1
|
Frye WJE, Huff LM, González Dalmasy JM, Salazar P, Carter RM, Gensler RT, Esposito D, Robey RW, Ambudkar SV, Gottesman MM. The multidrug resistance transporter P-glycoprotein confers resistance to ferroptosis inducers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:468-480. [PMID: 37840856 PMCID: PMC10571053 DOI: 10.20517/cdr.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023]
Abstract
Aim: Ferroptosis is a non-apoptotic form of cell death caused by lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. We thus sought to characterize the interactions of FINs with P-gp and ABCG2, which may provide information regarding oral bioavailability and brain penetration and predict drug-drug interactions. Methods: Cytotoxicity assays with ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2 were used to determine the ability of the transporters to confer resistance to FINs; confirmatory studies were performed in OVCAR8 and NCI/ADR-RES cells. The ability of FINs to inhibit P-gp or ABCG2 was determined using the fluorescent substrates rhodamine 123 or purpuin-18, respectively. Results: P-gp overexpression conferred resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1. The FINs ML-162, GPX inhibitor 26a, and PACMA31 at 10 µM were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells. GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Conclusion: Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions.
Collapse
Affiliation(s)
- William J. E. Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Lyn M. Huff
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - José M. González Dalmasy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paula Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel M. Carter
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan T. Gensler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21704, USA
| | - Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Frye WJE, Huff LM, Dalmasy JMG, Salazar P, Carter RM, Gensler RT, Esposito D, Robey RW, Ambudkar SV, Gottesman MM. The Multidrug Resistance Transporter P-glycoprotein Confers Resistance to Ferroptosis Inducers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529736. [PMID: 36945397 PMCID: PMC10028811 DOI: 10.1101/2023.02.23.529736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Ferroptosis is a form of cell death caused by direct or indirect inhibition of glutathione peroxidase 4 that leads to lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding resistance mechanisms, particularly their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. Given the role that ABC transporters play in absorption, distribution, and excretion of many drugs, characterizing these interactions could provide information regarding oral bioavailability and brain penetration and may predict drug-drug interactions. Using ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2, we found that P-gp overexpression was able to confer resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. Results were confirmed with OVCAR8-derived NCI/ADR-RES cells that overexpress P-gp, where the P-gp inhibitor valspodar completely inhibited resistance to the FINs. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1. At a concentration of 10 μM, the FINs ML-162, GPX inhibitor 26a, and PACMA31 were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells and GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions.
Collapse
Affiliation(s)
- William J E Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lyn M Huff
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - José M González Dalmasy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paula Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rachel M Carter
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ryan T Gensler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Kim O, Butler M, Sergi Z, Robey RW, Zhang M, Chari R, Pang Y, Yu G, Zhang W, Song H, Davis D, Hawley RG, Wen X, Wang H, Quezado M, Tran B, Merchant M, Ranjan A, Furnari FB, Khan J, Gilbert MR, Ryan Miller C, Gottesman MM, Pommier Y, Wu J. Combined inhibition of topoisomerase I and poly(ADP-ribose) polymerase: A synergistic therapeutic strategy for glioblastoma with phosphatase and tensin homolog deficiency. Neurooncol Adv 2023; 5:vdad102. [PMID: 37706203 PMCID: PMC10496946 DOI: 10.1093/noajnl/vdad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Background Deletions or loss-of-function mutations in phosphatase and tensin homolog (PTEN) are common in glioblastoma (GBM) and have been associated with defective DNA damage repair. Here we investigated whether PTEN deficiency presents a vulnerability to a simultaneous induction of DNA damage and suppression of repair mechanisms by combining topoisomerase I (TOP1) and PARP inhibitors. Methods Patient-derived GBM cells and isogenic PTEN-null and PTEN-WT glioma cells were treated with LMP400 (Indotecan), a novel non-camptothecin TOP1 inhibitor alone and in combination with a PARP inhibitor, Olaparib or Niraparib. RNAseq analysis was performed to identify treatment-induced dysregulated pathways. Results We found that GBM cells lacking PTEN expression are highly sensitive to LMP400; however, rescue of the PTEN expression reduces sensitivity to the treatment. Combining LMP400 with Niraparib leads to synergistic cytotoxicity by inducing G2/M arrest, DNA damage, suppression of homologous recombination-related proteins, and activation of caspase 3/7 activity significantly more in PTEN-null cells compared to PTEN-WT cells. LMP400 and Niraparib are not affected by ABCB1 and ABCG2, the major ATP-Binding Cassette (ABC) drug efflux transporters expressed at the blood-brain barrier (BBB), thus suggesting BBB penetration which is a prerequisite for potential brain tumor treatment. Animal studies confirmed both an anti-glioma effect and sufficient BBB penetration to prolong survival of mice treated with the drug combination. Conclusions Our findings provide a proof of concept for the combined treatment with LMP400 and Niraparib in a subset of GBM patients with PTEN deficiency.
Collapse
Affiliation(s)
- Olga Kim
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Madison Butler
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Zach Sergi
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Raj Chari
- Genome Modification Core laboratory, Leidos Biomedical Inc/ Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ying Pang
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Guangyang Yu
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Dionne Davis
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Robert G Hawley
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Xinyu Wen
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | | | - Bao Tran
- Sequencing Facility, Leidos Biomedical Inc/ Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mythili Merchant
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Alice Ranjan
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Frank B Furnari
- University of California at San Diego, School of Medicine, La Jolla, California, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | | | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Yves Pommier
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Murugaiyaa Pandiyan S, Shanmugaraj P, Manoharan JP, Vidyalakshmi S. A network pharmacological approach to reveal the multidrug resistance reversal and associated mechanisms of acetogenins against colorectal cancer. J Biomol Struct Dyn 2022; 40:13527-13546. [PMID: 34669561 DOI: 10.1080/07391102.2021.1990130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multidrug Resistance (MDR) in tumors is caused by the over-expression of ATP Binding Cassette transporter proteins such as Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein 1. This in silico study focuses on identifying a MDR inhibitor among acetogenins (AGEs) of Annona muricata and also aims at predicting colorectal cancer (CRC) core targets of AGEs through a network pharmacological approach. Twenty-four AGEs were initially screened for their ADME properties. Molecular interaction studies were performed with the two proteins MRP1 and BCRP1. As the structure of MRP1 was not available, an inward-facing conformation of MRP1 was modeled. A Protein-protein interaction network was constructed for the correlating targets of CRC. KEGG pathway and Gene Ontology analysis were performed for the predicted CRC targets. We identified four lead AGEs: Muricatocin B, Annonacinone, Annonacin A and Annomuricin E having a higher binding affinity towards MDR proteins. MD simulation studies performed with the three lead AGEs and the MDR proteins showed that MRP1(DBD): Annomuricin E complex was stable throughout the simulation. Our analysis revealed ABCG2, ERBB2, STAT3, AR, SRC and ABCC1 as CRC targets of the lead molecules. The top 10 signaling pathways and functions of correlative CRC targets were also predicted. We conclude that the identified lead molecules might act as competitive inhibitors for reversing MDR in CRC. Additionally, network pharmacological studies established the correlative CRC targets and their mechanisms of action. Further experimental studies are needed to validate our findings. Communicated by Ramaswamy H. Sarma.
