1
|
Jalalizadeh M, Buosi K, Giacomelli CF, Leme PAF, Ferrari KL, Dionato FAV, Brito WRS, Brunetti NS, Maia AR, Morari J, Pagliarone AC, Farias AS, Velloso LA, Queiroz MAF, Vallinoto ACR, Bajgelman MC, Reis LO. Therapeutic BCG vaccine protects against long COVID: The BATTLE randomized clinical trial. J Intern Med 2025; 297:60-78. [PMID: 39560319 DOI: 10.1111/joim.20033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) injected during the COVID-19 convalescence period was safe and enhanced recovery from anosmia and dysgeusia in the acute phase. OBJECTIVES To report the long-term results of the BATTLE trial, BCG vaccine in adults with mild COVID-19. METHODS Design: Double-blind, placebo-controlled, randomized (1:1) clinical trial. INTERVENTION BCG intradermal vaccine and placebo. PATIENTS A total of 157 BCG and 142 placebo recipients participated in the 6-month follow-up, and 97 BCG and 95 placebo recipients participated in the 12-month follow-up. MEASUREMENTS Long COVID symptoms and mechanistic analyses. RESULTS BCG reduced hearing problems at 6 months (odds ratio [OR] = 0.26) and sleeping, concentration, memory, and vision problems at 12 months (OR = 0.45, 0.36, 0.38, and 0.36, respectively). Sensitivity analyses confirmed that long COVID-19 symptoms were reduced at the 6- and 12-month follow-ups (p = 0.010 and 0.031, respectively). BCG's crossover interaction paradoxically increased hair loss in women and decreased it in men at 6 months (p = 0.032). BCG immunomodulation is likely mediated through inhibition of Fas ligand expression in the blood and increased induction of IL6, IL10, interferon-induced transmembrane protein 3, and angiotensin-converting enzyme 2 in cultured human macrophages. CONCLUSION Long-term follow-up of the BATTLE trial participants revealed that BCG protects against long COVID development if administered within the COVID-19 convalescence period. The response to BCG was subject-specific, including a paradoxical crossover interaction based on sex. LIMITATIONS Not tested for previous mycobacterial exposure; loss to follow-up, particularly at 12 months.
Collapse
Grants
- 88887.506617/2020-00 Coordination for the Improvement of Higher Education Personnel, CAPES, Federal Government, Brazil
- 88887.657670/2021-00 Coordination for the Improvement of Higher Education Personnel, CAPES, Federal Government, Brazil
- General Coordination of the National Immunization Program - CGPNI/DEIDT/SVS/MS
- 465/2020 Ministry of Health, Brazil
- 304747/2018-1 National Council for Scientific and Technological Development-CNPq, Research Productivity
- 310135/2022-2 National Council for Scientific and Technological Development-CNPq, Research Productivity
- 302935/2021-5 National Council for Scientific and Technological Development-CNPq, Research Productivity
Collapse
Affiliation(s)
- Mehrsa Jalalizadeh
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Keini Buosi
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | | | - Patricia A F Leme
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Karen L Ferrari
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | | | - Wandrey R S Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Natália S Brunetti
- Biology Institute, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Aline R Maia
- Obesity and Comorbidities Research Center, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Joseane Morari
- Obesity and Comorbidities Research Center, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Ana C Pagliarone
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Alessandro S Farias
- Biology Institute, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Licio A Velloso
- Obesity and Comorbidities Research Center, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Maria A F Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Antonio C R Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Leonardo O Reis
- UroScience, State University of Campinas, Unicamp, Campinas, São Paulo, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Lawrence A. Bacillus Calmette-Guérin (BCG) Revaccination and Protection Against Tuberculosis: A Systematic Review. Cureus 2024; 16:e56643. [PMID: 38646352 PMCID: PMC11032142 DOI: 10.7759/cureus.56643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccination remains a cornerstone in global efforts to combat tuberculosis (TB), a persistent public health threat worldwide. The purpose of this systematic review is to find out how well BCG revaccination protects against TB. This systematic review synthesized recent studies investigating the efficacy of BCG vaccination in preventing TB infection and disease. A total of 15 relevant publications were identified through a comprehensive search across multiple databases, including Cochrane Library, PubMed, Medline, and Scopus. The inclusion criteria encompassed studies involving humans, written in English, and categorized as case-control, cohort, meta-analysis, or full-text. Studies were selected based on their relevance to BCG revaccination and protection against TB, and a standardized data extraction form was used to gather pertinent information from each study. Quality assessment was conducted using established tools to evaluate the rigor, study design, and risk of bias in each included study. The findings revealed significant insights into BCG's effectiveness across different populations and age groups. Several studies demonstrated a substantial reduction in latent TB infection (LTBI) and incidence rates of TB following BCG vaccination. However, the protective efficacy of BCG revaccination varied across studies and populations, with some indicating modest protection against TB disease development, particularly in high-risk populations like healthcare workers. Furthermore, investigations into the immunological mechanisms underlying BCG's protective efficacy provided valuable insights into cytokine/chemokine profiles and immunomodulatory properties.
