1
|
McGregor R, Carlton L, Paterson A, Hills T, Charlewood R, Moreland NJ. Neutralization capacity of convalescent plasma against SARS-CoV-2 omicron sublineages: Implications for donor selection. Vox Sang 2023; 118:1145-1147. [PMID: 37817295 DOI: 10.1111/vox.13539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Affiliation(s)
- Reuben McGregor
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Lauren Carlton
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Aimee Paterson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Hills
- Te Toka Tumai Auckland, Te Whatu Ora (Health New Zealand), Auckland, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Richard Charlewood
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- New Zealand Blood Service, Auckland, New Zealand
| | - Nicole J Moreland
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Widhani A, Hasibuan AS, Rismawati R, Maria S, Koesnoe S, Hermanadi MI, Ophinni Y, Yamada C, Harimurti K, Sari ANL, Yunihastuti E, Djauzi S. Efficacy, Immunogenicity, and Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2023; 11:1456. [PMID: 37766132 PMCID: PMC10535431 DOI: 10.3390/vaccines11091456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Patients with autoimmune diseases are among the susceptible groups to COVID-19 infection because of the complexity of their conditions and the side effects of the immunosuppressive drugs used to treat them. They might show impaired immunogenicity to COVID-19 vaccines and have a higher risk of developing COVID-19. Using a systematic review and meta-analysis, this research sought to summarize the evidence on COVID-19 vaccine efficacy, immunogenicity, and safety in patients with autoimmune diseases following predefined eligibility criteria. Research articles were obtained from an initial search up to 26 September 2022 from PubMed, Embase, EBSCOhost, ProQuest, MedRxiv, bioRxiv, SSRN, EuroPMC, and the Cochrane Center of Randomized Controlled Trials (CCRCT). Of 76 eligible studies obtained, 29, 54, and 38 studies were included in systematic reviews of efficacy, immunogenicity, and safety, respectively, and 6, 18, and 4 studies were included in meta-analyses for efficacy, immunogenicity, and safety, respectively. From the meta-analyses, patients with autoimmune diseases showed more frequent breakthrough COVID-19 infections and lower total antibody (TAb) titers, IgG seroconversion, and neutralizing antibodies after inactivated COVID-19 vaccination compared with healthy controls. They also had more local and systemic adverse events after the first dose of inactivated vaccination compared with healthy controls. After COVID-19 mRNA vaccination, patients with autoimmune diseases had lower TAb titers and IgG seroconversion compared with healthy controls.
Collapse
Affiliation(s)
- Alvina Widhani
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
- Department of Internal Medicine, Universitas Indonesia Hospital, Depok 16424, Indonesia
| | - Anshari Saifuddin Hasibuan
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
| | - Retia Rismawati
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
| | - Suzy Maria
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
| | - Sukamto Koesnoe
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
| | - Muhammad Ikrar Hermanadi
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan;
- Department of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Center for Southeast Asian Studies, Kyoto University, Kyoto 606-8304, Japan;
| | - Chika Yamada
- Center for Southeast Asian Studies, Kyoto University, Kyoto 606-8304, Japan;
| | - Kuntjoro Harimurti
- Geriatric Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia;
| | - Aldean Nadhyia Laela Sari
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
| | - Evy Yunihastuti
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
| | - Samsuridjal Djauzi
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia; (A.S.H.); (R.R.); (S.M.); (S.K.); (M.I.H.); (A.N.L.S.); (E.Y.); (S.D.)
| |
Collapse
|
3
|
When should a longer needle be used for intramuscular injection in obese patients? A combined analysis of New Zealand data. Vaccine 2023; 41:2690-2695. [PMID: 36935287 DOI: 10.1016/j.vaccine.2023.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
AIM To estimate thresholds for Body Mass Index (BMI) and arm circumference above which a longer needle is needed to ensure intramuscular (IM) delivery of a vaccine in the deltoid muscle at the site recommended by New Zealand (NZ) immunization guidelines. METHODS A combined analysis of two studies, including 442 adults, with measurements of arm circumference, BMI and skin to deltoid muscle distance (SDMD) at the NZ immunization guideline-recommended IM injection site. Receiver Operator Characteristic curves identified arm circumference and BMI cut-points that gave 100% sensitivity for SDMD thresholds. These thresholds were: SDMD of 20 mm, accounting for a minimal penetration of 5 mm into muscle with the standard needle; and 25 mm, which is the length of a standard needle for IM injection, representing the depth this can reach. RESULTS Cut-point values for arm circumference, at which a longer needle would be required, were higher for males than females: 35 cm versus 30 cm for the 20 mm cut-point, and 40 cm versus 36.7 cm for the 25 mm cut-point respectively. The BMI cut-points were also higher for male than females: 24.6 kg/m2 versus 23.7 kg/m2 for the 20 mm cut-point, and 38.2 kg/m2 vs 31.6 kg/m2 for the 25 mm cut-point respectively. CONCLUSION Arm circumference and BMI cut-points provide practical measures from which to choose a needle length that increases the chance of successful IM vaccination. Based on our data, an arm circumference of 35 cm for men and 30 cm for women should prompt selection of a longer needle to ensure intramuscular injection at the deltoid site. Thresholds for the different skin to deltoid sites proposed internationally should be determined to enable successful IM vaccination in clinical practice beyond NZ.