Collapse
|
5
|
Cross-resistance of cisplatin selected cells to anti-microtubule agents: Role of general survival mechanisms. Transl Oncol 2020; 14:100917. [PMID: 33129114 PMCID: PMC7586247 DOI: 10.1016/j.tranon.2020.100917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Although the first line of therapy for epithelial ovarian cancer typically consists of taxane-platinum combination therapy, many patients develop a platinum-resistant tumor within a year. Several previous studies have looked at this cross-resistance between cisplatin and anti-microtubule drugs, but their findings have been somewhat conflicting. Here, we developed cisplatin-resistant cell lines that are resistant to low and high levels of cisplatin and explored the effects of three anti-microtubule drugs (paclitaxel, vincristine, and colchicine) on the parental and cisplatin-resistant cells. We found that cells resistant to lower levels of cisplatin were no more resistant to anti-microtubule drugs than parental cells, while cells that were resistant to higher levels of cisplatin had a subpopulation of cells that were cross-resistant to anti-microtubule drugs, clarifying discrepancies within the field. We then isolated this subpopulation by applying selective pressure with anti-microtubule drugs and performed RNA sequencing and gene set enrichment analysis to identify resistance mechanisms. This subpopulation was found to express increased levels of pro-survival TNF/NFκB signaling, among other enriched pathways, suggesting that cross-resistance was due to more general survival mechanisms found in the cisplatin-selected cells.
Collapse
|
6
|
Azharuddin M, Roberg K, Dhara AK, Jain MV, Darcy P, Hinkula J, Slater NKH, Patra HK. Dissecting multi drug resistance in head and neck cancer cells using multicellular tumor spheroids. Sci Rep 2019; 9:20066. [PMID: 31882620 PMCID: PMC6934860 DOI: 10.1038/s41598-019-56273-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
One of the hallmarks of cancers is their ability to develop resistance against therapeutic agents. Therefore, developing effective in vitro strategies to identify drug resistance remains of paramount importance for successful treatment. One of the ways cancer cells achieve drug resistance is through the expression of efflux pumps that actively pump drugs out of the cells. To date, several studies have investigated the potential of using 3-dimensional (3D) multicellular tumor spheroids (MCSs) to assess drug resistance; however, a unified system that uses MCSs to differentiate between multi drug resistance (MDR) and non-MDR cells does not yet exist. In the present report we describe MCSs obtained from post-diagnosed, pre-treated patient-derived (PTPD) cell lines from head and neck squamous cancer cells (HNSCC) that often develop resistance to therapy. We employed an integrated approach combining response to clinical drugs and screening cytotoxicity, monitoring real-time drug uptake, and assessing transporter activity using flow cytometry in the presence and absence of their respective specific inhibitors. The report shows a comparative response to MDR, drug efflux capability and reactive oxygen species (ROS) activity to assess the resistance profile of PTPD MCSs and two-dimensional (2D) monolayer cultures of the same set of cell lines. We show that MCSs provide a robust and reliable in vitro model to evaluate clinical relevance. Our proposed strategy can also be clinically applicable for profiling drug resistance in cancers with unknown resistance profiles, which consequently can indicate benefit from downstream therapy.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Karin Roberg
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden.
- Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Östergötland, Sweden.
| | - Ashis Kumar Dhara
- Department of Electrical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Mayur Vilas Jain
- Division of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Padraig Darcy
- Department of Medical and Health Sciences (IMH), Division of Drug Research (LÄFO), Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hirak K Patra
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Lee TD, Lee OW, Brimacombe KR, Chen L, Guha R, Lusvarghi S, Tebase BG, Klumpp-Thomas C, Robey RW, Ambudkar SV, Shen M, Gottesman MM, Hall MD. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Mol Pharmacol 2019; 96:629-640. [PMID: 31515284 DOI: 10.1124/mol.119.115964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs. Although US Food and Drug Administration guidelines require that potential interactions of investigational drugs with P-gp be explored, often this information does not enter the literature. In response, we developed a high-throughput screen to identify substrates of P-gp from a series of chemical libraries, testing a total of 10,804 compounds, most of which have known mechanisms of action. We used the CellTiter-Glo viability assay to test library compounds against parental KB-3-1 human cervical adenocarcinoma cells and the colchicine-selected subline KB-8-5-11 that overexpresses P-gp. KB-8-5-11 cells were also tested in the presence of a P-gp inhibitor (tariquidar) to assess reversibility of transporter-mediated resistance. Of the tested compounds, a total of 90 P-gp substrates were identified, including 55 newly identified compounds. Substrates were confirmed using an orthogonal killing assay against human embryonic kidney-293 cells overexpressing P-gp. We confirmed that AT7159 (cyclin-dependent kinase inhibitor), AT9283, (Janus kinase 2/3 inhibitor), ispinesib (kinesin spindle protein inhibitor), gedatolisib (PKI-587, phosphoinositide 3-kinase/mammalian target of rampamycin inhibitor), GSK-690693 (AKT inhibitor), and KW-2478 (heat-shock protein 90 inhibitor) were substrates. In addition, we assessed direct ATPase stimulation. ABCG2 was also found to confer high levels of resistance to AT9283, GSK-690693, and gedatolisib, whereas ispinesib, AT7519, and KW-2478 were weaker substrates. Combinations of P-gp substrates and inhibitors were assessed to demonstrate on-target synergistic cell killing. These data identified compounds whose oral bioavailability or brain penetration may be affected by P-gp. SIGNIFICANCE STATEMENT: The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to be expressed at barrier sites, where it acts to limit oral bioavailability and brain penetration of substrates. In order to identify novel compounds that are transported by P-gp, we developed a high-throughput screen using the KB-3-1 cancer cell line and its colchicine-selected subline KB-8-5-11. We screened the Mechanism Interrogation Plate (MIPE) library, the National Center for Advancing Translational Science (NCATS) pharmaceutical collection (NPC), the NCATS Pharmacologically Active Chemical Toolbox (NPACT), and a kinase inhibitor library comprising 977 compounds, for a total of 10,804 compounds. Of the 10,804 compounds screened, a total of 90 substrates were identified of which 55 were novel. P-gp expression may adversely affect the oral bioavailability or brain penetration of these compounds.
