1
|
Sui Y, Berzofsky JA. Trained immunity inducers in cancer immunotherapy. Front Immunol 2024; 15:1427443. [PMID: 39081326 PMCID: PMC11286386 DOI: 10.3389/fimmu.2024.1427443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
While most of the cancer immunotherapy strategies engage adaptive immunity, especially tumor-associated T cells, the small fraction of responding patients and types of cancers amenable, and the possibility of severe adverse effects limit its usage. More effective and general interventions are urgently needed. Recently, a de facto innate immune memory, termed 'trained immunity', has become a new research focal point, and promises to be a powerful tool for achieving long-term therapeutic benefits against cancers. Trained immunity-inducing agents such as BCG and fungal glucan have been shown to be able to avert the suppressive tumor microenvironment (TME), enhance T cell responses, and eventually lead to tumor regression. Here, we review the current understating of trained immunity induction and highlight the critical roles of emergency granulopoiesis, interferon γ and tissue-specific induction. Preclinical and clinical studies that have exploited trained immunity inducers for cancer immunotherapy are summarized, and repurposed trained immunity inducers from other fields are proposed. We also outline the challenges and opportunities for trained immunity in future cancer immunotherapies. We envisage that more effective cancer vaccines will combine the induction of trained immunity with T cell therapies.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | | |
Collapse
|
2
|
Zeng S, Xing S, Zhang Y, Wang H, Liu Q. Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment. J Zhejiang Univ Sci B 2024; 25:557-567. [PMID: 39011676 PMCID: PMC11254686 DOI: 10.1631/jzus.b2300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/29/2023] [Indexed: 07/13/2024]
Abstract
Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated Mycobacterium bovis vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Shaoqiang Xing
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin 300192, China
| | - Yifei Zhang
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin 300192, China
| | - Haifeng Wang
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
3
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
4
|
Takeishi A, Shaban AK, Kakihana T, Takihara H, Okuda S, Osada H, Suameitria Dewi DNS, Ozeki Y, Yoshida Y, Nishiyama A, Tateishi Y, Aizu Y, Chuma Y, Onishi K, Hayashi D, Yamamoto S, Mukai T, Ato M, Thai DH, Nhi HTT, Shirai T, Shibata S, Obata F, Fujii J, Yamayoshi S, Kiso M, Matsumoto S. Genetic engineering employing MPB70 and its promoter enables efficient secretion and expression of foreign antigen in bacillus Calmette Guérin (BCG) Tokyo. Microbiol Immunol 2024; 68:130-147. [PMID: 38294180 DOI: 10.1111/1348-0421.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.
Collapse
Affiliation(s)
- Atsuki Takeishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Amina K Shaban
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Taichi Kakihana
- Department of Virology, School of Medicine, Niigata University, Niigata, Japan
| | - Hayato Takihara
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Hidekazu Osada
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- NIPPON ZENYAKU KOGYO CO., LTD, Fukushima, Japan
| | - Desak Nyoman Surya Suameitria Dewi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Microbiology, Universitas Ciputra, Surabaya, Indonesia
| | - Yuriko Ozeki
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
| | - Yuki Aizu
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Yasushi Chuma
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Kazuyo Onishi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Daisuke Hayashi
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
| | - Saburo Yamamoto
- Division of Research and Development, Japan BCG Laboratory, Tokyo, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsu Mukai
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Duong Huu Thai
- Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Huynh Thi Thao Nhi
- Department of BCG production, Institute of Vaccines and Medical Biologicals, Nha Trang, Vietnam
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Satoshi Shibata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Fumiko Obata
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Jun Fujii
- Department of Microbiology and Immunology, Division of Bacteriology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Seiya Yamayoshi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Maki Kiso
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, School of Medicine, Niigata University, Niigata, Japan
