1
|
Pierson JB, Berridge B, Blinova K, Brooks MB, Eldridge S, O'Brien CE, Pugsley MK, Schultze AE, Smith G, Stockbridge N, Valentin JP, Vicente J. Collaborative science in action: A 20 year perspective from the Health and Environmental Sciences Institute (HESI) Cardiac Safety Committee. J Pharmacol Toxicol Methods 2024; 127:107511. [PMID: 38710237 DOI: 10.1016/j.vascn.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The Health and Environmental Sciences Institute (HESI) is a nonprofit organization dedicated to resolving global health challenges through collaborative scientific efforts across academia, regulatory authorities and the private sector. Collaborative science across non-clinical disciplines offers an important keystone to accelerate the development of safer and more effective medicines. HESI works to address complex challenges by leveraging diverse subject-matter expertise across sectors offering access to resources, data and shared knowledge. In 2008, the HESI Cardiac Safety Committee (CSC) was established to improve public health by reducing unanticipated cardiovascular (CV)-related adverse effects from pharmaceuticals or chemicals. The committee continues to significantly impact the field of CV safety by bringing together experts from across sectors to address challenges of detecting and predicting adverse cardiac outcomes. Committee members have collaborated on the organization, management and publication of prospective studies, retrospective analyses, workshops, and symposia resulting in 38 peer reviewed manuscripts. Without this collaboration these manuscripts would not have been published. Through their work, the CSC is actively addressing challenges and opportunities in detecting potential cardiac failure modes using in vivo, in vitro and in silico models, with the aim of facilitating drug development and improving study design. By examining past successes and future prospects of the CSC, this manuscript sheds light on how the consortium's multifaceted approach not only addresses current challenges in detecting potential cardiac failure modes but also paves the way for enhanced drug development and study design methodologies. Further, exploring future opportunities and challenges will focus on improving the translational predictability of nonclinical evaluations and reducing reliance on animal research in CV safety assessments.
Collapse
Affiliation(s)
| | | | | | - Marjory B Brooks
- Comparative Coagulation Section, Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Claire E O'Brien
- Health and Environmental Sciences Institute, Washington, DC, USA.
| | - Michael K Pugsley
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA, USA
| | - A Eric Schultze
- Pathology, Lilly Research Laboratories, Indianapolis, IN, USA
| | - Godfrey Smith
- Clyde Biosciences Ltd, Newhouse, UK; University of Glasgow, Scotland, UK
| | | | - Jean-Pierre Valentin
- UCB Biopharma SRL, Development Science, Non-Clinical Safety Evaluation, Braine l'Alleud, Belgium
| | - Jose Vicente
- Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
2
|
Valentin JP, Sibony A, Rosseels ML, Delaunois A. "Appraisal of state-of-the-art" The 2021 Distinguished Service Award of the Safety Pharmacology Society: Reflecting on the past to tackle challenges ahead. J Pharmacol Toxicol Methods 2023; 123:107269. [PMID: 37149063 DOI: 10.1016/j.vascn.2023.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
This appraisal of state-of-the-art manuscript highlights and expands upon the thoughts conveyed in the lecture of Dr. Jean-Pierre Valentin, recipient of the 2021 Distinguished Service Award of the Safety Pharmacology Society, given on the 2nd December 2021. The article reflects on the strengths, weaknesses, opportunities, and threats that surrounded the evolution of safety and secondary pharmacology over the last 3 decades with a particular emphasis on pharmaceutical drug development delivery, scientific and technological innovation, complexities of regulatory framework and people leadership and development. The article further built on learnings from past experiences to tackle constantly emerging issues and evolving landscape whilst being cognizant of the challenges facing these disciplines in the broader drug development and societal context.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium.
| | - Alicia Sibony
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| | - Marie-Luce Rosseels
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| | - Annie Delaunois
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium
| |
Collapse
|
3
|
Valentin JP, Leishman D. 2000-2023 over two decades of ICH S7A: has the time come for a revamp? Regul Toxicol Pharmacol 2023; 139:105368. [PMID: 36841350 DOI: 10.1016/j.yrtph.2023.105368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
The ICH S7A guideline on safety pharmacology studies released over 20 years ago largely achieved its objective "to help protect clinical trial participants and patients receiving marketed products from potential adverse effects of pharmaceuticals". Although, Phase I clinical trials are generally very safe, the incidence and severity of adverse events, the safety related attrition and product withdrawal remain elevated during late-stage clinical development and post approval, a proportion of which can be attributed at least in part to safety pharmacology related issues. Considering the latest scientific and technological advancements in drug safety science, the paradigm shift of the drug discovery and development process and the continuously evolving regulatory landscape, we recommend revisiting, adapting and evolving the ICH S7A guideline. This might offer opportunities i) to select and progress optimized drugs with increased confidence in success, ii) to refine and adapt the clinical monitoring at all stages of clinical development resulting in an optimized benefit/risk assessment, iii) to increase likelihood of regulatory acceptance in a way compatible with an expedited and streamlined drug discovery and development process to benefit patients and iv) to avoid the unnecessary use of animals in 'tick-the-box' studies and encourage alternative approaches. As presented in the article, several options could be envisioned to revisit and adapt the ICH S7A taking into consideration several key features.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- UCB-Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine L'Alleud, Belgium.