Collapse
|
4
|
Parker G, Pausé C, Gillon A, Gray L. Self-identified fat people’s understanding of the need for, and use of, long needles when being vaccinated against COVID-19: findings from a international online exploratory survey. CRITICAL PUBLIC HEALTH 2022. [DOI: 10.1080/09581596.2022.2159789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- George Parker
- Te Wāhanga Tātai Hauora Wellington Faculty of Health, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| | - Cat Pausé
- Graduate School of Education, Massey University, Palmerston North, New Zealand
| | - Ashlea Gillon
- School of Psychology, Te Wānanga o Waipapa, Auckland, New Zealand
- Research Fellow, School of Nursing, Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
- Fulbright Scholar, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi
| | - Lesley Gray
- Te Whare Wānanga o Otāgo ki Te Whanga-Nui-a-TaraTel/Waea, University of Otago, Wellington, New Zealand
| |
Collapse
|
5
|
Priddy FH, Williams M, Carson S, Lavender B, Mathieson J, Frampton C, Moreland NJ, McGregor R, Williams G, Brewerton M, Gell K, Ussher J, Le Gros G. Immunogenicity of BNT162b2 COVID-19 vaccine in New Zealand adults. Vaccine 2022; 40:5050-5059. [PMID: 35868948 PMCID: PMC9273612 DOI: 10.1016/j.vaccine.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
Background There is very little known about SARS-CoV-2 vaccine immune responses in New Zealand populations at greatest risk for serious COVID-19 disease. Methods This prospective cohort study assessed immunogenicity in BNT162b2 mRNA vaccine recipients in New Zealand without previous COVID-19, with enrichment for Māori, Pacific peoples, older adults ≥ 65 years of age, and those with co-morbidities. Serum samples were analysed at baseline and 28 days after second dose for presence of quantitative anti-S IgG by chemiluminescent microparticle immunoassay and for neutralizing capacity against Wuhan, Beta, Delta, and Omicron BA.1 strains using a surrogate viral neutralisation assay. Results 285 adults with median age of 52 years were included. 55% were female, 30% were Māori, 28% were Pacific peoples, and 26% were ≥ 65 years of age. Obesity, cardiac and pulmonary disease and diabetes were more common than in the general population. All participants received 2 doses of BNT162b2 vaccine. At 28 days after second vaccination, 99.6% seroconverted to the vaccine, and anti-S IgG and neutralising antibody levels were high across gender and ethnic groups. IgG and neutralising responses declined with age. Lower responses were associated with age ≥ 75 and diabetes, but not BMI. The ability to neutralise the Omicron BA.1 variant in vitro was severely diminished but maintained against other variants of concern. Conclusions Vaccine antibody responses to BNT162b2 were generally robust and consistent with international data in this COVID-19 naïve cohort with representation of key populations at risk for COVID-19 morbidity. Subsequent data on response to boosters, durability of responses and cellular immune responses should be assessed with attention to elderly adults and diabetics.
Collapse
Affiliation(s)
- Frances H Priddy
- Vaccine Alliance Aotearoa New Zealand and Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand.
| | - Michael Williams
- Pacific Clinical Research Network, 1289 Haupapa St, Rotorua 3010, New Zealand
| | - Simon Carson
- Pacific Clinical Research Network, 1289 Haupapa St, Rotorua 3010, New Zealand
| | - Brittany Lavender
- Vaccine Alliance Aotearoa New Zealand and Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand
| | - Julia Mathieson
- Pacific Clinical Research Network, 1289 Haupapa St, Rotorua 3010, New Zealand
| | - Chris Frampton
- University of Otago, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Nicole J Moreland
- University of Auckland, 2 Park Rd, Grafton Auckland 1023, New Zealand
| | - Reuben McGregor
- University of Auckland, 2 Park Rd, Grafton Auckland 1023, New Zealand
| | - Georgia Williams
- Pacific Clinical Research Network, 1289 Haupapa St, Rotorua 3010, New Zealand
| | - Maia Brewerton
- Vaccine Alliance Aotearoa New Zealand and Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand; Department of Clinical Immunology & Allergy, Auckland City Hospital, 2 Park Rd, Grafton Auckland 1023, New Zealand
| | - Katie Gell
- Vaccine Alliance Aotearoa New Zealand and Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand
| | - James Ussher
- Vaccine Alliance Aotearoa New Zealand and University of Otago, 362 Leith St, Dunedin 9016 New Zealand
| | - Graham Le Gros
- Vaccine Alliance Aotearoa New Zealand and Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand
| |
Collapse
|