increase their effectiveness are also highlighted. Taken together, protein-based nanoscaffolds have proven to be an effective means to design rationally designed vaccines, especially against complex pathogens and emerging infectious diseases.
Collapse
Affiliation(s)
- Daniel Tapia
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio Nacional de Vacunología y Virus Tropicales, Ciudad de México, México
| | - Javier I Sanchez-Villamil
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Morelos, Atlacholoaya, Morelos, México.
| |
Collapse
|
2
|
Zhu Y, Zhu Y, Cao T, Liu X, Liu X, Yan Y, Shi Y, Wang JC. Ferritin-based nanomedicine for disease treatment. MEDICAL REVIEW (2021) 2023; 3:49-74. [PMID: 37724111 PMCID: PMC10471093 DOI: 10.1515/mr-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 09/20/2023]
Abstract
Ferritin is an endogenous protein which is self-assembled by 24 subunits into a highly uniform nanocage structure. Due to the drug-encapsulating ability in the hollow inner cavity and abundant modification sites on the outer surface, ferritin nanocage has been demonstrated great potential to become a multi-functional nanomedicine platform. Its good biocompatibility, low toxicity and immunogenicity, intrinsic tumor-targeting ability, high stability, low cost and massive production, together make ferritin nanocage stand out from other nanocarriers. In this review, we summarized ferritin-based nanomedicine in field of disease diagnosis, treatment and prevention. The different types of drugs to be loaded in ferritin, as well as drug-loading methods were classified. The strategies for site-specific and non-specific functional modification of ferritin were investigated, then the application of ferritin for disease imaging, drug delivery and vaccine development were discussed. Finally, the challenges restricting the clinical translation of ferritin-based nanomedicines were analyzed.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuefeng Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianmiao Cao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
3
|
Kim SA, Lee Y, Ko Y, Kim S, Kim GB, Lee NK, Ahn W, Kim N, Nam GH, Lee EJ, Kim IS. Protein-based nanocages for vaccine development. J Control Release 2023; 353:767-791. [PMID: 36516900 DOI: 10.1016/j.jconrel.2022.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Protein nanocages have attracted considerable attention in various fields of nanomedicine due to their intrinsic properties, including biocompatibility, biodegradability, high structural stability, and ease of modification of their surfaces and inner cavities. In vaccine development, these protein nanocages are suited for efficient targeting to and retention in the lymph nodes and can enhance immunogenicity through various mechanisms, including excellent uptake by antigen-presenting cells and crosslinking with multiple B cell receptors. This review highlights the superiority of protein nanocages as antigen delivery carriers based on their physiological and immunological properties such as biodistribution, immunogenicity, stability, and multifunctionality. With a focus on design, we discuss the utilization and efficacy of protein nanocages such as virus-like particles, caged proteins, and artificial caged proteins against cancer and infectious diseases such as coronavirus disease 2019 (COVID-19). In addition, we summarize available knowledge on the protein nanocages that are currently used in clinical trials and provide a general outlook on conventional distribution techniques and hurdles faced, particularly for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yeram Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yeju Ko
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Seohyun Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Gi Beom Kim
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea
| | - Na Kyeong Lee
- Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Wonkyung Ahn
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Nayeon Kim
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Gi-Hoon Nam
- Department of Research and Development, SHIFTBIO INC., Seoul, Republic of Korea; Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Qu Y, Davey K, Sun Y, Middelberg A, Bi J. Engineered Design of the E-Helix Structure on Ferritin Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3167-3179. [PMID: 35770389 DOI: 10.1021/acsabm.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insertion of an immunogenic epitope at the C-terminus of ferritin has shown the potential to produce a stable and efficacious vaccine. There is however limited understanding of how C-terminus insertion affects ferritin protein stability. The E-helix at the C-terminus has attracted interest because there are contradictory reports as to whether it has a role in protein stabilization. Here, we report, for the first time, combining molecular dynamics simulation (MDS) with experiment to engineer the design of the E-helix at the C-terminus of engineered human ferritin heavy chain (F1) inserted with Epstein-Barr nuclear antigen 1 (EBNA1, E1) and flexible linker (L3) residues (to afford F1L3E1). Hot spots on the E-helix of the C-terminus were predicted by MDS at aa 167 (Glu) and aa 171 (Asp). Five (5) variants of F1L3E1 were constructed by considering hot spots and alteration of electrostatic or hydrophobic interfaces, namely, (1) C1, hot spots substituted with noncharged residue Gln; (2) C2, hot spots substituted with positively charged residue Arg; (3) C3, hydrophobic residues substituted with the most hydrophobic residues Val and Ile; (4) C4, hydrophobic residues substituted with the most hydrophilic residues Gln and Asn; and (5) C5, a heptad repeat structure in the E-helix disrupted by substituting "a" and "d" heptad residues with noncharged polar residue Gln. It was found that the E-helix is essential to maintain integrated protein stability and that changing the hydrophobic interface (C3 and C4) had more significant effects on protein folding and stability than changing the electrostatic interface (C1 and C2). It was confirmed by both MDS and experiment that variants C1, C2, and C5 were able to fold to form stable conformational structures with protein surface hydrophobicity similar to that of F1L3E1. However, they are less thermally stable than F1L3E1. Significant changes in hydrophobicity drove significant protein aggregation for variants C3 and C4. It is concluded that the molecular design of the C-terminus in engineered ferritin, especially the E-helix, is important to ensure the epitope-based chimeric vaccine is safe (aggregate free) and efficacious.
Collapse
Affiliation(s)
- Yiran Qu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anton Middelberg
- Division of Research and Innovation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Curley SM, Putnam D. Biological Nanoparticles in Vaccine Development. Front Bioeng Biotechnol 2022; 10:867119. [PMID: 35402394 PMCID: PMC8984165 DOI: 10.3389/fbioe.2022.867119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines represent one of the most successful public health initiatives worldwide. However, despite the vast number of highly effective vaccines, some infectious diseases still do not have vaccines available. New technologies are needed to fully realize the potential of vaccine development for both emerging infectious diseases and diseases for which there are currently no vaccines available. As can be seen by the success of the COVID-19 mRNA vaccines, nanoscale platforms are promising delivery vectors for effective and safe vaccines. Synthetic nanoscale platforms, including liposomes and inorganic nanoparticles and microparticles, have many advantages in the vaccine market, but often require multiple doses and addition of artificial adjuvants, such as aluminum hydroxide. Biologically derived nanoparticles, on the other hand, contain native pathogen-associated molecular patterns (PAMPs), which can reduce the need for artificial adjuvants. Biological nanoparticles can be engineered to have many additional useful properties, including biodegradability, biocompatibility, and are often able to self-assemble, thereby allowing simple scale-up from benchtop to large-scale manufacturing. This review summarizes the state of the art in biologically derived nanoparticles and their capabilities as novel vaccine platforms.
Collapse
Affiliation(s)
- Stephanie M. Curley
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Qu Y, Zhang B, Wang Y, Yin S, Sun Y, Middelberg A, Bi J. Immunogenicity and Vaccine Efficacy Boosted by Engineering Human Heavy Chain Ferritin and Chimeric Hepatitis B Virus Core Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:7147-7156. [DOI: 10.1021/acsabm.1c00738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yiran Qu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bingyang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yingli Wang
- Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030024, China
| | - Shuang Yin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anton Middelberg
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|