| | - Derek Leishman
- Drug Disposition, Toxicology and PKPD, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| |
Collapse
|
4
|
Valentin JP, Hoffmann P, Ortemann-Renon C, Koerner J, Pierson J, Gintant G, Willard J, Garnett C, Skinner M, Vargas HM, Wisialowski T, Pugsley MK. The Challenges of Predicting Drug-Induced QTc Prolongation in Humans. Toxicol Sci 2022; 187:3-24. [PMID: 35148401 PMCID: PMC9041548 DOI: 10.1093/toxsci/kfac013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The content of this article derives from a Health and Environmental Sciences Institute (HESI) consortium with a focus to improve cardiac safety during drug development. A detailed literature review was conducted to evaluate the concordance between nonclinical repolarization assays and the clinical thorough QT (TQT) study. Food and Drug Administration and HESI developed a joint database of nonclinical and clinical data, and a retrospective analysis of 150 anonymized drug candidates was reviewed to compare the performance of 3 standard nonclinical assays with clinical TQT study findings as well as investigate mechanism(s) potentially responsible for apparent discrepancies identified. The nonclinical assays were functional (IKr) current block (Human ether-a-go-go related gene), action potential duration, and corrected QT interval in animals (in vivo corrected QT). Although these nonclinical assays demonstrated good specificity for predicting negative clinical QT prolongation, they had relatively poor sensitivity for predicting positive clinical QT prolongation. After review, 28 discordant TQT-positive drugs were identified. This article provides an overview of direct and indirect mechanisms responsible for QT prolongation and theoretical reasons for lack of concordance between clinical TQT studies and nonclinical assays. We examine 6 specific and discordant TQT-positive drugs as case examples. These were derived from the unique HESI/Food and Drug Administration database. We would like to emphasize some reasons for discordant data including, insufficient or inadequate nonclinical data, effects of the drug on other cardiac ion channels, and indirect and/or nonelectrophysiological effects of drugs, including altered heart rate. We also outline best practices that were developed based upon our evaluation.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- Department of Investigative Toxicology, UCB Biopharma SRL, Braine-l’Alleud B-1420, Belgium
| | | | | | - John Koerner
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005, USA
| | | | - James Willard
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | - Christine Garnett
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | | | - Hugo M Vargas
- Department of Safety Pharmacology & Animal Research Center, Amgen, Thousand Oaks, California 91320, USA
| | - Todd Wisialowski
- Department of Safety Pharmacology, Pfizer, Groton, Connecticut 06340, USA
| | - Michael K Pugsley
- Department of Toxicology, Cytokinetics, South San Francisco, California 94080, USA
| |
Collapse
|
5
|
Weaver RJ, Valentin JP. Today's Challenges to De-Risk and Predict Drug Safety in Human "Mind-the-Gap". Toxicol Sci 2020; 167:307-321. [PMID: 30371856 DOI: 10.1093/toxsci/kfy270] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Current gaps in drug safety sciences can result from the inability (1) to identify hazard across multiple target organs, (2) to predict and risk assess with certainty against drug safety liabilities for the major target organs, (3) to optimally manage and mitigate against drug safety liabilities, and (4) to apply principles of governance on the generation, integration, and use of experimental data. Translational safety assessment to evaluate several target-organ drug toxicities can only be partially achieved by use of current in vitro and in vivo test systems. What remains to be tackled necessitates the deployment of in vitro-human-relevant test systems to address human specific or selective forms of toxicities. Nevertheless, such models may only address in part some of the requirements in today's armament of biomedical tools essential for improving the discovery of drug candidates. Refinement of in silico tools, Target Safety Assessment and a greater understanding of mechanistic insights of toxicities might provide future opportunities to better identify drug safety liabilities. The increasing diversity of drug modalities present further challenges for nonclinical and clinical development requiring further research to develop suitable test systems and technologies. Our ability to optimally manage and mitigate safety risk will come from the greater refinement of safety margin estimates, provision and use of human-relevant safety biomarkers, and understanding of the translation from in silico, in vitro, and in vivo studies to human. An improvement of governance frameworks and standards at all levels within organizations, national, and international, can only help facilitate drug discovery and development programs.