Collapse
Affiliation(s)
- Tobie D Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Olivia W Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Sabrina Lusvarghi
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Bethilehem G Tebase
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Robert W Robey
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Suresh V Ambudkar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Michael M Gottesman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (T.D.L., O.W.L., K.R.B., L.C., R.G., C.K.-T., M.S., M.D.H.) and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (S.L., B.G.T., R.W.R., S.V.A., M.M.G.)
| |
Collapse
|
8
|
Ku TSN, Bernardo S, Walraven CJ, Lee SA. Candidiasis and the impact of flow cytometry on antifungal drug discovery. Expert Opin Drug Discov 2017; 12:1127-1137. [PMID: 28876963 DOI: 10.1080/17460441.2017.1377179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.
Collapse
Affiliation(s)
- Tsun Sheng N Ku
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| | - Stella Bernardo
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| | - Carla J Walraven
- c Department of Pharmaceutical Services , University of New Mexico Hospital , Albuquerque , NM , USA
| | - Samuel A Lee
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| |
Collapse
|
9
|
Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:molecules22040600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
|
10
|
Bioluminescent imaging of ABCG2 efflux activity at the blood-placenta barrier. Sci Rep 2016; 6:20418. [PMID: 26853103 PMCID: PMC4745077 DOI: 10.1038/srep20418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022] Open
Abstract
Physiologic barriers such as the blood placenta barrier (BPB) and the blood brain barrier protect the underlying parenchyma from pathogens and toxins. ATP-binding cassette (ABC) transporters are transmembrane proteins found at these barriers, and function to efflux xenobiotics and maintain chemical homeostasis. Despite the plethora of ex vivo and in vitro data showing the function and expression of ABC transporters, no imaging modality exists to study ABC transporter activity in vivo at the BPB. In the present study, we show that in vitro models of the placenta possess ABCG2 activity and can specifically transport D-luciferin, the endogenous substrate of firefly luciferase. To test ABCG2 transport activity at the BPB, we devised a breeding strategy to generate a bioluminescent pregnant mouse model to demonstrate transporter function in vivo. We found that coadministering the ABCG2 inhibitors Ko143 and gefitinib with D-luciferin increased bioluminescent signal from fetuses and placentae, whereas the control P-gp inhibitor DCPQ had no effect. We believe that our bioluminescent pregnant mouse model will facilitate greater understanding of the BPB and ABCG2 activity in health and disease.
Collapse
|
11
|
Kakarla P, Inupakutika M, Devireddy AR, Gunda SK, Willmon TM, Ranjana KC, Shrestha U, Ranaweera I, Hernandez AJ, Barr S, Varela MF. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS. INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH 2016; 7:554-572. [PMID: 26913287 PMCID: PMC4762489 DOI: 10.13040/ijpsr.0975-8232.7(2).554-72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2 (non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D-contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates.
Collapse
Affiliation(s)
- Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Madhuri Inupakutika
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Amith R. Devireddy
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Shravan Kumar Gunda
- Bioinformatics Division, Osmania University, Hyderabad-500007, Andhra Pradesh, India
| | - Thomas Mark Willmon
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - KC Ranjana
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Alberto J. Hernandez
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Sharla Barr
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| |
Collapse
|
12
|
Foran E, Kwon DY, Nofziger JH, Arnold ES, Hall MD, Fischbeck KH, Burnett BG. CNS uptake of bortezomib is enhanced by P-glycoprotein inhibition: implications for spinal muscular atrophy. Neurobiol Dis 2016; 88:118-24. [PMID: 26792401 DOI: 10.1016/j.nbd.2016.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 12/12/2022] Open
Abstract
The development of therapeutics for neurological disorders is constrained by limited access to the central nervous system (CNS). ATP-binding cassette (ABC) transporters, particularly P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed on the luminal surface of capillaries in the CNS and transport drugs out of the endothelium back into the blood against the concentration gradient. Survival motor neuron (SMN) protein, which is deficient in spinal muscular atrophy (SMA), is a target of the ubiquitin proteasome system. Inhibiting the proteasome in a rodent model of SMA with bortezomib increases SMN protein levels in peripheral tissues but not the CNS, because bortezomib has poor CNS penetrance. We sought to determine if we could inhibit SMN degradation in the CNS of SMA mice with a combination of bortezomib and the ABC transporter inhibitor tariquidar. In cultured cells we show that bortezomib is a substrate of P-gp. Mass spectrometry analysis demonstrated that intraperitoneal co-administration of tariquidar increased the CNS penetrance of bortezomib, and reduced proteasome activity in the brain and spinal cord. This correlated with increased SMN protein levels and improved survival and motor function of SMA mice. These findings show that CNS penetrance of treatment for this neurological disorder can be improved by inhibiting drug efflux at the blood-brain barrier.
Collapse
Affiliation(s)
- Emily Foran
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States.
| | - Deborah Y Kwon
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States; Department of Neuroscience, Brown University, United States
| | - Jonathan H Nofziger
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Eveline S Arnold
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Matthew D Hall
- CE Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, United States
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Barrington G Burnett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Services, United States
| |
Collapse
|
13
|
Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov 2015; 11:91-103. [DOI: 10.1517/17460441.2016.1101064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Donna A. Volpe
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
14
|
Weidner LD, Zoghbi SS, Lu S, Shukla S, Ambudkar SV, Pike VW, Mulder J, Gottesman MM, Innis RB, Hall MD. The Inhibitor Ko143 Is Not Specific for ABCG2. J Pharmacol Exp Ther 2015; 354:384-93. [PMID: 26148857 DOI: 10.1124/jpet.115.225482] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Lora D Weidner
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Suneet Shukla
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Suresh V Ambudkar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Jan Mulder
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Michael M Gottesman
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Matthew D Hall
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| |
Collapse
|
15
|
Lohren H, Bornhorst J, Galla HJ, Schwerdtle T. The blood–cerebrospinal fluid barrier – first evidence for an active transport of organic mercury compounds out of the brain. Metallomics 2015; 7:1420-30. [DOI: 10.1039/c5mt00171d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hg strongly transfers across the blood–CSF barrier towards the blood side after incubation with organic Hg compounds.