Collapse
Affiliation(s)
- Adewale Lawrence
- Pharmaceutical Medicine, Bioluminux Clinical Research, Naperville, USA
| |
Collapse
|
3
|
Marques-Neto LM, Trentini MM, Kanno AI, Rodriguez D, Leite LCDC. Recombinant BCG expressing the LTAK63 adjuvant increased memory T cells and induced long-lasting protection against Mycobacterium tuberculosis challenge in mice. Front Immunol 2023; 14:1205449. [PMID: 37520577 PMCID: PMC10374402 DOI: 10.3389/fimmu.2023.1205449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Vaccine-induced protection against Mycobacterium tuberculosis (Mtb) is usually ascribed to the induction of Th1, Th17, and CD8+ T cells. However, protective immune responses should also involve other immune cell subsets, such as memory T cells. We have previously shown improved protection against Mtb challenge using the rBCG-LTAK63 vaccine (a recombinant BCG strain expressing the LTAK63 adjuvant, a genetically detoxified derivative of the A subunit from E. coli heat-labile toxin). Here we show that mice immunized with rBCG-LTAK63 exhibit a long-term (at least until 6 months) polyfunctional Th1/Th17 response in the draining lymph nodes and in the lungs. This response was accompanied by the increased presence of a diverse set of memory T cells, including central memory, effector memory and tissue-resident memory T cells. After the challenge, the T cell phenotype in the lymph nodes and lungs were characterized by a decrease in central memory T cells, and an increase in effector memory T cells and effector T cells. More importantly, when challenged 6 months after the immunization, this group demonstrated increased protection in comparison to BCG. In conclusion, this work provides experimental evidence in mice that the rBCG-LTAK63 vaccine induces a persistent increase in memory and effector T cell numbers until at least 6 months after immunization, which correlates with increased protection against Mtb. This improved immune response may contribute to enhance the long-term protection.
Collapse
|
4
|
Aceves-Sánchez MDJ, Barrios-Payán JA, Segura-Cerda CA, Flores-Valdez MA, Mata-Espinosa D, Pedroza-Roldán C, Yadav R, Saini DK, de la Cruz MA, Ares MA, Bielefeldt-Ohmann H, Baay-Guzmán G, Vergne I, Velázquez-Fernández JB, Barba León J, Hernández-Pando R. BCG∆BCG1419c and BCG differ in induction of autophagy, c-di-GMP content, proteome, and progression of lung pathology in Mycobacterium tuberculosis HN878-infected male BALB/c mice. Vaccine 2023; 41:3824-3835. [PMID: 37164819 DOI: 10.1016/j.vaccine.2023.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
The efficacy of BCG vaccines against Mycobacterium tuberculosis (Mtb) strains of lineage 2 (Beijing) in preclinical models and humans has been questioned. We have developed BCG∆BCG1419c, by deletion of BCG1419c in BCG Pasteur, which improved control of tuberculosis (TB) in preclinical models. Here, we compared the capacity of BCG and BCG∆BCG1419c to induce autophagy in murine macrophages, modify c-di-GMP content and transcript levels of BCG1416c, encoding the enzyme responsible for c-di-GMP synthesis/degradation, and of BCG1419c, encoding the phosphodiesterase involved in c-di-GMP degradation. Furthermore, we evaluated proteomic differences in vitro and compared protection against TB produced by a low dose of the HN878-Beijing strain at 3- and 6-months post-infection. We found that BCG∆BCG1419c induced more autophagy and produced different levels of c-di-GMP as well as different transcription of BCG1416c with no expression of BCG1419c. BCG∆BCG1419c differentially produced several proteins, including some involved in interaction with host cells. Vaccination with either BCG strain led to control of bacillary burden in lungs and spleen at 3- but not 6-months post-infection, whereas it reduced pneumonic areas compared with unvaccinated controls at 6 months post-infection. Vaccination with BCG∆BCG1419c delayed progression of lung necrosis as this was observed only at 6 months post-infection. Taken together, compared with BCG, BCG∆BCG1419c increased autophagy, presented different levels of c-di-GMP and transcription of BCG1416c in vitro in a growth-phase dependent manner, modified its proteome and delayed progression of lung pathology produced by a highly virulent Beijing strain.