Collapse
Affiliation(s)
| | - Jean-Pierre Valentin
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine-l'Alleud, Belgium
| |
Collapse
|
6
|
Pfeiffer-Kaushik ER, Smith GL, Cai B, Dempsey GT, Hortigon-Vinagre MP, Zamora V, Feng S, Ingermanson R, Zhu R, Hariharan V, Nguyen C, Pierson J, Gintant GA, Tung L. Electrophysiological characterization of drug response in hSC-derived cardiomyocytes using voltage-sensitive optical platforms. J Pharmacol Toxicol Methods 2019; 99:106612. [PMID: 31319140 DOI: 10.1016/j.vascn.2019.106612] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Voltage-sensitive optical (VSO) sensors offer a minimally invasive method to study the time course of repolarization of the cardiac action potential (AP). This Comprehensive in vitro Proarrhythmia Assay (CiPA) cross-platform study investigates protocol design and measurement variability of VSO sensors for preclinical cardiac electrophysiology assays. METHODS Three commercial and one academic laboratory completed a limited study of the effects of 8 blinded compounds on the electrophysiology of 2 commercial lines of human induced pluripotent stem-cell derived cardiomyocytes (hSC-CMs). Acquisition technologies included CMOS camera and photometry; fluorescent voltage sensors included di-4-ANEPPS, FluoVolt and genetically encoded QuasAr2. The experimental protocol was standardized with respect to cell lines, plating and maintenance media, blinded compounds, and action potential parameters measured. Serum-free media was used to study the action of drugs, but the exact composition and the protocols for cell preparation and drug additions varied among sites. RESULTS Baseline AP waveforms differed across platforms and between cell types. Despite these differences, the relative responses to four selective ion channel blockers (E-4031, nifedipine, mexiletine, and JNJ 303 blocking IKr, ICaL, INa, and IKs, respectively) were similar across all platforms and cell lines although the absolute changes differed. Similarly, four mixed ion channel blockers (flecainide, moxifloxacin, quinidine, and ranolazine) had comparable effects in all platforms. Differences in repolarisation time course and response to drugs could be attributed to cell type and experimental method differences such as composition of the assay media, stimulated versus spontaneous activity, and single versus cumulative compound addition. DISCUSSION In conclusion, VSOs represent a powerful and appropriate method to assess the electrophysiological effects of drugs on iPSC-CMs for the evaluation of proarrhythmic risk. Protocol considerations and recommendations are provided toward standardizing conditions to reduce variability of baseline AP waveform characteristics and drug responses.
Collapse
Affiliation(s)
| | - Godfrey L Smith
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Beibei Cai
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Graham T Dempsey
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Maria P Hortigon-Vinagre
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Shuyun Feng
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Randall Ingermanson
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Venkatesh Hariharan
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Cuong Nguyen
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, D.C. 20009, USA.
| | - Gary A Gintant
- AbbVie, 1 North Waukegan Road, Department ZR-13, Building AP-9A, North Chicago, IL 60064-6119, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Response of safety pharmacologists to challenges arising from the rapidly evolving changes in the pharmaceutical industry. J Pharmacol Toxicol Methods 2019; 98:106593. [PMID: 31158459 DOI: 10.1016/j.vascn.2019.106593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/14/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023]
Abstract
This commentary highlights and expands upon the thoughts conveyed in the lecture by Dr. Alan S. Bass, recipient of the 2017 Distinguished Service Award from the Safety Pharmacology Society, given on 27 September 2017 in Berlin, Germany. The lecture discussed the societal, scientific, technological, regulatory and economic events that dramatically impacted the pharmaceutical industry and ultimately led to significant changes in the strategic operations and practices of safety pharmacology. It focused on the emerging challenges and opportunities, and considered the lessons learned from drug failures and the influences of world events, including the financial crisis that ultimately led to a collapse of the world economies from which we are now recovering. Events such as these, which continue to today, challenge the assumptions that form the foundation of our discipline and dramatically affect the way that safety pharmacology is practiced. These include the latest scientific and technological developments contributing to the design and advancement of safe medicines. More broadly, they reflect the philosophical mission of safety pharmacology and the roles and responsibilities served by safety pharmacologists. As the discipline of Safety Pharmacology continues to evolve, develop and mature, the reader is invited to reflect on past experiences as a framework towards a vision of the future of the field.