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Um PK, Praharaj M, Lombardo KA, Yoshida T, Matoso A, Baras AS, Zhao L, Srikrishna G, Huang J, Prasad P, Kates M, McConkey D, Pardoll DM, Bishai WR, Bivalacqua TJ. Improved bladder cancer antitumor efficacy with a recombinant BCG that releases a STING agonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571740. [PMID: 38168333 PMCID: PMC10760079 DOI: 10.1101/2023.12.15.571740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Despite the introduction of several new agents for the treatment of bladder cancer (BC), intravesical BCG remains a first line agent for the management of non-muscle invasive bladder cancer. In this study we evaluated the antitumor efficacy in animal models of BC of a recombinant BCG known as BCG-disA-OE that releases the small molecule STING agonist c-di-AMP. We found that compared to wild-type BCG (BCG-WT), in both the orthotopic, carcinogen-induced rat MNU model and the heterotopic syngeneic mouse MB-49 model BCG-disA-OE afforded improved antitumor efficacy. A mouse safety evaluation further revealed that BCG-disA-OE proliferated to lesser degree than BCG-WT in BALB/c mice and displayed reduced lethality in SCID mice. To probe the mechanisms that may underlie these effects, we found that BCG-disA-OE was more potent than BCG-WT in eliciting IFN-β release by exposed macrophages, in reprogramming myeloid cell subsets towards an M1-like proinflammatory phenotypes, inducing epigenetic activation marks in proinflammatory cytokine promoters, and in shifting monocyte metabolomic profiles towards glycolysis. Many of the parameters elevated in cells exposed to BCG-disA-OE are associated with BCG-mediated trained innate immunity suggesting that STING agonist overexpression may enhance trained immunity. These results indicate that modifying BCG to release high levels of proinflammatory PAMP molecules such as the STING agonist c-di-AMP can enhance antitumor efficacy in bladder cancer.
Collapse
Affiliation(s)
- Peter K. Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Monali Praharaj
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - Takahiro Yoshida
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Japan, 6620918
| | - Andres Matoso
- Department of Pathology, The Johns Hopkins University, Baltimore, USA
| | - Alex S. Baras
- Department of Pathology, The Johns Hopkins University, Baltimore, USA
| | - Liang Zhao
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - Geetha Srikrishna
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Pankaj Prasad
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Max Kates
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - David McConkey
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, USA
| | - Drew M. Pardoll
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, USA
| | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, USA
| | - Trinity J. Bivalacqua
- School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
6
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Meng F, Zhu T, Chen C, Yao H, Zhang R, Li J, Chen X, Huang J, Pan Z, Jiao X, Yin Y. A live attenuated DIVA vaccine affords protection against Listeria monocytogenes challenge in sheep. Microb Pathog 2023:106204. [PMID: 37327947 DOI: 10.1016/j.micpath.2023.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Listeria monocytogenes (Lm) is a deadly foodborne pathogen that comprises 14 serotypes, among which, serotype 4b Lm is the primary cause of listeriosis outbreaks in humans and animals. Here, we evaluated the safety, immunogenicity, and protective efficacy of a serotype 4b vaccine candidate Lm NTSNΔactA/plcB/orfX in sheep. The infection dynamics, clinical features, and pathological observation verified that the triple genes deletion strain has adequate safety for sheep. Moreover, NTSNΔactA/plcB/orfX significantly stimulated humoral immune response and 78% protection against lethal wild-type strain challenge. Notably, the attenuated vaccine could differentiate infected and vaccinated animals (DIVA) via serology determination of the antibody against listeriolysin O (LLO, encoded by hly) and phosphatidylinositol-specific phospholipase C (PI-PLC, encoded by plcB). These data suggest that the serotype 4b vaccine candidate has high efficacy, safety, and DIVA characteristics, and may be used to prevent Lm infection in sheep, which provides a theoretical basis for its future application in livestock and poultry breeding.
Collapse
Affiliation(s)
- Fanzeng Meng
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Tengfei Zhu
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Chao Chen
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Renling Zhang
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Jing Li
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, China.