Collapse
Affiliation(s)
- Hanna Lohren
- Department of Food Chemistry
- Institute of Nutritional Science
- University of Potsdam
- 14558 Nuthetal, Germany
| | - Julia Bornhorst
- Department of Food Chemistry
- Institute of Nutritional Science
- University of Potsdam
- 14558 Nuthetal, Germany
| | | | - Tanja Schwerdtle
- Department of Food Chemistry
- Institute of Nutritional Science
- University of Potsdam
- 14558 Nuthetal, Germany
| |
Collapse
|
16
|
Xiao J, Wang Q, Bircsak KM, Wen X, Aleksunes LM. In Vitro Screening of Environmental Chemicals Identifies Zearalenone as a Novel Substrate of the Placental BCRP/ ABCG2 Transporter. Toxicol Res (Camb) 2015; 4:695-706. [PMID: 26052432 DOI: 10.1039/c4tx00147h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The BCRP (ABCG2) transporter is responsible for the efflux of chemicals from the placenta to the maternal circulation. Inhibition of BCRP activity could enhance exposure of offspring to environmental chemicals leading to altered reproductive, endocrine, and metabolic development. The purpose of this study was to characterize environmental chemicals as potential substrates and inhibitors of the human placental BCRP transporter. The interaction of BCRP with a panel of environmental chemicals was assessed using the ATPase and inverted plasma membrane vesicle assays as well as a cell-based fluorescent substrate competition assay. Human HEK cells transfected with wild-type BCRP or the Q141K genetic variant, as well as BeWo placental cells that endogenously express BCRP were used to further test inhibitor and substrate interactions. To varying degrees, the eleven chemicals inhibited BCRP activity in activated ATPase membranes and inverted membrane vesicles. Further, genistein, zearalenone, and tributyltin increased the retention of the fluorescent BCRP substrate, Hoechst 33342, between 50-100% in BeWo cells. Additional experiments characterized the mycotoxin and environmental estrogen, zearalenone, as a novel substrate and inhibitor of BCRP in WT-BCRP and BeWo cells. Interestingly, the BCRP genetic variant Q141K exhibited reduced efflux of zearalenone compared to the wild-type protein. Taken together, screening assays and direct quantification experiments identified zearalenone as a novel human BCRP substrate. Additional in vivo studies are needed to directly determine whether placental BCRP prevents fetal exposure to zearalenone.
Collapse
Affiliation(s)
- Jingcheng Xiao
- China Pharmaceutical University, Gulou, Nanjing, Jiangsu, China
| | - Qi Wang
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Kristin M Bircsak
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, NJ, USA ; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
17
|
Tonigold M, Rossmann A, Meinold M, Bette M, Märken M, Henkenius K, Bretz AC, Giel G, Cai C, Rodepeter FR, Beneš V, Grénman R, Carey TE, Lage H, Stiewe T, Neubauer A, Werner JA, Brendel C, Mandic R. A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53(mut) exhibits ATP-binding cassette transporter upregulation and high glutathione levels. J Cancer Res Clin Oncol 2014; 140:1689-704. [PMID: 24913304 DOI: 10.1007/s00432-014-1727-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 01/29/2023]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) cell lines with cytoplasmically sequestered mutant p53 (p53(mut_c)) are frequently more resistant to cisplatin (CDDP) than cells with mutant but nuclear p53 (p53(mut_n)). The aim of the study was to identify underlying mechanisms implicated in CDDP resistance of HNSCC cells carrying cytoplasmic p53(mut). METHODS Microarray analysis, quantitative reverse transcription polymerase chain reaction, Western blot analysis and immunocytochemistry were used to identify and evaluate candidate genes involved in CDDP resistance of p53(mut_c) cells. RNAi knockdown or treatment with inhibitors together with flow cytometry-based methods was used for functional assessment of the identified candidate genes. Cellular metabolic activity was assessed with the XTT assay, and the redox capacity of cells was evaluated by measuring cellular glutathione (GSH) levels. RESULTS Upregulation of ABCC2 and ABCG2 transporters was observed in CDDP-resistant p53(mut_c) HNSCC cells. Furthermore, p53(mut_c) cells exhibited a pronounced side population that could be suppressed by RNAi knockdown of ABCG2 as well as treatment with the ATP-binding-cassette transporter inhibitors imatinib, MK571 and tariquidar. Metabolic activity and cellular GSH levels were higher in CDDP-resistant p53(mut_c) cells, consistent with a higher capacity to fend off cytotoxic oxidative effects such as those caused by CDDP treatment. Finally, ABCC2/G2 inhibition of HNSCC cells with MK571 markedly enhanced CDDP sensitivity of HNSCC cells. CONCLUSIONS The observations in this study point to a major role of p53(mut_c) in conferring a stem cell like phenotype to HNSCC cells that is associated with ABCC2/G2 overexpression, high GSH and metabolic activity levels as well as CDDP resistance.
Collapse
Affiliation(s)
- Manuel Tonigold
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chan LLY, Huang J, Hagiwara Y, Aguila L, Rowe D. Discriminating multiplexed GFP reporters in primary articular chondrocyte cultures using image cytometry. J Fluoresc 2014; 24:1041-53. [PMID: 24728974 DOI: 10.1007/s10895-014-1383-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/20/2014] [Indexed: 11/25/2022]
Abstract
Flow cytometry has become a standard tool for defining a heterogeneous cell population based on surface expressed epitopes or GFP reporters that reflect cell types or cellular differentiation. The introduction of image cytometry raised the possibility of adaptation to discriminate GFP reporters used to appreciate cell heterogeneity within the skeletal lineages. The optical filters and LEDs were optimized for the reporters used in transgenic mice expressing various fluorescent proteins. In addition, the need for compensation between eGFP and surrounding reporters due to optical cross-talk was eliminated by selecting the appropriate excitation and emission filters. Bone marrow or articular cartilage cell cultures from GFP and RFP reporter mouse lines were established to demonstrate the equivalency in functionalities of image to flow cytometry analysis. To examine the ability for monitoring primary cell differentiation, articular chondrocyte cell cultures were established from mice that were single or doubly transgenic (Dkk3eGFP and Col2A1GFPcyan), which identify the progression of superficial small articular cell to a mature chondrocyte. The instrument was able to rapidly and accurately discriminate cells that were Dkk3eGFP only, Dkk3eGFP/Col2A1GFPcyan, and Col2A1GFP, which provides a useful tool for studying the impact of culture conditions on lineage expansion and differentiation.