Collapse
|
8
|
Pugsley M, Authier S, Koerner J, Redfern W, Markgraf C, Brabham T, Correll K, Soloviev M, Botchway A, Engwall M, Traebert M, Valentin JP, Mow T, Greiter-Wilke A, Leishman D, Vargas H. An overview of the safety pharmacology society strategic plan. J Pharmacol Toxicol Methods 2018; 93:35-45. [DOI: 10.1016/j.vascn.2018.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
|
9
|
Jackson SJ, Prior H, Holmes A. The use of human tissue in safety assessment. J Pharmacol Toxicol Methods 2018; 93:29-34. [PMID: 29753134 DOI: 10.1016/j.vascn.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The safety-related failure of drugs during clinical phases of development is a significant contributor to drug attrition, wasting resources and preventing treatments from reaching patients. A lack of concordance between results from animal models and adverse events in the clinic has been identified as one potential cause of attrition. In vitro models using human tissue or cells have the potential to replace some animal models and improve predictivity to humans. METHODS To gauge the current use of human tissue models in safety pharmacology and the barriers to greater uptake, an electronic survey of the international safety assessment community was carried out and a Safety Pharmacology Society European Regional Meeting was organised entitled 'The Use of Human Tissue in Safety Assessment'. RESULTS A greater range of human tissue models is in use in safety assessment now than four years ago, although data is still not routinely included in regulatory submissions. The barriers to increased uptake of the models have not changed over that time, with inadequate supply and characterisation of tissue being the most cited blocks. DISCUSSION Supporting biobanking, the development of new human tissue modelling technology, and raising awareness in the scientific and regulatory communities are key ways in which the barriers to greater uptake of human tissue models can be overcome. The development of infrastructure and legislation in the UK to support the use of post-mortem or surgical discard tissue will allow scientists to locally source tissue for research.
Collapse
Affiliation(s)
- Samuel J Jackson
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, United Kingdom.
| | - Helen Prior
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, United Kingdom.
| | - Anthony Holmes
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, United Kingdom.
| |
Collapse
|
10
|
Park E, Gintant GA, Bi D, Kozeli D, Pettit SD, Pierson JB, Skinner M, Willard J, Wisialowski T, Koerner J, Valentin JP. Can non-clinical repolarization assays predict the results of clinical thorough QT studies? Results from a research consortium. Br J Pharmacol 2018; 175:606-617. [PMID: 29181850 PMCID: PMC5786459 DOI: 10.1111/bph.14101] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/12/2017] [Accepted: 11/13/2017] [Indexed: 01/06/2023] Open
Abstract
Background and Purpose Translation of non‐clinical markers of delayed ventricular repolarization to clinical prolongation of the QT interval corrected for heart rate (QTc) (a biomarker for torsades de pointes proarrhythmia) remains an issue in drug discovery and regulatory evaluations. We retrospectively analysed 150 drug applications in a US Food and Drug Administration database to determine the utility of established non‐clinical in vitro IKr current human ether‐à‐go‐go‐related gene (hERG), action potential duration (APD) and in vivo (QTc) repolarization assays to detect and predict clinical QTc prolongation. Experimental Approach The predictive performance of three non‐clinical assays was compared with clinical thorough QT study outcomes based on free clinical plasma drug concentrations using sensitivity and specificity, receiver operating characteristic (ROC) curves, positive (PPVs) and negative predictive values (NPVs) and likelihood ratios (LRs). Key Results Non‐clinical assays demonstrated robust specificity (high true negative rate) but poor sensitivity (low true positive rate) for clinical QTc prolongation at low‐intermediate (1×–30×) clinical exposure multiples. The QTc assay provided the most robust PPVs and NPVs (ability to predict clinical QTc prolongation). ROC curves (overall test accuracy) and LRs (ability to influence post‐test probabilities) demonstrated overall marginal performance for hERG and QTc assays (best at 30× exposures), while the APD assay demonstrated minimal value. Conclusions and Implications The predictive value of hERG, APD and QTc assays varies, with drug concentrations strongly affecting translational performance. While useful in guiding preclinical candidates without clinical QT prolongation, hERG and QTc repolarization assays provide greater value compared with the APD assay.