Collapse
Affiliation(s)
- Michel de Jesús Aceves-Sánchez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco 44270, México
| | - Jorge Alberto Barrios-Payán
- Laboratorio de Patología Experimental. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez sección 16, Tlalpan, Ciudad de México, Mexico
| | - Cristian Alfredo Segura-Cerda
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco 44270, México
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco 44270, México.
| | - Dulce Mata-Espinosa
- Laboratorio de Patología Experimental. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez sección 16, Tlalpan, Ciudad de México, Mexico
| | - César Pedroza-Roldán
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Rahul Yadav
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Miguel Angel de la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano de Seguro Social (IMSS), Ciudad de México, Mexico
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland St. Lucia Campus, St Lucia, QLD 4072, Australia
| | - Guillermina Baay-Guzmán
- Unidad de Investigación de Enfermedades Hematooncológicas. Hospital Infantil de México Federico Gómez, Del. Cuauhtémoc, Ciudad de México, Mexico
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | | | - Jeannette Barba León
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Km. 15.5 Carretera a Nogales, Zapopan, Jalisco 45110, Mexico
| | - Rogelio Hernández-Pando
- Laboratorio de Patología Experimental. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez sección 16, Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Global impact of COVID-19 on childhood tuberculosis: an analysis of notification data. Lancet Glob Health 2022; 10:e1774-e1781. [PMID: 36400083 PMCID: PMC9671550 DOI: 10.1016/s2214-109x(22)00414-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND There is concern that the COVID-19 pandemic has damaged global childhood tuberculosis management. Quantifying changes in childhood tuberculosis notifications could support more targeted interventions to restore childhood tuberculosis services. We aimed to use time-series modelling to evaluate the impact of COVID-19 on child tuberculosis notifications. METHODS Annual tuberculosis case notification data reported to WHO by 215 countries were used to calculate annual notification counts for the years 2014-20, stratified by age groups (0-4, 5-14, and ≥15 years) and sex. We used time-series modelling to predict notification counts for 2020, and calculated differences between these predictions and observed notifications in 2020 for each of the six WHO regions and at the country level for 30 countries with high tuberculosis burden. We assessed associations between these differences and the COVID-19 stringency index, a measure of COVID-19 social impact. FINDINGS From 2014 to 2019, annual tuberculosis notification counts increased across all age groups and WHO regions. More males than females in the 0-4 years age group and ≥15 years age group had notifications in all years from 2014 to 2020 and in all WHO regions. In the 5-14 years age group, more females than males were notified globally in all years, although some WHO regions had higher notifications from males than females. In 2020, global notifications were 35·4% lower than predicted (95% prediction interval -30·3 to -39·9; 142 525 observed vs 220 794 predicted notifications [95% prediction interval 204 509 to 237 078]) for children aged 0-4 years, 27·7% lower (-23·4 to -31·5; 256 398 vs 354 578 [334 724 to 374 431]) in children aged 5-14 years, and 18·8% lower (-15·4 to -21·9; 5 391 753 vs 6 639 547 [6 375 086 to 6 904 007]) for people aged 15 years or older. Among those aged 5-14 years, the reduction in observed relative to predicted notifications for 2020 was greater in males (-30·9% [-24·8 to -36·1]) than females (-24·5% [-18·1 to -29·9]). Among 28 countries with high tuberculosis burden, no association was observed between the stringency of COVID-19 restrictions and the relative difference in observed versus predicted notifications. INTERPRETATION Our findings suggest that COVID-19 has substantially affected childhood tuberculosis services, with the youngest children most affected. Although children have mostly had fewer severe health consequences from COVID-19 than have adults, they have been disproportionately affected by the effects of the pandemic on tuberculosis care. Observed sex differences suggest that targeted interventions might be required. As countries rebuild health systems following the COVID-19 pandemic, it is crucial that childhood tuberculosis services are placed centrally within national strategic plans. FUNDING Medical Research Council.