Collapse
Affiliation(s)
- Leo Li-Ying Chan
- Department of Technology R&D, Nexcelom Bioscience LLC, 360 Merrimack St. Building 9, Lawrence, MA, 01843, USA,
| | | | | | | | | |
Collapse
|
19
|
Achilli TM, McCalla S, Meyer J, Tripathi A, Morgan JR. Multilayer spheroids to quantify drug uptake and diffusion in 3D. Mol Pharm 2014; 11:2071-81. [PMID: 24641346 PMCID: PMC4096226 DOI: 10.1021/mp500002y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
There
is a need for new quantitative in vitro models of
drug uptake and diffusion to help assess drug toxicity/efficacy as
well as new more predictive models for drug discovery. We report a
three-dimensional (3D) multilayer spheroid model and a new algorithm
to quantitatively study uptake and inward diffusion of fluorescent
calcein via gap junction intercellular communication (GJIC). When
incubated with calcein-AM, a substrate of the efflux transporter P-glycoprotein
(Pgp), spheroids from a variety of cell types accumulated calcein
over time. Accumulation decreased in spheroids overexpressing Pgp
(HEK-MDR) and was increased in the presence of Pgp inhibitors (verapamil,
loperamide, cyclosporin A). Inward diffusion of calcein was negligible
in spheroids that lacked GJIC (OVCAR-3, SK-OV-3) and was reduced in
the presence of an inhibitor of GJIC (carbenoxolone). In addition
to inhibiting Pgp, verapamil and loperamide, but not cyclosporin A,
inhibited inward diffusion of calcein, suggesting that they also inhibit
GJIC. The dose response curves of verapamil’s inhibition of
Pgp and GJIC were similar (IC50: 8 μM). The method
is amenable to many different cell types and may serve as a quantitative
3D model that more accurately replicates in vivo barriers
to drug uptake and diffusion.
Collapse
Affiliation(s)
- Toni-Marie Achilli
- Department of Molecular Pharmacology, Physiology and Biotechnology, ‡Center for Biomedical Engineering, and §School of Engineering, Brown University , Providence, Rhode Island 02912, United States
| | | | | | | | | |
Collapse
|
20
|
Abstract
Multidrug resistance presents one of the most important causes of cancer treatment failure. Numerous in vitro and in vivo data have made it clear that multidrug resistance is frequently caused by enhanced expression of ATP-binding cassette (ABC) transporters. ABC transporters are membrane-bound proteins involved in cellular defense mechanisms, namely, in outward transport of xenobiotics and physiological substrates. Their function thus prevents toxicity as carcinogenesis on one hand but may contribute to the resistance of tumor cells to a number of drugs including chemotherapeutics on the other. Within 48 members of the human ABC superfamily there are several multidrug resistance-associated transporters. Due to the well documented susceptibility of numerous drugs to efflux via ABC transporters it is highly desirable to assess the status of ABC transporters for individualization of treatment by their substrates. The multidrug resistance associated protein 1 (MRP1) encoded by ABCC1 gene is one of the most studied ABC transporters. Despite the fact that its structure and functions have already been explored in detail, there are significant gaps in knowledge which preclude clinical applications. Tissue-specific patterns of expression and broad genetic variability make ABCC1/MRP1 an optimal candidate for use as a marker or member of multi-marker panel for prediction of chemotherapy resistance. The purpose of this review was to summarize investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers. Major advances in the knowledge have been identified and future research directions are highlighted.
Collapse
Affiliation(s)
- Tereza Kunická
- Department of Toxicogenomics, National Institute of Public Health , Prague , Czech Republic
| | | |
Collapse
|
21
|
Bircsak KM, Gibson CJ, Robey RW, Aleksunes LM. Assessment of drug transporter function using fluorescent cell imaging. ACTA ACUST UNITED AC 2013; 57:Unit 23.6.. [PMID: 24510579 DOI: 10.1002/0471140856.tx2306s57] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ATP-binding cassette (ABC) proteins, including the breast cancer resistance protein (BCRP) and multidrug resistance proteins (MDRs), actively transport structurally diverse chemicals from a number of tissues and are being increasingly cited as mediators of clinically relevant drug-drug interactions. The potential outcomes of concomitantly administering two drugs that interact at the same transporter include altered disposition and toxicity and/or efficacy of one or both of the drugs. Research demonstrating the role of transporters in clinical pharmacokinetics has shed light on the need for in vitro screening methods that detect drug-transporter interactions during preclinical development. This unit describes cell-based procedures for detecting functional inhibitors of BCRP and MDR1 by measuring fluorescent substrate accumulation in suspended cells using an automated cell counter, which offers convenience, sensitivity, and speed in measuring intracellular fluorescence and identifying new inhibitors. An alternative method is provided for making similar measurements using a spectrophotometer with fluorescence detection capabilities.
Collapse
Affiliation(s)
- Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | | | | | | |
Collapse
|
22
|
Tiwari AK, Zhang R, Gallo JM. Overlapping functions of ABC transporters in topotecan disposition as determined in gene knockout mouse models. Mol Cancer Ther 2013; 12:1343-55. [PMID: 23635651 DOI: 10.1158/1535-7163.mct-13-0100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is established that efflux transporters of the ATP-binding cassette (ABC) superfamily can affect the pharmacokinetics of drugs through mechanisms pertaining to drug absorption, elimination, and distribution. To characterize the role of multiple transporters in topotecan's pharmacokinetics, total (lactone+carboxylate) and lactone forms were measured by liquid chromatography/tandem mass spectrometry (LC/MS-MS) in plasma, bile, urine, and feces following intravenous administration at doses of 1 and 4 mg/kg to eight mouse strains: C57BL/6 [wild-type (WT)], Abcb1(-/-), Abcc2(-/-), Abcc4(-/-), Abcg2(-/-), Abcc2;Abcb1(-/-), Abcc2;Abcg2(-/-), and Abcc4;Abcg2(-/-). Compared with WT mice and at both dose levels, the plasma areas under the curve for topotecan lactone were not significantly different in the Abcc2(-/-), Abcc4(-/-), and Abcb1(-/-) strains, whereas significant differences were found in Abcg2(-/-), Abcc2;Abcb1(-/-) (only at the high dose), Abcc4;Abcg2(-/-), and Abcc2;Abcg2(-/-) mice and ranged from 2.1- to 3.3-fold higher. Consistent with these changes, the fecal and biliary excretion of topotecan was reduced, whereas renal elimination was elevated in Abcg2(-/-)-based strains. Similarly, the Abcc2;Abcb1(-/-) strain also had elevated renal elimination and reduced fecal excretion of topotecan lactone. This was more pronounced at the 4 mg/kg dose level, suggesting possible saturation of Abcg2. The Abcc4 transporter was found not to be a major determinant of topotecan pharmacokinetics. It is concluded that Abcg2 has the most significant effect on topotecan elimination, whereas both Abcb1 and Abcc2 have overlapping functions with Abcg2. As such it is relevant to examine how polymorphisms in these transporters influence topotecan activity in patients and whether coadministration of transport modulators could positively affect efficacy without increasing toxicity.