Collapse
Affiliation(s)
- Eunjung Park
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Gary A Gintant
- Department of Integrative Pharmacology, AbbVie, North Chicago, IL, USA
| | - Daoqin Bi
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Devi Kozeli
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | | | | - Matthew Skinner
- Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, UK
| | - James Willard
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | | - John Koerner
- Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, USA
| | | |
Collapse
|
11
|
Hazell L, Raschi E, Ponti F, Thomas SHL, Salvo F, Ahlberg Helgee E, Boyer S, Sturkenboom M, Shakir S. Evidence for the hERG Liability of Antihistamines, Antipsychotics, and Anti‐Infective Agents: A Systematic Literature Review From the ARITMO Project. J Clin Pharmacol 2016; 57:558-572. [DOI: 10.1002/jcph.838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/08/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Lorna Hazell
- Drug Safety Research Unit Southampton United Kingdom
| | - Emanuel Raschi
- Department of Medical and Surgical SciencesUniversity of Bologna Bologna Italy
| | - Fabrizio Ponti
- Department of Medical and Surgical SciencesUniversity of Bologna Bologna Italy
| | - Simon H. L. Thomas
- Institute of Cellular MedicineFaculty of MedicineNewcastle University Newcastle United Kingdom
| | | | - Ernst Ahlberg Helgee
- Drug Safety and MetabolismAstraZeneca Innovative Medicines and Early Development Mölndal Sweden
| | - Scott Boyer
- Computational Toxicology, Swedish Toxicology Sciences Research Center Södertälje Sweden
| | | | - Saad Shakir
- Drug Safety Research Unit Southampton United Kingdom
| |
Collapse
|
12
|
Vargas HM, Bass AS, Koerner J, Matis-Mitchell S, Pugsley MK, Skinner M, Burnham M, Bridgland-Taylor M, Pettit S, Valentin JP. Evaluation of drug-induced QT interval prolongation in animal and human studies: a literature review of concordance. Br J Pharmacol 2015; 172:4002-11. [PMID: 26031452 PMCID: PMC4543608 DOI: 10.1111/bph.13207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/22/2015] [Accepted: 05/20/2015] [Indexed: 01/10/2023] Open
Abstract
Evaluating whether a new medication prolongs QT intervals is a critical safety activity that is conducted in a sensitive animal model during non-clinical drug development. The importance of QT liability detection has been reinforced by non-clinical [International Conference on Harmonization (ICH) S7B] and clinical (ICH E14) regulatory guidance from the International Conference on Harmonization. A key challenge for the cardiovascular safety community is to understand how the finding from a non-clinical in vivo QT assay in animals predicts the outcomes of a clinical QT evaluation in humans. The Health and Environmental Sciences Institute Pro-Arrhythmia Working Group performed a literature search (1960–2011) to identify both human and non-rodent animal studies that assessed QT signal concordance between species and identified drugs that prolonged or did not prolong the QT interval. The main finding was the excellent agreement between QT results in humans and non-rodent animals. Ninety-one percent (21 of 23) of drugs that prolonged the QT interval in humans also did so in animals, and 88% (15 of 17) of drugs that did not prolong the QT interval in humans had no effect on animals. This suggests that QT interval data derived from relevant non-rodent models has a 90% chance of predicting QT findings in humans. Disagreement can occur, but in the limited cases of QT discordance we identified, there appeared to be plausible explanations for the underlying disconnect between the human and non-rodent animal QT outcomes.
Collapse
Affiliation(s)
- Hugo M Vargas
- Integrated Discovery and Safety Pharmacology, Amgen, Inc., Thousand Oaks, CA, USA
| | - Alan S Bass
- Safety Assessment, Merck Research Laboratories, Boston, MA, USA
| | - John Koerner
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | | | | | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | |
Collapse
|
13
|
Takei A. ILSI Health and Environmental Sciences Institute (HESI), global leader in advancing translational science to create science-based solutions for a sustainable, healthier world. Genes Environ 2015; 37:1. [PMID: 27350798 PMCID: PMC4910771 DOI: 10.1186/s41021-015-0001-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/12/2015] [Indexed: 11/30/2022] Open
Abstract
The Health and Environmental Sciences Institute (HESI) is a non-profit scientific research organization based in Washington, D.C., U.S.A. HESI was established in 1989 as a global branch of the International Life Sciences Institute (ILSI) to provide an international forum to advance the understanding of scientific issues related to human health, toxicology, risk assessment and the environment. For the last 25 years, HESI has been the global leader to advance application of new science and technologies in the areas of human health, toxicology, risk assessment and environment. The core principle of “tripartite approach” and the multi-sector operational model have successfully supported HESI’s scientific programs to create science-based solutions for a sustainable and healthier world. HESI’s achievements include the dataset to guide the selection of appropriate supporting assays for carcinogenicity testing, a new testing framework for agricultural chemicals with enhanced efficacy, predictivity, and reduced animal usage, novel biomarkers of nephrotoxicity which provide data on the location of timing of drug effects in the kidney allowing for enhanced drug development, etc.