Collapse
|
6
|
Gupta M, Srikrishna G, Klein SL, Bishai WR. Genetic and hormonal mechanisms underlying sex-specific immune responses in tuberculosis. Trends Immunol 2022; 43:640-656. [PMID: 35842266 PMCID: PMC9344469 DOI: 10.1016/j.it.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Tuberculosis (TB), the world's deadliest bacterial infection, afflicts more human males than females, with a male/female (M/F) ratio of 1.7. Sex disparities in TB prevalence, pathophysiology, and clinical manifestations are widely reported, but the underlying biological mechanisms remain largely undefined. This review assesses epidemiological data on sex disparity in TB, as well as possible underlying hormonal and genetic mechanisms that might differentially modulate innate and adaptive immune responses in males and females, leading to sex differences in disease susceptibility. We consider whether this sex disparity can be extended to the efficacy of vaccines and discuss novel animal models which may offer mechanistic insights. A better understanding of the biological factors underpinning sex-related immune responses in TB may enable sex-specific personalized therapies for TB.
Collapse
|
7
|
Reevaluating Rifampicin Breakpoint Concentrations for Mycobacterium tuberculosis Isolates with Disputed rpoB Mutations and Discordant Susceptibility Phenotypes. Microbiol Spectr 2022; 10:e0208721. [PMID: 35107324 PMCID: PMC8809345 DOI: 10.1128/spectrum.02087-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, rifampicin resistance breakpoints based on MICs of disrupted rpoB mutants of Mycobacterium tuberculosis (MTB) were explored using the Mycobacteria Growth Indicator Tube (MGIT) system and microplate alamarBlue assay (MABA). Sixty-one MTB isolates with disputed low-level rifampicin resistance-associated rpoB mutations and 40 RIF-susceptible wild-type isolates were included. Among the 61 resistant isolates, 25 (41.0%) had MICs ≥2.0 mg/L via MABA, while 16 (26.2%) were identified as RIF resistant via MGIT. Epidemiological cut-off (ECOFF) values obtained using MABA and MGIT were 0.25 and 0.125 mg/L, respectively. Based on 0.125 mg/L as a tentative critical concentration (CC), MABA RIF resistance-detection sensitivity was 93.4%, prompting the reduction of the MGIT CC to 0.125 mg/L, given that only a single isolate (1.6%) with the borderline mutation would be misclassified as susceptible to RIF based on this CC. Based on DNA sequencing of RRDR as the gold standard, the diagnostic accuracy of MGIT (99.0%) was significantly higher than that of MABA (91.1%). MICs of Leu511Pro mutant isolates were negatively correlated with time to liquid culture positivity (TTP) in our analysis (R = 0.957, P < 0.01). In conclusion, our results demonstrated missed detection of a high proportion of rifampicin-resistant isolates based on the WHO-endorsed CC. Such missed detections would be avoided by reducing the optimal MGIT RIF CC to 0.125 mg/L. In addition, MGIT based on reduced CC outperformed MABA in detecting borderline RIF resistance, with MABA MIC results obtained for isolates with the same mutation correlating with MTB growth rate. IMPORTANCE Tuberculosis (TB) is still one of the world's leading infectious disease killers. The early and accurate diagnosis of RIF resistance is necessary to deliver timely and appropriate treatment for TB patients and improve their clinical outcome. Actually, a proportion of MTB isolates with disputed rpoB mutations present a diagnostic dilemma between Xpert and phenotypical drug susceptibility testing (pDST). Recently, WHO reported a pragmatic approach by lowering critical concentration (CC) to boost sensitivity of resistance detection of pDST. Therefore, a detailed analysis of the association between RIF susceptibility and disrupted mutations within rpoB gene would lay a foundation to assess the diagnostic accuracy of pDST with lowering RIF CC. In this study, we aim to determine the MICs of MTB isolates with disrupted mutations by MGIT and microplate alamarBlue assay (MABA). We also aimed to determine the optimal breakpoints for MTB isolates with these mutations.
Collapse
|
8
|
|