| |
Collapse
|
8
|
Waanders L, van der Donk LEH, Ates LS, Maaskant J, van Hamme JL, Eldering E, van Bruggen JAC, Rietveld JM, Bitter W, Geijtenbeek TBH, Kuijl CP. Ectopic expression of cGAS in Salmonella typhimurium enhances STING-mediated IFN-β response in human macrophages and dendritic cells. J Immunother Cancer 2023; 11:jitc-2022-005839. [PMID: 37072345 PMCID: PMC10124277 DOI: 10.1136/jitc-2022-005839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Interferon (IFN)-β induction via activation of the stimulator of interferon genes (STING) pathway has shown promising results in tumor models. STING is activated by cyclic dinucleotides such as cyclic GMP-AMP dinucleotides with phosphodiester linkages 2'-5' and 3'-5' (cGAMPs), that are produced by cyclic GMP-AMP synthetase (cGAS). However, delivery of STING pathway agonists to the tumor site is a challenge. Bacterial vaccine strains have the ability to specifically colonize hypoxic tumor tissues and could therefore be modified to overcome this challenge. Combining high STING-mediated IFN-β levels with the immunostimulatory properties of Salmonella typhimurium could have potential to overcome the immune suppressive tumor microenvironment. METHODS We have engineered S. typhimurium to produce cGAMP by expression of cGAS. The ability of cGAMP to induce IFN-β and its IFN-stimulating genes was addressed in infection assays of THP-I macrophages and human primary dendritic cells (DCs). Expression of catalytically inactive cGAS is used as a control. DC maturation and cytotoxic T-cell cytokine and cytotoxicity assays were conducted to assess the potential antitumor response in vitro. Finally, by making use of different S. typhimurium type III secretion (T3S) mutants, the mode of cGAMP transport was elucidated. RESULTS Expression of cGAS in S. typhimurium results in a 87-fold stronger IFN-β response in THP-I macrophages. This effect was mediated by cGAMP production and is STING dependent. Interestingly, the needle-like structure of the T3S system was necessary for IFN-β induction in epithelial cells. DC activation included upregulation of maturation markers and induction of type I IFN response. Coculture of challenged DCs with cytotoxic T cells revealed an improved cGAMP-mediated IFN-γ response. In addition, coculture of cytotoxic T cells with challenged DCs led to improved immune-mediated tumor B-cell killing. CONCLUSION S. typhimurium can be engineered to produce cGAMPs that activate the STING pathway in vitro. Furthermore, they enhanced the cytotoxic T-cell response by improving IFN-γ release and tumor cell killing. Thus, the immune response triggered by S. typhimurium can be enhanced by ectopic cGAS expression. These data show the potential of S. typhimurium-cGAS in vitro and provides rationale for further research in vivo.
Collapse
Affiliation(s)
- Lisette Waanders
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
| | - Lieve E H van der Donk
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Janneke Maaskant
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - John L van Hamme
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Eric Eldering
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
- The Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
| | - Jaco A C van Bruggen
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Joanne M Rietveld
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Amsterdam institute for Life and Environment, Vrije Universiteit, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
| |
Collapse
|
9
|
Hu Z, Lu S, Lowrie DB, Fan X. Trained immunity: A Yin-Yang balance. MedComm (Beijing) 2022; 3:e121. [PMID: 35281787 PMCID: PMC8906449 DOI: 10.1002/mco2.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Traditionally, immune memory is regarded as an exclusive hallmark of adaptive immunity. However, a growing body of evidence suggesting that innate immune cells show adaptive characteristics has challenged this dogma. In the past decade, trained immunity, a de facto innate immune memory, has been defined as a long-term functional reprogramming of cells of the innate immune system: the reprogramming is evoked by endogenous or exogenous insults, the cells return to a nonactivated state and subsequently show altered inflammatory responses against a second challenge. Trained immunity became regarded as a mechanism selected in evolution to protect against infection; however, a maladaptive effect might result in hyperinflammation. This dual effect is consistent with the Yin-Yang theory in traditional Chinese philosophy, in which Yang represents active, positive, and aggressive factors, whereas Yin represents passive, negative, and inhibitory factors. In this review, we give a brief overview of history and latest progress about trained immunity, including experimental models, inductors, molecular mechanisms, clinical application and so on. Moreover, this is the first time to put forward the theory of Yin-Yang balance to understand trained immunity. We envision that more efforts will be focused on developing novel immunotherapies targeting trained immunity in the coming years.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
| | - Shui‐Hua Lu
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
- National Medical Center for Infectious Diseases of ChinaShenzhen Third People Hospital, South Science & Technology UniversityShenzhenChina
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of ChinaShenzhen Third People Hospital, South Science & Technology UniversityShenzhenChina
| | - Xiao‐Yong Fan
- Shanghai Public Health Clinical CenterKey Laboratory of Medical Molecular Virology of MOE/MOHFudan UniversityShanghaiChina
| |
Collapse
|
10
|
|
11
|
|