Collapse
Affiliation(s)
- Amit K Tiwari
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
23
|
Berkes CA, Chan LLY, Wilkinson A, Paradis B. Rapid quantification of pathogenic fungi by Cellometer image-based cytometry. J Microbiol Methods 2012; 91:468-76. [PMID: 22985717 DOI: 10.1016/j.mimet.2012.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/08/2012] [Accepted: 09/09/2012] [Indexed: 11/19/2022]
Abstract
The objective of this study was to develop an image-based cytometric methodology for the quantification of viable pathogenic yeasts, which can offer increased sensitivity and efficiency when compared to the traditional colony forming unit (CFU) assay. Live/dead yeast quantification by flow cytometry has been previously demonstrated, however, adoption of flow cytometric detection of pathogenic yeasts has been limited for a number of practical reasons including its high cost and biosafety considerations. Our studies focus on detection of two human fungal pathogens: Histoplasma capsulatum and Candida albicans. H. capsulatum colonizes alveolar macrophages by replicating within the macrophage phagosome. Here, we quantitatively assess the growth of H. capsulatum yeasts within RAW 264.7 macrophages using acridine orange/propidium iodide staining in combination with Cellometer image-based cytometry; this method faithfully recapitulates growth trends as measured by traditional CFU enumeration, but with significantly increased sensitivity. Additionally, we directly assess infection of bone marrow-derived macrophages with a GFP-expressing strain of C. albicans. To demonstrate that image-based cytometry can be used as a tool to assess the susceptibility of fungi to antifungal drugs, we perform dose response experiments with the antifungal drugs amphotericin B and itraconazole and show that image-based cytometry allows rapid assessment of the kinetics of cytotoxicity induced by these antifungals. Our methodology offers a rapid, accurate, and economical means for detection and quantification of important human fungal pathogens, either alone or in association with host cells.
Collapse
|
24
|
Chan LLY, Shen D, Wilkinson AR, Patton W, Lai N, Chan E, Kuksin D, Lin B, Qiu J. A novel image-based cytometry method for autophagy detection in living cells. Autophagy 2012; 8:1371-82. [PMID: 22895056 PMCID: PMC3442883 DOI: 10.4161/auto.21028] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an important cellular catabolic process that plays a variety of important roles, including maintenance of the amino acid pool during starvation, recycling of damaged proteins and organelles, and clearance of intracellular microbes. Currently employed autophagy detection methods include fluorescence microscopy, biochemical measurement, SDS-PAGE and western blotting, but they are time consuming, labor intensive, and require much experience for accurate interpretation. More recently, development of novel fluorescent probes have allowed the investigation of autophagy via standard flow cytometry. However, flow cytometers remain relatively expensive and require a considerable amount of maintenance. Previously, image-based cytometry has been shown to perform automated fluorescence-based cellular analysis comparable to flow cytometry. In this study, we developed a novel method using the Cellometer image-based cytometer in combination with Cyto-ID(®) Green dye for autophagy detection in live cells. The method is compared with flow cytometry by measuring macroautophagy in nutrient-starved Jurkat cells. Results demonstrate similar trends of autophagic response, but different magnitude of fluorescence signal increases, which may arise from different analysis approaches characteristic of the two instrument platforms. The possibility of using this method for drug discovery applications is also demonstrated through the measurement of dose-response kinetics upon induction of autophagy with rapamycin and tamoxifen. The described image-based cytometry/fluorescent dye method should serve as a useful addition to the current arsenal of techniques available in support of autophagy-based drug discovery relating to various pathological disorders.
Collapse
Affiliation(s)
- Leo Li-Ying Chan
- Department of Technology R&D, Nexcelom Bioscience, LLC, Lawrence, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gibson CJ, Hossain MM, Richardson JR, Aleksunes LM. Inflammatory regulation of ATP binding cassette efflux transporter expression and function in microglia. J Pharmacol Exp Ther 2012; 343:650-60. [PMID: 22942241 DOI: 10.1124/jpet.112.196543] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ATP-binding cassette (ABC) efflux transporters, including multidrug resistance protein 1 (Mdr1), breast cancer resistance protein (Bcrp), and multidrug resistance-associated proteins (Mrps) extrude chemicals from the brain. Although ABC transporters are critical for blood-brain barrier integrity, less attention has been placed on the regulation of these proteins in brain parenchymal cells such as microglia. Prior studies demonstrate that inflammation after lipopolysaccharide (LPS) treatment alters transporter expression in the livers of mice. Here, we sought to determine the effects of inflammation on the expression and function of transporters in microglia. To test this, the expression and function of ABC efflux transport proteins were quantified in mouse BV-2 microglial cells in response to activation with LPS. Intracellular retention of fluorescent rhodamine 123, Hoechst 33342, and calcein acetoxymethyl ester was increased in LPS-treated microglia, suggesting that the functions of Mdr1, Bcrp, and Mrps were decreased, respectively. LPS reduced Mdr1, Bcrp, and Mrp4 mRNA and protein expression between 40 and 70%. Conversely, LPS increased expression of Mrp1 and Mrp5 mRNA and protein. Immunofluorescent staining confirmed reduced Bcrp and Mrp4 and elevated Mrp1 and Mrp5 protein in activated microglia. Pharmacological inhibition of nuclear factor κB (NF-κB) transcriptional signaling attenuated down-regulation of Mdr1a mRNA and potentiated up-regulation of Mrp5 mRNA in LPS-treated cells. Together, these data suggest that LPS stimulates microglia and impairs efflux of prototypical ABC transporter substrates by altering mRNA and protein expression, in part through NF-κB signaling. Decreased transporter efflux function in microglia may lead to the retention of toxic chemicals and aberrant cell-cell communication during neuroinflammation.