Collapse
Affiliation(s)
- Ayako Takei
- ICaRuS Japan Limited, 3-4-2-4201 Toyosu, Koto-ku, Tokyo 135-0061 Japan
| |
Collapse
|
14
|
Abstract
Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as "those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above." Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract research organizations. This movement has created the opportunity for the safety pharmacology discipline to come "full circle" and return to the drug discovery arena (target identification through clinical candidate selection) to contribute to the mitigation of the high rate of candidate drug failure through better compound selection decision making. Finally, the changing focus of science and losses in didactic training of scientists in whole animal physiology and pharmacology have revealed a serious gap in the future availability of qualified individuals to apply the principles of safety pharmacology in support of drug discovery and development. This is a significant deficiency that at present is only partially met with academic and professional society programs advancing a minimal level of training. In summary, with the exception that the future availability of suitably trained scientists is a critical need for the field that remains to be effectively addressed, the prospects for the future of safety pharmacology are hopeful and promising, and challenging for those individuals who want to assume this responsibility. What began in the early part of the new millennium as a relatively simple model of testing to assure the safety of Phase I clinical subjects and patients from acute deleterious effects on life-supporting organ systems has grown with experience and time to a science that mobilizes the principles of cellular and molecular biology and attempts to predict acute adverse events and those associated with long-term treatment. These challenges call for scientists with a broad range of in-depth scientific knowledge and an ability to adapt to a dynamic and forever changing industry. Identifying individuals who will serve today and training those who will serve in the future will fall to all of us who are committed to this important field of science.
Collapse
|
15
|
Holzgrefe H, Ferber G, Champeroux P, Gill M, Honda M, Greiter-Wilke A, Baird T, Meyer O, Saulnier M. Preclinical QT safety assessment: Cross-species comparisons and human translation from an industry consortium. J Pharmacol Toxicol Methods 2014; 69:61-101. [DOI: 10.1016/j.vascn.2013.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/10/2023]
|
16
|
Safety pharmacology — Current and emerging concepts. Toxicol Appl Pharmacol 2013; 273:229-41. [DOI: 10.1016/j.taap.2013.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/31/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
17
|
Pierson JB, Berridge BR, Brooks MB, Dreher K, Koerner J, Schultze AE, Sarazan RD, Valentin JP, Vargas HM, Pettit SD. A public-private consortium advances cardiac safety evaluation: achievements of the HESI Cardiac Safety Technical Committee. J Pharmacol Toxicol Methods 2013; 68:7-12. [PMID: 23567075 DOI: 10.1016/j.vascn.2013.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The evaluation of cardiovascular side-effects is a critical element in the development of all new drugs and chemicals. Cardiac safety issues are a major cause of attrition and withdrawal due to adverse drug reactions (ADRs) in pharmaceutical drug development. METHODS The evolution of the HESI Technical Committee on Cardiac Safety from 2000-2013 is presented as an example of an effective international consortium of academic, government, and industry scientists working to improve cardiac safety. RESULTS AND DISCUSSION The HESI Technical Committee Working Groups facilitated the development of a variety of platforms for resource sharing and communication among experts that led to innovative strategies for improved drug safety. The positive impacts arising from these Working Groups are described in this article.
Collapse
Affiliation(s)
- Jennifer B Pierson
- Health and Environmental Sciences Institute, 1156 15th Street, Northwest, Suite 200, Washington, DC 20005, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ewart L, Gallacher DJ, Gintant G, Guillon JM, Leishman D, Levesque P, McMahon N, Mylecraine L, Sanders M, Suter W, Wallis R, Valentin JP. How do the top 12 pharmaceutical companies operate safety pharmacology? J Pharmacol Toxicol Methods 2012; 66:66-70. [DOI: 10.1016/j.vascn.2012.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/20/2022]
|
19
|
Cavero I. 2011 Annual Meeting of the Safety Pharmacology Society: an overview. Expert Opin Drug Saf 2012; 11:341-53. [DOI: 10.1517/14740338.2012.661412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Gintant GA, Gallacher DJ, Pugsley MK. The 'overly-sensitive' heart: sodium channel block and QRS interval prolongation. Br J Pharmacol 2011; 164:254-9. [PMID: 21488862 PMCID: PMC3174406 DOI: 10.1111/j.1476-5381.2011.01433.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 11/30/2022] Open
Abstract
UNLABELLED Cardiac safety remains of paramount importance in the development of successful clinical drug candidates. Great progress has been made recently in understanding liabilities associated with delayed ventricular repolarization (manifest as QT prolongation) and in predicting (thus avoiding) drugs that delay repolarization based on application of strategic preclinical assays. Following the advances made in clinical electrophysiological monitoring and conduct of thorough QT studies, focus is now shifting towards monitoring of additional drug-induced effects, particularly on ventricular conduction (measured as changes in the QRS interval on the ECG) as part of evolving clinical thorough ECG studies. In this issue of the British Journal of Pharmacology, a study by Harmer et al. proposes provisional safety margins for QRS prolongation in man based on retrospective clinical data and a single in vitro approach to assess potency of block of cardiac sodium current (hNav1.5), the ionic current responsible for ventricular conduction (observed as QRS prolongation). The present commentary places their study in context with evolving preclinical cardiac electrophysiological safety assessments, along with discussions focused on ensuring the proper 'translation' of preclinical findings with potential clinical concerns. Given the extant limitations and uncertainties of presently available data, as well as our limited understanding of the pro-arrhythmic potential associated with these changes, due caution should be applied when considering the proposed in vitro-based margins for drug-induced QRS prolongation measured clinically. Additional validation with multiple preclinical models and more rigorous clinical safety studies will be necessary to substantiate these recommended margins. LINKED ARTICLE This article is a commentary on Harmer et al., pp. 260-273 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2011.01415.x.