Collapse
Affiliation(s)
- Christopher J Gibson
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
26
|
Xia CQ, Smith PG. Drug Efflux Transporters and Multidrug Resistance in Acute Leukemia: Therapeutic Impact and Novel Approaches to Mediation. Mol Pharmacol 2012; 82:1008-21. [DOI: 10.1124/mol.112.079129] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Caceres G, Robey RW, Sokol L, McGraw KL, Clark J, Lawrence NJ, Sebti SM, Wiese M, List AF. HG-829 is a potent noncompetitive inhibitor of the ATP-binding cassette multidrug resistance transporter ABCB1. Cancer Res 2012; 72:4204-13. [PMID: 22761337 DOI: 10.1158/0008-5472.can-12-0743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transmembrane drug export mediated by the ATP-binding cassette (ABC) transporter P-glycoprotein contributes to clinical resistance to antineoplastics. In this study, we identified the substituted quinoline HG-829 as a novel, noncompetitive, and potent P-glycoprotein inhibitor that overcomes in vitro and in vivo drug resistance. We found that nontoxic concentrations of HG-829 restored sensitivity to P-glycoprotein oncolytic substrates. In ABCB1-overexpressing cell lines, HG-829 significantly enhanced cytotoxicity to daunorubicin, paclitaxel, vinblastine, vincristine, and etoposide. Coadministration of HG-829 fully restored in vivo antitumor activity of daunorubicin in mice without added toxicity. Functional assays showed that HG-829 is not a Pgp substrate or competitive inhibitor of Pgp-mediated drug efflux but rather acts as a noncompetitive modulator of P-glycoprotein transport function. Taken together, our findings indicate that HG-829 is a potent, long-acting, and noncompetitive modulator of P-glycoprotein export function that may offer therapeutic promise for multidrug-resistant malignancies.
Collapse
Affiliation(s)
- Gisela Caceres
- Experimental Therapeutics, Moffitt Cancer Center, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chan LL, Wilkinson AR, Paradis BD, Lai N. Rapid image-based cytometry for comparison of fluorescent viability staining methods. J Fluoresc 2012; 22:1301-11. [PMID: 22718197 DOI: 10.1007/s10895-012-1072-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/29/2012] [Indexed: 11/24/2022]
Abstract
The ability to accurately measure cell viability is important for any cell-based research. Traditionally, viability measurements have been performed using trypan blue exclusion method on hemacytometer, which allowed researchers to visually distinguish viable from nonviable cells. However, the trypan blue method is often limited to only cell lines or primary cells that have been rigorously purified. In the recent years, small desktop image-based cell counters have been developed for rapid cell concentration and viability measurement due to advances in imaging and optics technologies as well as novel fluorescent stains. In this work, we employed the Cellometer image-based cytometer to demonstrate the ability to simplify viability detection compared to the current methods. We compared various fluorescence viability detection methods using single- or dual-staining technique. Single-staining method using nucleic acid stains including ethidium bromide, propidium iodide, 7AAD, DAPI, Sytox Green and Sytox Red, and enzymatic stains including CFDA and Calcein AM were performed. All stains produced comparable results to trypan blue exclusion method for cell line samples. Dual-staining method using AO/PI, CFDA/PI, Calcein AM/PI and Hoechst 33342/PI that enumerates viable and non-viable cells was tested on primary cell samples with high debris contents. This method allowed exclusion of cellular debris and non-nucleated cells from analysis, which can eliminate the need to perform purification step during sample preparation, and improves the efficiency of viability detection method. Overall, these image-based fluorescent cell counters can simplify assay procedures as well as capture images for visual confirmation.
Collapse
Affiliation(s)
- Leo L Chan
- Department of Technology R&D, Nexcelom Bioscience LLC, 360 Merrimack St. Building 9, Lawrence, MA 01843, USA,
| | | | | | | |
Collapse
|
29
|
Chan LL, Zhong X, Pirani A, Lin B. A novel method for kinetic measurements of rare cell proliferation using Cellometer image-based cytometry. J Immunol Methods 2012; 377:8-14. [PMID: 22265885 DOI: 10.1016/j.jim.2012.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022]
Abstract
Cell proliferation is an important assay for pharmaceutical and biomedical research to test the effects of a variety of treatments on cultured primary cells or cell lines. For immunological studies, the ability to perform rapid cell proliferation analysis allows the identification of potential biological reagents for inducing or inhibiting immune cell proliferation. Current cell proliferation analysis methods employ flow cytometry for fluorescence detection of CFSE-labeled cells. However, conventional flow cytometers require a considerable amount of cells per sample, which becomes an issue for kinetic measurements with rare cell population due to the lack of samples for flow cytometric analyses at multiple time points during proliferation period. Here we report the development of a novel cell proliferation kinetic detection method for low cell concentration samples using the new Cellometer Vision system. Since the Cellometer system requires only 20 μl of sample, cell proliferation can be measured at multiple time points over the entire culturing period, whereas typically, flow cytometry is only performed at the end of the proliferation period. To validate the detection method, B1 and B2 B cells were treated with a B cell mitogen for 6 days, and proliferation was measured using Cellometer on day 1, 3, 5, and 6. To demonstrate the capability of the system, B1 B cells were treated with a panel of TLR agonists (Pam3Cys, PolyIC, CLO97, and CpG) for 7 days, and proliferation was measured on day 2, 4, 6, and 7. Cellometer image-based cytometry (IBC) was able to obtain proliferation results on each day with the last time point comparable to flow cytometry. This novel method allows for kinetic measurements of the rare cell samples such as B1 B cell, which has the potential to revolutionize kinetic analysis of cell proliferation.
Collapse
Affiliation(s)
- Leo L Chan
- Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States.
| | | | | | | |
Collapse
|
30
|
Knaak JB, Dary CC, Zhang X, Gerlach RW, Tornero-Velez R, Chang DT, Goldsmith R, Blancato JN. Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 219:1-114. [PMID: 22610175 DOI: 10.1007/978-1-4614-3281-4_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this review we have examined the status of parameters required by pyrethroid QSAR-PBPK/PD models for assessing health risks. In lieu of the chemical,biological, biochemical, and toxicological information developed on the pyrethroids since 1968, the finding of suitable parameters for QSAR and PBPK/PD model development was a monumental task. The most useful information obtained came from rat toxicokinetic studies (i.e., absorption, distribution, and excretion), metabolism studies with 14C-cyclopropane- and alcohol-labeled pyrethroids, the use of known chiral isomers in the metabolism studies and their relation to commercial products. In this review we identify the individual chiralisomers that have been used in published studies and the chiral HPLC columns available for separating them. Chiral HPLC columns are necessary for isomer identification and for developing kinetic values (Vm,, and Kin) for pyrethroid hydroxylation. Early investigators synthesized analytical standards for key pyrethroid metabolites, and these were used to confirm the identity of urinary etabolites, by using TLC. These analytical standards no longer exist, and muste resynthesized if further studies on the kinetics of the metabolism of pyrethroids are to be undertaken.In an attempt to circumvent the availability of analytical standards, several CYP450 studies were carried out using the substrate depletion method. This approach does not provide information on the products formed downstream, and may be of limited use in developing human environmental exposure PBPK/PD models that require extensive urinary metabolite data. Hydrolytic standards (i.e., alcohols and acids) were available to investigators who studied the carboxylesterase-catalyzed hydrolysis of several pyrethroid insecticides. The data generated in these studies are suitable for use in developing human exposure PBPK/PD models.Tissue:blood partition coefficients were developed for the parent pyrethroids and their metabolites, by using a published mechanistic model introduced by Poulin and Thiele (2002a; b) and log DpH 7.4 values. The estimated coefficients, especially those of adipose tissue, were too high and had to be corrected by using a procedure in which the proportion of parent or metabolite residues that are unbound to plasma albumin is considered, as described in the GastroPlus model (Simulations Plus, Inc.,Lancaster, CA). The literature suggested that Km values be adjusted by multiplying Km by the substrate (decimal amount) that is unbound to microsomal or CYPprotein. Mirfazaelian et al. (2006) used flow- and diffusion-limited compartments in their deltamethrin model. The addition of permeability areas (PA) having diffusion limits, such as the fat and slowly perfused compartments, enabled the investigators to bring model predictions in line with in vivo data.There appears to be large differences in the manner and rate of absorption of the pyrethroids from the gastrointestinal tract, implying that GI advanced compartmental transit models (ACAT) need to be included in PBPK models. This is especially true of the absorption of an oral dose of tefluthrin in male rats, in which 3.0-6.9%,41.3-46.3%, and 5.2-15.5% of the dose is eliminated in urine, feces, and bile,respectively (0-48 h after administration). Several percutaneous studies with the pyrethroids strongly support the belief that these insecticides are not readily absorbed, but remain on the surface of the skin until they are washed off. In one articular study (Sidon et al. 1988) the high levels of permethrin absorption through the forehead skin (24-28%) of the monkey was reported over a 7- to 14-days period.Wester et al. (1994) reported an absorption of 1.9% of pyrethrin that had been applied to the forearm of human volunteers over a 7-days period.SAR models capable of predicting the binding of the pyrethroids to plasma and hepatic proteins were developed by Yamazaki and Kanaoka (2004), Saiakhov et al. (2000), Colmenarejo et al. (2001), and Colmenarejo (2003). QikProp(Schrodinger, LLC) was used to obtain Fu values for calculating partition coefficients and for calculating permeation constants (Caco-2, MDCK, and logBBB). ADMET Predictor (Simulations Plus Inc.) provided Vm~,x and Km values for the hydroxylation of drugs/pyrethroids by human liver recombinant cytochrome P450 enzymes making the values available for possible use in PBPK/PD models.The Caco-2 permeability constants and CYP3A4 Vmax and Km values are needed in PBPK/PD models with GI ACAT sub models. Modeling work by Chang et al.(2009) produced rate constants (kcat) for the hydrolysis of pyrethroids by rat serumcarboxylesterases. The skin permeation model of Potts and Guy (1992) was used topredict K, values for the dermal absorption of the 15 pyrethroids.The electrophysiological studies by Narahashi (1971) and others (Breckenridgeet al. 2009; Shafer et al. 2005; Soderlund et al. 2002; Wolansky and Harrill 2008)demonstrated that the mode of action of pyrethroids on nerves is to interfere with the changes in sodium and potassium ion currents. The pyrethroids, being highly lipid soluble, are bound or distributed in lipid bilayers of the nerve cell membrane and exert their action on sodium channel proteins. The rising phase of the action potential is caused by sodium influx (sodium activation), while the falling phase is caused by sodium activation being turned off, and an increase in potassium efflux(potassium activation). The action of allethrin and other pyrethroids is caused by an inhibition or block of the normal currents. An equation by Tatebayashi and Narahashi (1994) that describes the action of pyrethroids on sodium channels was found in the literature. This equation, or some variation of it, may be suitable for use in the PD portion of pyrethroid PBPK models.
Collapse
Affiliation(s)
- James B Knaak
- Department of Pharmacology and Toxicology, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
A rapid detection method for apoptosis and necrosis measurement using the Cellometer imaging cytometry. Apoptosis 2011; 16:1295-303. [DOI: 10.1007/s10495-011-0651-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Goldsborough AS, Handley MD, Dulcey AE, Pluchino KM, Kannan P, Brimacombe KR, Hall MD, Griffiths G, Gottesman MM. Collateral sensitivity of multidrug-resistant cells to the orphan drug tiopronin. J Med Chem 2011; 54:4987-97. [PMID: 21657271 PMCID: PMC3208667 DOI: 10.1021/jm2001663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major challenge in the treatment of cancer is multidrug resistance (MDR) that develops during chemotherapy. Here we demonstrate that tiopronin (1), a thiol-substituted N-propanoylglycine derivative, was selectively toxic to a series of cell lines expressing the drug efflux pump P-glycoprotein (P-gp, ABCB1) and MRP1 (ABCC1). Treatment of MDR cells with 1 led to instability of the ABCB1 mRNA and consequently a reduction in P-gp protein, despite functional assays demonstrating that tiopronin does not interact with P-gp. Long-term exposure of P-gp-expressing cells to 1 sensitized them to doxorubicin and paclitaxel, both P-gp substrates. Treatment of MRP1-overexpressing cells with tiopronin led to a significant reduction in MRP1 protein. Synthesis and screening of analogues of tiopronin demonstrated that the thiol functional group was essential for collateral sensitivity while substitution of the amino acid backbone altered but did not destroy specificity, pointing to future development of targeted analogues.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- HEK293 Cells
- Humans
- Multidrug Resistance-Associated Proteins/metabolism
- Orphan Drug Production
- Paclitaxel/pharmacology
- RNA Stability
- RNA, Messenger/metabolism
- Structure-Activity Relationship
- Tiopronin/chemical synthesis
- Tiopronin/chemistry
- Tiopronin/pharmacology
Collapse
Affiliation(s)
- Andrew S Goldsborough
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|