Collapse
Affiliation(s)
- Gary A Gintant
- Department of Integrative Pharmacology, Abbott LaboratoriesAbbott Park, IL, USA
| | - David J Gallacher
- Center of Excellence for Cardiovascular Safety Research and Mechanistic Pharmacology, Janssen Pharmaceutical Companies of Johnson & JohnsonBeerse, Belgium
| | - Michael K Pugsley
- Department of Toxicology & Pathology, Johnson & Johnson Pharmaceutical Research & DevelopmentRaritan, NJ, USA
| |
Collapse
|
21
|
Bass AS, Vargas HM, Valentin JP, Kinter LB, Hammond T, Wallis R, Siegl PK, Yamamoto K. Safety pharmacology in 2010 and beyond: Survey of significant events of the past 10years and a roadmap to the immediate-, intermediate- and long-term future in recognition of the tenth anniversary of the Safety Pharmacology Society. J Pharmacol Toxicol Methods 2011; 64:7-15. [DOI: 10.1016/j.vascn.2011.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/29/2022]
|
22
|
Sukardi H, Chng HT, Chan ECY, Gong Z, Lam SH. Zebrafish for drug toxicity screening: bridging thein vitrocell-based models andin vivomammalian models. Expert Opin Drug Metab Toxicol 2011; 7:579-89. [DOI: 10.1517/17425255.2011.562197] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Cavero I. Cardiovascular system assessment best practices: a Safety Pharmacology Society meeting. Expert Opin Drug Saf 2010. [DOI: 10.1517/14740338.2010.510131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Valentin JP, Pollard C, Lainée P, Hammond T. Value of non-clinical cardiac repolarization assays in supporting the discovery and development of safer medicines. Br J Pharmacol 2010; 159:25-33. [PMID: 20141518 DOI: 10.1111/j.1476-5381.2009.00530.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Non-clinical QT-related assays aligned to the pharmaceutical drug discovery and development phases are used in several ways. During the early discovery phases, assays are used for hazard identification and wherever possible for hazard elimination. The data generated enable us to: (i) establish structure-activity relationships and thereby; (ii) influence the medicinal chemistry design and provide tools for effective decision making; and provide structure-activity data for in silico predictive databases; (iii) solve problems earlier; (iv) provide reassurance for compound or project to progress; and (v) refine strategies as scientific and technical knowledge grows. For compounds progressing into pre-clinical development, the 'core battery' QT-related data enable an integrated risk assessment to: (i) fulfil regulatory requirements; (ii) assess the safety and risk-benefit for compound progression to man; (iii) contribute to defining the starting dose during the phase I clinical trials; (iv) influence the design of the phase I clinical trials; (v) identify clinically relevant safety biomarkers; and (vi) contribute to the patient risk management plan. Once a compound progresses into clinical development, QT-related data can be applied in the context of risk management and risk mitigation. The data from 'follow-up' studies can be used to: (i) support regulatory approval; (ii) investigate discrepancies that may have emerged within and/or between non-clinical and clinical data; (iii) understand the mechanism of an undesirable pharmacodynamic effect; (iv) provide reassurance for progression into multiple dosing in humans and/or large-scale clinical trials; and (v) assess drug-drug interactions. Based on emerging data, the integrated risk assessment is then reviewed in this article, and the benefit-risk for compound progression was re-assessed. Project examples are provided to illustrate the impact of non-clinical data to support compound progression throughout the drug discovery and development phases, and regulatory approval.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- Safety Assessment UK, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | | | | | | |
Collapse
|
25
|
Abstract
The International Conference on Harmonisation E14 Guidance was successful in largely standardizing the conduct of the so-called thorough QT/QTc studies (TQTS). Nevertheless, there is still a spectrum of frequently encountered problems with details of design, conduct and interpretation of TQTS. Several of these challenges are reviewed here, starting with explaining that the TQTS goal is only to identify drugs for which the proarrhythmic risk might be considered excluded for the purposes of regulatory benefit-risk assessment. Suggestions are made on how to categorize and quantify or exclude proarrhythmic risk if the TQTS is positive. There is a conceptual need for TQTS, and this is discussed, together with reasons why restricted clinical registries cannot prove the absence of proarrhythmic liability of any drug. Appropriate drug doses investigated in TQTS should be derived from the maximum clinically tolerable dose rather than from the known or expected therapeutic dose. With the help of concentration-QTc modelling, the standard therapeutic dose can be omitted from TQTS, especially if the study is expected to be negative. Conditions for single-dose TQTS acceptability are reviewed. The role of the so-called positive control is assessed, contrasting the role of a same-class comparator for the investigated drug. A single 400 mg dose of moxifloxacin is advocated as the present 'gold standard' assay sensitivity test. The necessity of careful placebo control is explained and the frequency of ECG assessments is considered. The central tendency and outlier analyses are discussed, together with the correct approaches to baseline adjustment. The review concludes that the design and interpretation of TQTS must not be approached with mechanistic stereotypes, and highlights the importance of relating the QTc changes to drug plasma levels.
Collapse
Affiliation(s)
- Marek Malik
- Division of Cardiac and Vascular Sciences, St George's, University of London, London, UK.
| | | | | |
Collapse
|
26
|
Valentin JP. Reducing QT liability and proarrhythmic risk in drug discovery and development. Br J Pharmacol 2010; 159:5-11. [PMID: 20141515 PMCID: PMC2823346 DOI: 10.1111/j.1476-5381.2009.00547.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 11/25/2022] Open
Abstract
Drug-induced torsades de pointes (TdP), a rare, life-threatening, polymorphic, ventricular tachycardia associated with prolongation of the QT interval, has been the main safety reason for the withdrawal of medicines from clinical use over the last decade. Most often, drugs that prolong the action potential and delay ventricular repolarization do so through blockade of outward (repolarizing) currents, predominantly the rapid delayed rectifying potassium current, I(Kr). While QT interval prolongation is not a safety concern per se, in a small percentage of people, it has been associated with TdP, which either spontaneously terminates or degenerates into ventricular fibrillation. Furthermore, recent data suggest that shortening of the QT interval may also be a new safety issue waiting to surface. This review article summarizes the presentations given at a symposium entitled 'Reducing QT liability and proarrhythmic risk in drug discovery and development', which was part of the Federation of the European Pharmacological Societies congress, Manchester, UK, 13-17 July 2008. The objective of this symposium was to assess the effects of implementing the latest regulatory guidance documents (International Conference on Harmonization S7A/B and E14), as well as new scientific and technical trends on the ability of the pharmaceutical industry to reduce and manage the QT liability and associated potential proarrhythmic risk, and contribute to the discovery and development of safer medicines. This review outlines the key messages from communications presented at this symposium and attempts to highlight some of the key challenges that remain to be addressed.
Collapse
|
27
|
Darpo B. The thorough QT/QTc study 4 years after the implementation of the ICH E14 guidance. Br J Pharmacol 2010; 159:49-57. [PMID: 19922536 PMCID: PMC2823351 DOI: 10.1111/j.1476-5381.2009.00487.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/11/2009] [Accepted: 08/20/2009] [Indexed: 01/08/2023] Open
Abstract
The ICH E14 guidance on how to clinically assess a new drug's liability to prolong the QT interval was adopted in May 2005. A centre-piece of the guidance was the establishment of one single trial, the 'thorough QT/QTc study', intended to confidently identify drugs that may cause QT prolongation. Initially perceived as a great challenge, this study has rapidly become a standard component of all clinical development programs for new molecular entities. The study is normally conducted in healthy volunteers, includes both a positive and a negative (placebo) control and is stringently powered to exclude an effect on the QTc interval exceeding 10 ms. The E14 guidance was intentionally not very prescriptive and allowed sponsors and service providers to explore new methodologies. This has allowed for a rapid development of new methods during the first years after the guidance's implementation, such as computer-assisted algorithms for QT measurements. Regulators have worked in close collaboration with pharmaceutical industry to set standards for the design and conduct of the 'thorough QT/QTc study', which therefore has evolved as a key component of cardiac safety assessment of new drugs. This paper summarizes the requirements on the 'thorough QT/QTc study' with emphasis on the standard that has evolved based on interactions between regulators and sponsors and the experience from a large number of completed studies.
Collapse
Affiliation(s)
- Borje Darpo
- Department of Clinical Science and Education, Section of Cardiology, Karolinska Institute, South Hospital, Stockholm, Sweden.
| |
Collapse
|
28
|
Cavero I. Exploratory Safety Pharmacology: a new safety paradigm to de-risk drug candidates prior to selection for regulatory science investigations. Expert Opin Drug Saf 2009; 8:627-47. [DOI: 10.1517/14740330903362422] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Guth B, Bass A, Briscoe R, Chivers S, Markert M, Siegl P, Valentin JP. Comparison of electrocardiographic analysis for risk of QT interval prolongation using safety pharmacology and toxicological studies. J Pharmacol Toxicol Methods 2009; 60:107-16. [DOI: 10.1016/j.vascn.2009.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
|